f439445830
Change-Id: I243c98e20a250e0d40d481f16af481ff070219fd
2259 lines
73 KiB
C
2259 lines
73 KiB
C
/*
|
|
* Copyright (C) 2008, 2009 The Android Open Source Project
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/auxvec.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <dlfcn.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <sys/mman.h>
|
|
|
|
#include <sys/atomics.h>
|
|
|
|
/* special private C library header - see Android.mk */
|
|
#include <bionic_tls.h>
|
|
|
|
#include "linker.h"
|
|
#include "linker_debug.h"
|
|
#include "linker_format.h"
|
|
|
|
#include "ba.h"
|
|
|
|
#define ALLOW_SYMBOLS_FROM_MAIN 1
|
|
#define SO_MAX 96
|
|
|
|
/* Assume average path length of 64 and max 8 paths */
|
|
#define LDPATH_BUFSIZE 512
|
|
#define LDPATH_MAX 8
|
|
|
|
#define LDPRELOAD_BUFSIZE 512
|
|
#define LDPRELOAD_MAX 8
|
|
|
|
/* >>> IMPORTANT NOTE - READ ME BEFORE MODIFYING <<<
|
|
*
|
|
* Do NOT use malloc() and friends or pthread_*() code here.
|
|
* Don't use printf() either; it's caused mysterious memory
|
|
* corruption in the past.
|
|
* The linker runs before we bring up libc and it's easiest
|
|
* to make sure it does not depend on any complex libc features
|
|
*
|
|
* open issues / todo:
|
|
*
|
|
* - are we doing everything we should for ARM_COPY relocations?
|
|
* - cleaner error reporting
|
|
* - after linking, set as much stuff as possible to READONLY
|
|
* and NOEXEC
|
|
* - linker hardcodes PAGE_SIZE and PAGE_MASK because the kernel
|
|
* headers provide versions that are negative...
|
|
* - allocate space for soinfo structs dynamically instead of
|
|
* having a hard limit (64)
|
|
*/
|
|
|
|
|
|
static int link_image(soinfo *si, unsigned wr_offset);
|
|
|
|
static int socount = 0;
|
|
static soinfo sopool[SO_MAX];
|
|
static soinfo *freelist = NULL;
|
|
static soinfo *solist = &libdl_info;
|
|
static soinfo *sonext = &libdl_info;
|
|
#if ALLOW_SYMBOLS_FROM_MAIN
|
|
static soinfo *somain; /* main process, always the one after libdl_info */
|
|
#endif
|
|
|
|
|
|
/* Set up for the buddy allocator managing the non-prelinked libraries. */
|
|
static struct ba_bits ba_nonprelink_bitmap[(LIBLAST - LIBBASE) / LIBINC];
|
|
static struct ba ba_nonprelink = {
|
|
.base = LIBBASE,
|
|
.size = LIBLAST - LIBBASE,
|
|
.min_alloc = LIBINC,
|
|
/* max_order will be determined automatically */
|
|
.bitmap = ba_nonprelink_bitmap,
|
|
.num_entries = sizeof(ba_nonprelink_bitmap)/sizeof(ba_nonprelink_bitmap[0]),
|
|
};
|
|
|
|
static inline int validate_soinfo(soinfo *si)
|
|
{
|
|
return (si >= sopool && si < sopool + SO_MAX) ||
|
|
si == &libdl_info;
|
|
}
|
|
|
|
static char ldpaths_buf[LDPATH_BUFSIZE];
|
|
static const char *ldpaths[LDPATH_MAX + 1];
|
|
|
|
static char ldpreloads_buf[LDPRELOAD_BUFSIZE];
|
|
static const char *ldpreload_names[LDPRELOAD_MAX + 1];
|
|
|
|
static soinfo *preloads[LDPRELOAD_MAX + 1];
|
|
|
|
int debug_verbosity;
|
|
static int pid;
|
|
|
|
#if STATS
|
|
struct _link_stats linker_stats;
|
|
#endif
|
|
|
|
#if COUNT_PAGES
|
|
unsigned bitmask[4096];
|
|
#endif
|
|
|
|
#ifndef PT_ARM_EXIDX
|
|
#define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */
|
|
#endif
|
|
|
|
#define HOODLUM(name, ret, ...) \
|
|
ret name __VA_ARGS__ \
|
|
{ \
|
|
char errstr[] = "ERROR: " #name " called from the dynamic linker!\n"; \
|
|
write(2, errstr, sizeof(errstr)); \
|
|
abort(); \
|
|
}
|
|
HOODLUM(malloc, void *, (size_t size));
|
|
HOODLUM(free, void, (void *ptr));
|
|
HOODLUM(realloc, void *, (void *ptr, size_t size));
|
|
HOODLUM(calloc, void *, (size_t cnt, size_t size));
|
|
|
|
static char tmp_err_buf[768];
|
|
static char __linker_dl_err_buf[768];
|
|
#define DL_ERR(fmt, x...) \
|
|
do { \
|
|
format_buffer(__linker_dl_err_buf, sizeof(__linker_dl_err_buf), \
|
|
"%s[%d]: " fmt, __func__, __LINE__, ##x); \
|
|
ERROR(fmt "\n", ##x); \
|
|
} while(0)
|
|
|
|
const char *linker_get_error(void)
|
|
{
|
|
return (const char *)&__linker_dl_err_buf[0];
|
|
}
|
|
|
|
/*
|
|
* This function is an empty stub where GDB locates a breakpoint to get notified
|
|
* about linker activity.
|
|
*/
|
|
extern void __attribute__((noinline)) rtld_db_dlactivity(void);
|
|
|
|
static struct r_debug _r_debug = {1, NULL, &rtld_db_dlactivity,
|
|
RT_CONSISTENT, 0};
|
|
static struct link_map *r_debug_tail = 0;
|
|
|
|
static pthread_mutex_t _r_debug_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static void insert_soinfo_into_debug_map(soinfo * info)
|
|
{
|
|
struct link_map * map;
|
|
|
|
/* Copy the necessary fields into the debug structure.
|
|
*/
|
|
map = &(info->linkmap);
|
|
map->l_addr = info->base;
|
|
map->l_name = (char*) info->name;
|
|
map->l_ld = (uintptr_t)info->dynamic;
|
|
|
|
/* Stick the new library at the end of the list.
|
|
* gdb tends to care more about libc than it does
|
|
* about leaf libraries, and ordering it this way
|
|
* reduces the back-and-forth over the wire.
|
|
*/
|
|
if (r_debug_tail) {
|
|
r_debug_tail->l_next = map;
|
|
map->l_prev = r_debug_tail;
|
|
map->l_next = 0;
|
|
} else {
|
|
_r_debug.r_map = map;
|
|
map->l_prev = 0;
|
|
map->l_next = 0;
|
|
}
|
|
r_debug_tail = map;
|
|
}
|
|
|
|
static void remove_soinfo_from_debug_map(soinfo * info)
|
|
{
|
|
struct link_map * map = &(info->linkmap);
|
|
|
|
if (r_debug_tail == map)
|
|
r_debug_tail = map->l_prev;
|
|
|
|
if (map->l_prev) map->l_prev->l_next = map->l_next;
|
|
if (map->l_next) map->l_next->l_prev = map->l_prev;
|
|
}
|
|
|
|
void notify_gdb_of_load(soinfo * info)
|
|
{
|
|
if (info->flags & FLAG_EXE) {
|
|
// GDB already knows about the main executable
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&_r_debug_lock);
|
|
|
|
_r_debug.r_state = RT_ADD;
|
|
rtld_db_dlactivity();
|
|
|
|
insert_soinfo_into_debug_map(info);
|
|
|
|
_r_debug.r_state = RT_CONSISTENT;
|
|
rtld_db_dlactivity();
|
|
|
|
pthread_mutex_unlock(&_r_debug_lock);
|
|
}
|
|
|
|
void notify_gdb_of_unload(soinfo * info)
|
|
{
|
|
if (info->flags & FLAG_EXE) {
|
|
// GDB already knows about the main executable
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&_r_debug_lock);
|
|
|
|
_r_debug.r_state = RT_DELETE;
|
|
rtld_db_dlactivity();
|
|
|
|
remove_soinfo_from_debug_map(info);
|
|
|
|
_r_debug.r_state = RT_CONSISTENT;
|
|
rtld_db_dlactivity();
|
|
|
|
pthread_mutex_unlock(&_r_debug_lock);
|
|
}
|
|
|
|
void notify_gdb_of_libraries()
|
|
{
|
|
_r_debug.r_state = RT_ADD;
|
|
rtld_db_dlactivity();
|
|
_r_debug.r_state = RT_CONSISTENT;
|
|
rtld_db_dlactivity();
|
|
}
|
|
|
|
static soinfo *alloc_info(const char *name)
|
|
{
|
|
soinfo *si;
|
|
|
|
if(strlen(name) >= SOINFO_NAME_LEN) {
|
|
DL_ERR("%5d library name %s too long", pid, name);
|
|
return NULL;
|
|
}
|
|
|
|
/* The freelist is populated when we call free_info(), which in turn is
|
|
done only by dlclose(), which is not likely to be used.
|
|
*/
|
|
if (!freelist) {
|
|
if(socount == SO_MAX) {
|
|
DL_ERR("%5d too many libraries when loading %s", pid, name);
|
|
return NULL;
|
|
}
|
|
freelist = sopool + socount++;
|
|
freelist->next = NULL;
|
|
}
|
|
|
|
si = freelist;
|
|
freelist = freelist->next;
|
|
|
|
/* Make sure we get a clean block of soinfo */
|
|
memset(si, 0, sizeof(soinfo));
|
|
strcpy((char*) si->name, name);
|
|
sonext->next = si;
|
|
si->ba_index = -1; /* by default, prelinked */
|
|
si->next = NULL;
|
|
si->refcount = 0;
|
|
sonext = si;
|
|
|
|
TRACE("%5d name %s: allocated soinfo @ %p\n", pid, name, si);
|
|
return si;
|
|
}
|
|
|
|
static void free_info(soinfo *si)
|
|
{
|
|
soinfo *prev = NULL, *trav;
|
|
|
|
TRACE("%5d name %s: freeing soinfo @ %p\n", pid, si->name, si);
|
|
|
|
for(trav = solist; trav != NULL; trav = trav->next){
|
|
if (trav == si)
|
|
break;
|
|
prev = trav;
|
|
}
|
|
if (trav == NULL) {
|
|
/* si was not ni solist */
|
|
DL_ERR("%5d name %s is not in solist!", pid, si->name);
|
|
return;
|
|
}
|
|
|
|
/* prev will never be NULL, because the first entry in solist is
|
|
always the static libdl_info.
|
|
*/
|
|
prev->next = si->next;
|
|
if (si == sonext) sonext = prev;
|
|
si->next = freelist;
|
|
freelist = si;
|
|
}
|
|
|
|
#ifndef LINKER_TEXT_BASE
|
|
#error "linker's makefile must define LINKER_TEXT_BASE"
|
|
#endif
|
|
#ifndef LINKER_AREA_SIZE
|
|
#error "linker's makefile must define LINKER_AREA_SIZE"
|
|
#endif
|
|
#define LINKER_BASE ((LINKER_TEXT_BASE) & 0xfff00000)
|
|
#define LINKER_TOP (LINKER_BASE + (LINKER_AREA_SIZE))
|
|
|
|
const char *addr_to_name(unsigned addr)
|
|
{
|
|
soinfo *si;
|
|
|
|
for(si = solist; si != 0; si = si->next){
|
|
if((addr >= si->base) && (addr < (si->base + si->size))) {
|
|
return si->name;
|
|
}
|
|
}
|
|
|
|
if((addr >= LINKER_BASE) && (addr < LINKER_TOP)){
|
|
return "linker";
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
/* For a given PC, find the .so that it belongs to.
|
|
* Returns the base address of the .ARM.exidx section
|
|
* for that .so, and the number of 8-byte entries
|
|
* in that section (via *pcount).
|
|
*
|
|
* Intended to be called by libc's __gnu_Unwind_Find_exidx().
|
|
*
|
|
* This function is exposed via dlfcn.c and libdl.so.
|
|
*/
|
|
#ifdef ANDROID_ARM_LINKER
|
|
_Unwind_Ptr dl_unwind_find_exidx(_Unwind_Ptr pc, int *pcount)
|
|
{
|
|
soinfo *si;
|
|
unsigned addr = (unsigned)pc;
|
|
|
|
if ((addr < LINKER_BASE) || (addr >= LINKER_TOP)) {
|
|
for (si = solist; si != 0; si = si->next){
|
|
if ((addr >= si->base) && (addr < (si->base + si->size))) {
|
|
*pcount = si->ARM_exidx_count;
|
|
return (_Unwind_Ptr)(si->base + (unsigned long)si->ARM_exidx);
|
|
}
|
|
}
|
|
}
|
|
*pcount = 0;
|
|
return NULL;
|
|
}
|
|
#elif defined(ANDROID_X86_LINKER) || defined(ANDROID_SH_LINKER)
|
|
/* Here, we only have to provide a callback to iterate across all the
|
|
* loaded libraries. gcc_eh does the rest. */
|
|
int
|
|
dl_iterate_phdr(int (*cb)(struct dl_phdr_info *info, size_t size, void *data),
|
|
void *data)
|
|
{
|
|
soinfo *si;
|
|
struct dl_phdr_info dl_info;
|
|
int rv = 0;
|
|
|
|
for (si = solist; si != NULL; si = si->next) {
|
|
dl_info.dlpi_addr = si->linkmap.l_addr;
|
|
dl_info.dlpi_name = si->linkmap.l_name;
|
|
dl_info.dlpi_phdr = si->phdr;
|
|
dl_info.dlpi_phnum = si->phnum;
|
|
rv = cb(&dl_info, sizeof (struct dl_phdr_info), data);
|
|
if (rv != 0)
|
|
break;
|
|
}
|
|
return rv;
|
|
}
|
|
#endif
|
|
|
|
static Elf32_Sym *_elf_lookup(soinfo *si, unsigned hash, const char *name)
|
|
{
|
|
Elf32_Sym *s;
|
|
Elf32_Sym *symtab = si->symtab;
|
|
const char *strtab = si->strtab;
|
|
unsigned n;
|
|
|
|
TRACE_TYPE(LOOKUP, "%5d SEARCH %s in %s@0x%08x %08x %d\n", pid,
|
|
name, si->name, si->base, hash, hash % si->nbucket);
|
|
n = hash % si->nbucket;
|
|
|
|
for(n = si->bucket[hash % si->nbucket]; n != 0; n = si->chain[n]){
|
|
s = symtab + n;
|
|
if(strcmp(strtab + s->st_name, name)) continue;
|
|
|
|
/* only concern ourselves with global and weak symbol definitions */
|
|
switch(ELF32_ST_BIND(s->st_info)){
|
|
case STB_GLOBAL:
|
|
case STB_WEAK:
|
|
/* no section == undefined */
|
|
if(s->st_shndx == 0) continue;
|
|
|
|
TRACE_TYPE(LOOKUP, "%5d FOUND %s in %s (%08x) %d\n", pid,
|
|
name, si->name, s->st_value, s->st_size);
|
|
return s;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned elfhash(const char *_name)
|
|
{
|
|
const unsigned char *name = (const unsigned char *) _name;
|
|
unsigned h = 0, g;
|
|
|
|
while(*name) {
|
|
h = (h << 4) + *name++;
|
|
g = h & 0xf0000000;
|
|
h ^= g;
|
|
h ^= g >> 24;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
static Elf32_Sym *
|
|
_do_lookup(soinfo *si, const char *name, unsigned *base)
|
|
{
|
|
unsigned elf_hash = elfhash(name);
|
|
Elf32_Sym *s;
|
|
unsigned *d;
|
|
soinfo *lsi = si;
|
|
int i;
|
|
|
|
/* Look for symbols in the local scope first (the object who is
|
|
* searching). This happens with C++ templates on i386 for some
|
|
* reason.
|
|
*
|
|
* Notes on weak symbols:
|
|
* The ELF specs are ambigious about treatment of weak definitions in
|
|
* dynamic linking. Some systems return the first definition found
|
|
* and some the first non-weak definition. This is system dependent.
|
|
* Here we return the first definition found for simplicity. */
|
|
s = _elf_lookup(si, elf_hash, name);
|
|
if(s != NULL)
|
|
goto done;
|
|
|
|
/* Next, look for it in the preloads list */
|
|
for(i = 0; preloads[i] != NULL; i++) {
|
|
lsi = preloads[i];
|
|
s = _elf_lookup(lsi, elf_hash, name);
|
|
if(s != NULL)
|
|
goto done;
|
|
}
|
|
|
|
for(d = si->dynamic; *d; d += 2) {
|
|
if(d[0] == DT_NEEDED){
|
|
lsi = (soinfo *)d[1];
|
|
if (!validate_soinfo(lsi)) {
|
|
DL_ERR("%5d bad DT_NEEDED pointer in %s",
|
|
pid, si->name);
|
|
return NULL;
|
|
}
|
|
|
|
DEBUG("%5d %s: looking up %s in %s\n",
|
|
pid, si->name, name, lsi->name);
|
|
s = _elf_lookup(lsi, elf_hash, name);
|
|
if ((s != NULL) && (s->st_shndx != SHN_UNDEF))
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
#if ALLOW_SYMBOLS_FROM_MAIN
|
|
/* If we are resolving relocations while dlopen()ing a library, it's OK for
|
|
* the library to resolve a symbol that's defined in the executable itself,
|
|
* although this is rare and is generally a bad idea.
|
|
*/
|
|
if (somain) {
|
|
lsi = somain;
|
|
DEBUG("%5d %s: looking up %s in executable %s\n",
|
|
pid, si->name, name, lsi->name);
|
|
s = _elf_lookup(lsi, elf_hash, name);
|
|
}
|
|
#endif
|
|
|
|
done:
|
|
if(s != NULL) {
|
|
TRACE_TYPE(LOOKUP, "%5d si %s sym %s s->st_value = 0x%08x, "
|
|
"found in %s, base = 0x%08x\n",
|
|
pid, si->name, name, s->st_value, lsi->name, lsi->base);
|
|
*base = lsi->base;
|
|
return s;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This is used by dl_sym(). It performs symbol lookup only within the
|
|
specified soinfo object and not in any of its dependencies.
|
|
*/
|
|
Elf32_Sym *lookup_in_library(soinfo *si, const char *name)
|
|
{
|
|
return _elf_lookup(si, elfhash(name), name);
|
|
}
|
|
|
|
/* This is used by dl_sym(). It performs a global symbol lookup.
|
|
*/
|
|
Elf32_Sym *lookup(const char *name, soinfo **found, soinfo *start)
|
|
{
|
|
unsigned elf_hash = elfhash(name);
|
|
Elf32_Sym *s = NULL;
|
|
soinfo *si;
|
|
|
|
if(start == NULL) {
|
|
start = solist;
|
|
}
|
|
|
|
for(si = start; (s == NULL) && (si != NULL); si = si->next)
|
|
{
|
|
if(si->flags & FLAG_ERROR)
|
|
continue;
|
|
s = _elf_lookup(si, elf_hash, name);
|
|
if (s != NULL) {
|
|
*found = si;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(s != NULL) {
|
|
TRACE_TYPE(LOOKUP, "%5d %s s->st_value = 0x%08x, "
|
|
"si->base = 0x%08x\n", pid, name, s->st_value, si->base);
|
|
return s;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
soinfo *find_containing_library(void *addr)
|
|
{
|
|
soinfo *si;
|
|
|
|
for(si = solist; si != NULL; si = si->next)
|
|
{
|
|
if((unsigned)addr >= si->base && (unsigned)addr - si->base < si->size) {
|
|
return si;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
Elf32_Sym *find_containing_symbol(void *addr, soinfo *si)
|
|
{
|
|
unsigned int i;
|
|
unsigned soaddr = (unsigned)addr - si->base;
|
|
|
|
/* Search the library's symbol table for any defined symbol which
|
|
* contains this address */
|
|
for(i=0; i<si->nchain; i++) {
|
|
Elf32_Sym *sym = &si->symtab[i];
|
|
|
|
if(sym->st_shndx != SHN_UNDEF &&
|
|
soaddr >= sym->st_value &&
|
|
soaddr < sym->st_value + sym->st_size) {
|
|
return sym;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if 0
|
|
static void dump(soinfo *si)
|
|
{
|
|
Elf32_Sym *s = si->symtab;
|
|
unsigned n;
|
|
|
|
for(n = 0; n < si->nchain; n++) {
|
|
TRACE("%5d %04d> %08x: %02x %04x %08x %08x %s\n", pid, n, s,
|
|
s->st_info, s->st_shndx, s->st_value, s->st_size,
|
|
si->strtab + s->st_name);
|
|
s++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static const char *sopaths[] = {
|
|
"/system/lib",
|
|
"/lib",
|
|
0
|
|
};
|
|
|
|
static int _open_lib(const char *name)
|
|
{
|
|
int fd;
|
|
struct stat filestat;
|
|
|
|
if ((stat(name, &filestat) >= 0) && S_ISREG(filestat.st_mode)) {
|
|
if ((fd = open(name, O_RDONLY)) >= 0)
|
|
return fd;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int open_library(const char *name)
|
|
{
|
|
int fd;
|
|
char buf[512];
|
|
const char **path;
|
|
int n;
|
|
|
|
TRACE("[ %5d opening %s ]\n", pid, name);
|
|
|
|
if(name == 0) return -1;
|
|
if(strlen(name) > 256) return -1;
|
|
|
|
if ((name[0] == '/') && ((fd = _open_lib(name)) >= 0))
|
|
return fd;
|
|
|
|
for (path = ldpaths; *path; path++) {
|
|
n = format_buffer(buf, sizeof(buf), "%s/%s", *path, name);
|
|
if (n < 0 || n >= (int)sizeof(buf)) {
|
|
WARN("Ignoring very long library path: %s/%s\n", *path, name);
|
|
continue;
|
|
}
|
|
if ((fd = _open_lib(buf)) >= 0)
|
|
return fd;
|
|
}
|
|
for (path = sopaths; *path; path++) {
|
|
n = format_buffer(buf, sizeof(buf), "%s/%s", *path, name);
|
|
if (n < 0 || n >= (int)sizeof(buf)) {
|
|
WARN("Ignoring very long library path: %s/%s\n", *path, name);
|
|
continue;
|
|
}
|
|
if ((fd = _open_lib(buf)) >= 0)
|
|
return fd;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* temporary space for holding the first page of the shared lib
|
|
* which contains the elf header (with the pht). */
|
|
static unsigned char __header[PAGE_SIZE];
|
|
|
|
typedef struct {
|
|
long mmap_addr;
|
|
char tag[4]; /* 'P', 'R', 'E', ' ' */
|
|
} prelink_info_t;
|
|
|
|
/* Returns the requested base address if the library is prelinked,
|
|
* and 0 otherwise. */
|
|
static unsigned long
|
|
is_prelinked(int fd, const char *name)
|
|
{
|
|
off_t sz;
|
|
prelink_info_t info;
|
|
|
|
sz = lseek(fd, -sizeof(prelink_info_t), SEEK_END);
|
|
if (sz < 0) {
|
|
DL_ERR("lseek() failed!");
|
|
return 0;
|
|
}
|
|
|
|
if (read(fd, &info, sizeof(info)) != sizeof(info)) {
|
|
WARN("Could not read prelink_info_t structure for `%s`\n", name);
|
|
return 0;
|
|
}
|
|
|
|
if (strncmp(info.tag, "PRE ", 4)) {
|
|
WARN("`%s` is not a prelinked library\n", name);
|
|
return 0;
|
|
}
|
|
|
|
return (unsigned long)info.mmap_addr;
|
|
}
|
|
|
|
/* verify_elf_object
|
|
* Verifies if the object @ base is a valid ELF object
|
|
*
|
|
* Args:
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* -1 if no valid ELF object is found @ base.
|
|
*/
|
|
static int
|
|
verify_elf_object(void *base, const char *name)
|
|
{
|
|
Elf32_Ehdr *hdr = (Elf32_Ehdr *) base;
|
|
|
|
if (hdr->e_ident[EI_MAG0] != ELFMAG0) return -1;
|
|
if (hdr->e_ident[EI_MAG1] != ELFMAG1) return -1;
|
|
if (hdr->e_ident[EI_MAG2] != ELFMAG2) return -1;
|
|
if (hdr->e_ident[EI_MAG3] != ELFMAG3) return -1;
|
|
|
|
/* TODO: Should we verify anything else in the header? */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* get_lib_extents
|
|
* Retrieves the base (*base) address where the ELF object should be
|
|
* mapped and its overall memory size (*total_sz).
|
|
*
|
|
* Args:
|
|
* fd: Opened file descriptor for the library
|
|
* name: The name of the library
|
|
* _hdr: Pointer to the header page of the library
|
|
* total_sz: Total size of the memory that should be allocated for
|
|
* this library
|
|
*
|
|
* Returns:
|
|
* -1 if there was an error while trying to get the lib extents.
|
|
* The possible reasons are:
|
|
* - Could not determine if the library was prelinked.
|
|
* - The library provided is not a valid ELF object
|
|
* 0 if the library did not request a specific base offset (normal
|
|
* for non-prelinked libs)
|
|
* > 0 if the library requests a specific address to be mapped to.
|
|
* This indicates a pre-linked library.
|
|
*/
|
|
static unsigned
|
|
get_lib_extents(int fd, const char *name, void *__hdr, unsigned *total_sz)
|
|
{
|
|
unsigned req_base;
|
|
unsigned min_vaddr = 0xffffffff;
|
|
unsigned max_vaddr = 0;
|
|
unsigned char *_hdr = (unsigned char *)__hdr;
|
|
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)_hdr;
|
|
Elf32_Phdr *phdr;
|
|
int cnt;
|
|
|
|
TRACE("[ %5d Computing extents for '%s'. ]\n", pid, name);
|
|
if (verify_elf_object(_hdr, name) < 0) {
|
|
DL_ERR("%5d - %s is not a valid ELF object", pid, name);
|
|
return (unsigned)-1;
|
|
}
|
|
|
|
req_base = (unsigned) is_prelinked(fd, name);
|
|
if (req_base == (unsigned)-1)
|
|
return -1;
|
|
else if (req_base != 0) {
|
|
TRACE("[ %5d - Prelinked library '%s' requesting base @ 0x%08x ]\n",
|
|
pid, name, req_base);
|
|
} else {
|
|
TRACE("[ %5d - Non-prelinked library '%s' found. ]\n", pid, name);
|
|
}
|
|
|
|
phdr = (Elf32_Phdr *)(_hdr + ehdr->e_phoff);
|
|
|
|
/* find the min/max p_vaddrs from all the PT_LOAD segments so we can
|
|
* get the range. */
|
|
for (cnt = 0; cnt < ehdr->e_phnum; ++cnt, ++phdr) {
|
|
if (phdr->p_type == PT_LOAD) {
|
|
if ((phdr->p_vaddr + phdr->p_memsz) > max_vaddr)
|
|
max_vaddr = phdr->p_vaddr + phdr->p_memsz;
|
|
if (phdr->p_vaddr < min_vaddr)
|
|
min_vaddr = phdr->p_vaddr;
|
|
}
|
|
}
|
|
|
|
if ((min_vaddr == 0xffffffff) && (max_vaddr == 0)) {
|
|
DL_ERR("%5d - No loadable segments found in %s.", pid, name);
|
|
return (unsigned)-1;
|
|
}
|
|
|
|
/* truncate min_vaddr down to page boundary */
|
|
min_vaddr &= ~PAGE_MASK;
|
|
|
|
/* round max_vaddr up to the next page */
|
|
max_vaddr = (max_vaddr + PAGE_SIZE - 1) & ~PAGE_MASK;
|
|
|
|
*total_sz = (max_vaddr - min_vaddr);
|
|
return (unsigned)req_base;
|
|
}
|
|
|
|
/* alloc_mem_region
|
|
*
|
|
* This function reserves a chunk of memory to be used for mapping in
|
|
* the shared library. We reserve the entire memory region here, and
|
|
* then the rest of the linker will relocate the individual loadable
|
|
* segments into the correct locations within this memory range.
|
|
*
|
|
* Args:
|
|
* si->base: The requested base of the allocation. If 0, a sane one will be
|
|
* chosen in the range LIBBASE <= base < LIBLAST.
|
|
* si->size: The size of the allocation.
|
|
*
|
|
* Returns:
|
|
* -1 on failure, and 0 on success. On success, si->base will contain
|
|
* the virtual address at which the library will be mapped.
|
|
*/
|
|
|
|
static int reserve_mem_region(soinfo *si)
|
|
{
|
|
void *base = mmap((void *)si->base, si->size, PROT_READ | PROT_EXEC,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (base == MAP_FAILED) {
|
|
DL_ERR("%5d can NOT map (%sprelinked) library '%s' at 0x%08x "
|
|
"as requested, will try general pool: %d (%s)",
|
|
pid, (si->base ? "" : "non-"), si->name, si->base,
|
|
errno, strerror(errno));
|
|
return -1;
|
|
} else if (base != (void *)si->base) {
|
|
DL_ERR("OOPS: %5d %sprelinked library '%s' mapped at 0x%08x, "
|
|
"not at 0x%08x", pid, (si->base ? "" : "non-"),
|
|
si->name, (unsigned)base, si->base);
|
|
munmap(base, si->size);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
alloc_mem_region(soinfo *si)
|
|
{
|
|
if (si->base) {
|
|
/* Attempt to mmap a prelinked library. */
|
|
si->ba_index = -1;
|
|
return reserve_mem_region(si);
|
|
}
|
|
|
|
/* This is not a prelinked library, so we attempt to allocate space
|
|
for it from the buddy allocator, which manages the area between
|
|
LIBBASE and LIBLAST.
|
|
*/
|
|
si->ba_index = ba_allocate(&ba_nonprelink, si->size);
|
|
if(si->ba_index >= 0) {
|
|
si->base = ba_start_addr(&ba_nonprelink, si->ba_index);
|
|
PRINT("%5d mapping library '%s' at %08x (index %d) " \
|
|
"through buddy allocator.\n",
|
|
pid, si->name, si->base, si->ba_index);
|
|
if (reserve_mem_region(si) < 0) {
|
|
ba_free(&ba_nonprelink, si->ba_index);
|
|
si->ba_index = -1;
|
|
si->base = 0;
|
|
goto err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
err:
|
|
DL_ERR("OOPS: %5d cannot map library '%s'. no vspace available.",
|
|
pid, si->name);
|
|
return -1;
|
|
}
|
|
|
|
#define MAYBE_MAP_FLAG(x,from,to) (((x) & (from)) ? (to) : 0)
|
|
#define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
|
|
MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
|
|
MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
|
|
/* load_segments
|
|
*
|
|
* This function loads all the loadable (PT_LOAD) segments into memory
|
|
* at their appropriate memory offsets off the base address.
|
|
*
|
|
* Args:
|
|
* fd: Open file descriptor to the library to load.
|
|
* header: Pointer to a header page that contains the ELF header.
|
|
* This is needed since we haven't mapped in the real file yet.
|
|
* si: ptr to soinfo struct describing the shared object.
|
|
*
|
|
* Returns:
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
load_segments(int fd, void *header, soinfo *si)
|
|
{
|
|
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)header;
|
|
Elf32_Phdr *phdr = (Elf32_Phdr *)((unsigned char *)header + ehdr->e_phoff);
|
|
unsigned char *base = (unsigned char *)si->base;
|
|
int cnt;
|
|
unsigned len;
|
|
unsigned char *tmp;
|
|
unsigned char *pbase;
|
|
unsigned char *extra_base;
|
|
unsigned extra_len;
|
|
unsigned total_sz = 0;
|
|
|
|
si->wrprotect_start = 0xffffffff;
|
|
si->wrprotect_end = 0;
|
|
|
|
TRACE("[ %5d - Begin loading segments for '%s' @ 0x%08x ]\n",
|
|
pid, si->name, (unsigned)si->base);
|
|
/* Now go through all the PT_LOAD segments and map them into memory
|
|
* at the appropriate locations. */
|
|
for (cnt = 0; cnt < ehdr->e_phnum; ++cnt, ++phdr) {
|
|
if (phdr->p_type == PT_LOAD) {
|
|
DEBUG_DUMP_PHDR(phdr, "PT_LOAD", pid);
|
|
/* we want to map in the segment on a page boundary */
|
|
tmp = base + (phdr->p_vaddr & (~PAGE_MASK));
|
|
/* add the # of bytes we masked off above to the total length. */
|
|
len = phdr->p_filesz + (phdr->p_vaddr & PAGE_MASK);
|
|
|
|
TRACE("[ %d - Trying to load segment from '%s' @ 0x%08x "
|
|
"(0x%08x). p_vaddr=0x%08x p_offset=0x%08x ]\n", pid, si->name,
|
|
(unsigned)tmp, len, phdr->p_vaddr, phdr->p_offset);
|
|
pbase = mmap(tmp, len, PFLAGS_TO_PROT(phdr->p_flags),
|
|
MAP_PRIVATE | MAP_FIXED, fd,
|
|
phdr->p_offset & (~PAGE_MASK));
|
|
if (pbase == MAP_FAILED) {
|
|
DL_ERR("%d failed to map segment from '%s' @ 0x%08x (0x%08x). "
|
|
"p_vaddr=0x%08x p_offset=0x%08x", pid, si->name,
|
|
(unsigned)tmp, len, phdr->p_vaddr, phdr->p_offset);
|
|
goto fail;
|
|
}
|
|
|
|
/* If 'len' didn't end on page boundary, and it's a writable
|
|
* segment, zero-fill the rest. */
|
|
if ((len & PAGE_MASK) && (phdr->p_flags & PF_W))
|
|
memset((void *)(pbase + len), 0, PAGE_SIZE - (len & PAGE_MASK));
|
|
|
|
/* Check to see if we need to extend the map for this segment to
|
|
* cover the diff between filesz and memsz (i.e. for bss).
|
|
*
|
|
* base _+---------------------+ page boundary
|
|
* . .
|
|
* | |
|
|
* . .
|
|
* pbase _+---------------------+ page boundary
|
|
* | |
|
|
* . .
|
|
* base + p_vaddr _| |
|
|
* . \ \ .
|
|
* . | filesz | .
|
|
* pbase + len _| / | |
|
|
* <0 pad> . . .
|
|
* extra_base _+------------|--------+ page boundary
|
|
* / . . .
|
|
* | . . .
|
|
* | +------------|--------+ page boundary
|
|
* extra_len-> | | | |
|
|
* | . | memsz .
|
|
* | . | .
|
|
* \ _| / |
|
|
* . .
|
|
* | |
|
|
* _+---------------------+ page boundary
|
|
*/
|
|
tmp = (unsigned char *)(((unsigned)pbase + len + PAGE_SIZE - 1) &
|
|
(~PAGE_MASK));
|
|
if (tmp < (base + phdr->p_vaddr + phdr->p_memsz)) {
|
|
extra_len = base + phdr->p_vaddr + phdr->p_memsz - tmp;
|
|
TRACE("[ %5d - Need to extend segment from '%s' @ 0x%08x "
|
|
"(0x%08x) ]\n", pid, si->name, (unsigned)tmp, extra_len);
|
|
/* map in the extra page(s) as anonymous into the range.
|
|
* This is probably not necessary as we already mapped in
|
|
* the entire region previously, but we just want to be
|
|
* sure. This will also set the right flags on the region
|
|
* (though we can probably accomplish the same thing with
|
|
* mprotect).
|
|
*/
|
|
extra_base = mmap((void *)tmp, extra_len,
|
|
PFLAGS_TO_PROT(phdr->p_flags),
|
|
MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
if (extra_base == MAP_FAILED) {
|
|
DL_ERR("[ %5d - failed to extend segment from '%s' @ 0x%08x"
|
|
" (0x%08x) ]", pid, si->name, (unsigned)tmp,
|
|
extra_len);
|
|
goto fail;
|
|
}
|
|
/* TODO: Check if we need to memset-0 this region.
|
|
* Anonymous mappings are zero-filled copy-on-writes, so we
|
|
* shouldn't need to. */
|
|
TRACE("[ %5d - Segment from '%s' extended @ 0x%08x "
|
|
"(0x%08x)\n", pid, si->name, (unsigned)extra_base,
|
|
extra_len);
|
|
}
|
|
/* set the len here to show the full extent of the segment we
|
|
* just loaded, mostly for debugging */
|
|
len = (((unsigned)base + phdr->p_vaddr + phdr->p_memsz +
|
|
PAGE_SIZE - 1) & (~PAGE_MASK)) - (unsigned)pbase;
|
|
TRACE("[ %5d - Successfully loaded segment from '%s' @ 0x%08x "
|
|
"(0x%08x). p_vaddr=0x%08x p_offset=0x%08x\n", pid, si->name,
|
|
(unsigned)pbase, len, phdr->p_vaddr, phdr->p_offset);
|
|
total_sz += len;
|
|
/* Make the section writable just in case we'll have to write to
|
|
* it during relocation (i.e. text segment). However, we will
|
|
* remember what range of addresses should be write protected.
|
|
*
|
|
*/
|
|
if (!(phdr->p_flags & PF_W)) {
|
|
if ((unsigned)pbase < si->wrprotect_start)
|
|
si->wrprotect_start = (unsigned)pbase;
|
|
if (((unsigned)pbase + len) > si->wrprotect_end)
|
|
si->wrprotect_end = (unsigned)pbase + len;
|
|
mprotect(pbase, len,
|
|
PFLAGS_TO_PROT(phdr->p_flags) | PROT_WRITE);
|
|
}
|
|
} else if (phdr->p_type == PT_DYNAMIC) {
|
|
DEBUG_DUMP_PHDR(phdr, "PT_DYNAMIC", pid);
|
|
/* this segment contains the dynamic linking information */
|
|
si->dynamic = (unsigned *)(base + phdr->p_vaddr);
|
|
} else {
|
|
#ifdef ANDROID_ARM_LINKER
|
|
if (phdr->p_type == PT_ARM_EXIDX) {
|
|
DEBUG_DUMP_PHDR(phdr, "PT_ARM_EXIDX", pid);
|
|
/* exidx entries (used for stack unwinding) are 8 bytes each.
|
|
*/
|
|
si->ARM_exidx = (unsigned *)phdr->p_vaddr;
|
|
si->ARM_exidx_count = phdr->p_memsz / 8;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
/* Sanity check */
|
|
if (total_sz > si->size) {
|
|
DL_ERR("%5d - Total length (0x%08x) of mapped segments from '%s' is "
|
|
"greater than what was allocated (0x%08x). THIS IS BAD!",
|
|
pid, total_sz, si->name, si->size);
|
|
goto fail;
|
|
}
|
|
|
|
TRACE("[ %5d - Finish loading segments for '%s' @ 0x%08x. "
|
|
"Total memory footprint: 0x%08x bytes ]\n", pid, si->name,
|
|
(unsigned)si->base, si->size);
|
|
return 0;
|
|
|
|
fail:
|
|
/* We can just blindly unmap the entire region even though some things
|
|
* were mapped in originally with anonymous and others could have been
|
|
* been mapped in from the file before we failed. The kernel will unmap
|
|
* all the pages in the range, irrespective of how they got there.
|
|
*/
|
|
munmap((void *)si->base, si->size);
|
|
si->flags |= FLAG_ERROR;
|
|
return -1;
|
|
}
|
|
|
|
/* TODO: Implement this to take care of the fact that Android ARM
|
|
* ELF objects shove everything into a single loadable segment that has the
|
|
* write bit set. wr_offset is then used to set non-(data|bss) pages to be
|
|
* non-writable.
|
|
*/
|
|
#if 0
|
|
static unsigned
|
|
get_wr_offset(int fd, const char *name, Elf32_Ehdr *ehdr)
|
|
{
|
|
Elf32_Shdr *shdr_start;
|
|
Elf32_Shdr *shdr;
|
|
int shdr_sz = ehdr->e_shnum * sizeof(Elf32_Shdr);
|
|
int cnt;
|
|
unsigned wr_offset = 0xffffffff;
|
|
|
|
shdr_start = mmap(0, shdr_sz, PROT_READ, MAP_PRIVATE, fd,
|
|
ehdr->e_shoff & (~PAGE_MASK));
|
|
if (shdr_start == MAP_FAILED) {
|
|
WARN("%5d - Could not read section header info from '%s'. Will not "
|
|
"not be able to determine write-protect offset.\n", pid, name);
|
|
return (unsigned)-1;
|
|
}
|
|
|
|
for(cnt = 0, shdr = shdr_start; cnt < ehdr->e_shnum; ++cnt, ++shdr) {
|
|
if ((shdr->sh_type != SHT_NULL) && (shdr->sh_flags & SHF_WRITE) &&
|
|
(shdr->sh_addr < wr_offset)) {
|
|
wr_offset = shdr->sh_addr;
|
|
}
|
|
}
|
|
|
|
munmap(shdr_start, shdr_sz);
|
|
return wr_offset;
|
|
}
|
|
#endif
|
|
|
|
static soinfo *
|
|
load_library(const char *name)
|
|
{
|
|
int fd = open_library(name);
|
|
int cnt;
|
|
unsigned ext_sz;
|
|
unsigned req_base;
|
|
const char *bname;
|
|
soinfo *si = NULL;
|
|
Elf32_Ehdr *hdr;
|
|
|
|
if(fd == -1) {
|
|
DL_ERR("Library '%s' not found", name);
|
|
return NULL;
|
|
}
|
|
|
|
/* We have to read the ELF header to figure out what to do with this image
|
|
*/
|
|
if (lseek(fd, 0, SEEK_SET) < 0) {
|
|
DL_ERR("lseek() failed!");
|
|
goto fail;
|
|
}
|
|
|
|
if ((cnt = read(fd, &__header[0], PAGE_SIZE)) < 0) {
|
|
DL_ERR("read() failed!");
|
|
goto fail;
|
|
}
|
|
|
|
/* Parse the ELF header and get the size of the memory footprint for
|
|
* the library */
|
|
req_base = get_lib_extents(fd, name, &__header[0], &ext_sz);
|
|
if (req_base == (unsigned)-1)
|
|
goto fail;
|
|
TRACE("[ %5d - '%s' (%s) wants base=0x%08x sz=0x%08x ]\n", pid, name,
|
|
(req_base ? "prelinked" : "not pre-linked"), req_base, ext_sz);
|
|
|
|
/* Now configure the soinfo struct where we'll store all of our data
|
|
* for the ELF object. If the loading fails, we waste the entry, but
|
|
* same thing would happen if we failed during linking. Configuring the
|
|
* soinfo struct here is a lot more convenient.
|
|
*/
|
|
bname = strrchr(name, '/');
|
|
si = alloc_info(bname ? bname + 1 : name);
|
|
if (si == NULL)
|
|
goto fail;
|
|
|
|
/* Carve out a chunk of memory where we will map in the individual
|
|
* segments */
|
|
si->base = req_base;
|
|
si->size = ext_sz;
|
|
si->flags = 0;
|
|
si->entry = 0;
|
|
si->dynamic = (unsigned *)-1;
|
|
if (alloc_mem_region(si) < 0)
|
|
goto fail;
|
|
|
|
TRACE("[ %5d allocated memory for %s @ %p (0x%08x) ]\n",
|
|
pid, name, (void *)si->base, (unsigned) ext_sz);
|
|
|
|
/* Now actually load the library's segments into right places in memory */
|
|
if (load_segments(fd, &__header[0], si) < 0) {
|
|
if (si->ba_index >= 0) {
|
|
ba_free(&ba_nonprelink, si->ba_index);
|
|
si->ba_index = -1;
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
/* this might not be right. Technically, we don't even need this info
|
|
* once we go through 'load_segments'. */
|
|
hdr = (Elf32_Ehdr *)si->base;
|
|
si->phdr = (Elf32_Phdr *)((unsigned char *)si->base + hdr->e_phoff);
|
|
si->phnum = hdr->e_phnum;
|
|
/**/
|
|
|
|
close(fd);
|
|
return si;
|
|
|
|
fail:
|
|
if (si) free_info(si);
|
|
close(fd);
|
|
return NULL;
|
|
}
|
|
|
|
static soinfo *
|
|
init_library(soinfo *si)
|
|
{
|
|
unsigned wr_offset = 0xffffffff;
|
|
|
|
/* At this point we know that whatever is loaded @ base is a valid ELF
|
|
* shared library whose segments are properly mapped in. */
|
|
TRACE("[ %5d init_library base=0x%08x sz=0x%08x name='%s') ]\n",
|
|
pid, si->base, si->size, si->name);
|
|
|
|
if (si->base < LIBBASE || si->base >= LIBLAST)
|
|
si->flags |= FLAG_PRELINKED;
|
|
|
|
if(link_image(si, wr_offset)) {
|
|
/* We failed to link. However, we can only restore libbase
|
|
** if no additional libraries have moved it since we updated it.
|
|
*/
|
|
munmap((void *)si->base, si->size);
|
|
return NULL;
|
|
}
|
|
|
|
return si;
|
|
}
|
|
|
|
soinfo *find_library(const char *name)
|
|
{
|
|
soinfo *si;
|
|
const char *bname = strrchr(name, '/');
|
|
bname = bname ? bname + 1 : name;
|
|
|
|
for(si = solist; si != 0; si = si->next){
|
|
if(!strcmp(bname, si->name)) {
|
|
if(si->flags & FLAG_ERROR) {
|
|
DL_ERR("%5d '%s' failed to load previously", pid, bname);
|
|
return NULL;
|
|
}
|
|
if(si->flags & FLAG_LINKED) return si;
|
|
DL_ERR("OOPS: %5d recursive link to '%s'", pid, si->name);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
TRACE("[ %5d '%s' has not been loaded yet. Locating...]\n", pid, name);
|
|
si = load_library(name);
|
|
if(si == NULL)
|
|
return NULL;
|
|
return init_library(si);
|
|
}
|
|
|
|
/* TODO:
|
|
* notify gdb of unload
|
|
* for non-prelinked libraries, find a way to decrement libbase
|
|
*/
|
|
static void call_destructors(soinfo *si);
|
|
unsigned unload_library(soinfo *si)
|
|
{
|
|
unsigned *d;
|
|
if (si->refcount == 1) {
|
|
TRACE("%5d unloading '%s'\n", pid, si->name);
|
|
call_destructors(si);
|
|
|
|
for(d = si->dynamic; *d; d += 2) {
|
|
if(d[0] == DT_NEEDED){
|
|
soinfo *lsi = (soinfo *)d[1];
|
|
d[1] = 0;
|
|
if (validate_soinfo(lsi)) {
|
|
TRACE("%5d %s needs to unload %s\n", pid,
|
|
si->name, lsi->name);
|
|
unload_library(lsi);
|
|
}
|
|
else
|
|
DL_ERR("%5d %s: could not unload dependent library",
|
|
pid, si->name);
|
|
}
|
|
}
|
|
|
|
munmap((char *)si->base, si->size);
|
|
if (si->ba_index >= 0) {
|
|
PRINT("%5d releasing library '%s' address space at %08x "\
|
|
"through buddy allocator.\n",
|
|
pid, si->name, si->base);
|
|
ba_free(&ba_nonprelink, si->ba_index);
|
|
}
|
|
notify_gdb_of_unload(si);
|
|
free_info(si);
|
|
si->refcount = 0;
|
|
}
|
|
else {
|
|
si->refcount--;
|
|
PRINT("%5d not unloading '%s', decrementing refcount to %d\n",
|
|
pid, si->name, si->refcount);
|
|
}
|
|
return si->refcount;
|
|
}
|
|
|
|
/* TODO: don't use unsigned for addrs below. It works, but is not
|
|
* ideal. They should probably be either uint32_t, Elf32_Addr, or unsigned
|
|
* long.
|
|
*/
|
|
static int reloc_library(soinfo *si, Elf32_Rel *rel, unsigned count)
|
|
{
|
|
Elf32_Sym *symtab = si->symtab;
|
|
const char *strtab = si->strtab;
|
|
Elf32_Sym *s;
|
|
unsigned base;
|
|
Elf32_Rel *start = rel;
|
|
unsigned idx;
|
|
|
|
for (idx = 0; idx < count; ++idx) {
|
|
unsigned type = ELF32_R_TYPE(rel->r_info);
|
|
unsigned sym = ELF32_R_SYM(rel->r_info);
|
|
unsigned reloc = (unsigned)(rel->r_offset + si->base);
|
|
unsigned sym_addr = 0;
|
|
char *sym_name = NULL;
|
|
|
|
DEBUG("%5d Processing '%s' relocation at index %d\n", pid,
|
|
si->name, idx);
|
|
if(sym != 0) {
|
|
sym_name = (char *)(strtab + symtab[sym].st_name);
|
|
s = _do_lookup(si, sym_name, &base);
|
|
if(s == NULL) {
|
|
/* We only allow an undefined symbol if this is a weak
|
|
reference.. */
|
|
s = &symtab[sym];
|
|
if (ELF32_ST_BIND(s->st_info) != STB_WEAK) {
|
|
DL_ERR("%5d cannot locate '%s'...\n", pid, sym_name);
|
|
return -1;
|
|
}
|
|
|
|
/* IHI0044C AAELF 4.5.1.1:
|
|
|
|
Libraries are not searched to resolve weak references.
|
|
It is not an error for a weak reference to remain
|
|
unsatisfied.
|
|
|
|
During linking, the value of an undefined weak reference is:
|
|
- Zero if the relocation type is absolute
|
|
- The address of the place if the relocation is pc-relative
|
|
- The address of nominial base address if the relocation
|
|
type is base-relative.
|
|
*/
|
|
|
|
switch (type) {
|
|
#if defined(ANDROID_ARM_LINKER)
|
|
case R_ARM_JUMP_SLOT:
|
|
case R_ARM_GLOB_DAT:
|
|
case R_ARM_ABS32:
|
|
case R_ARM_RELATIVE: /* Don't care. */
|
|
case R_ARM_NONE: /* Don't care. */
|
|
#elif defined(ANDROID_X86_LINKER)
|
|
case R_386_JUMP_SLOT:
|
|
case R_386_GLOB_DAT:
|
|
case R_386_32:
|
|
case R_386_RELATIVE: /* Dont' care. */
|
|
#endif /* ANDROID_*_LINKER */
|
|
/* sym_addr was initialized to be zero above or relocation
|
|
code below does not care about value of sym_addr.
|
|
No need to do anything. */
|
|
break;
|
|
|
|
#if defined(ANDROID_X86_LINKER)
|
|
case R_386_PC32:
|
|
sym_addr = reloc;
|
|
break;
|
|
#endif /* ANDROID_X86_LINKER */
|
|
|
|
#if defined(ANDROID_ARM_LINKER)
|
|
case R_ARM_COPY:
|
|
/* Fall through. Can't really copy if weak symbol is
|
|
not found in run-time. */
|
|
#endif /* ANDROID_ARM_LINKER */
|
|
default:
|
|
DL_ERR("%5d unknown weak reloc type %d @ %p (%d)\n",
|
|
pid, type, rel, (int) (rel - start));
|
|
return -1;
|
|
}
|
|
} else {
|
|
/* We got a definition. */
|
|
#if 0
|
|
if((base == 0) && (si->base != 0)){
|
|
/* linking from libraries to main image is bad */
|
|
DL_ERR("%5d cannot locate '%s'...",
|
|
pid, strtab + symtab[sym].st_name);
|
|
return -1;
|
|
}
|
|
#endif
|
|
sym_addr = (unsigned)(s->st_value + base);
|
|
}
|
|
COUNT_RELOC(RELOC_SYMBOL);
|
|
} else {
|
|
s = NULL;
|
|
}
|
|
|
|
/* TODO: This is ugly. Split up the relocations by arch into
|
|
* different files.
|
|
*/
|
|
switch(type){
|
|
#if defined(ANDROID_ARM_LINKER)
|
|
case R_ARM_JUMP_SLOT:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO JMP_SLOT %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) = sym_addr;
|
|
break;
|
|
case R_ARM_GLOB_DAT:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO GLOB_DAT %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) = sym_addr;
|
|
break;
|
|
case R_ARM_ABS32:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO ABS %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) += sym_addr;
|
|
break;
|
|
case R_ARM_REL32:
|
|
COUNT_RELOC(RELOC_RELATIVE);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO REL32 %08x <- %08x - %08x %s\n", pid,
|
|
reloc, sym_addr, rel->r_offset, sym_name);
|
|
*((unsigned*)reloc) += sym_addr - rel->r_offset;
|
|
break;
|
|
#elif defined(ANDROID_X86_LINKER)
|
|
case R_386_JUMP_SLOT:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO JMP_SLOT %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) = sym_addr;
|
|
break;
|
|
case R_386_GLOB_DAT:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO GLOB_DAT %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) = sym_addr;
|
|
break;
|
|
#endif /* ANDROID_*_LINKER */
|
|
|
|
#if defined(ANDROID_ARM_LINKER)
|
|
case R_ARM_RELATIVE:
|
|
#elif defined(ANDROID_X86_LINKER)
|
|
case R_386_RELATIVE:
|
|
#endif /* ANDROID_*_LINKER */
|
|
COUNT_RELOC(RELOC_RELATIVE);
|
|
MARK(rel->r_offset);
|
|
if(sym){
|
|
DL_ERR("%5d odd RELATIVE form...", pid);
|
|
return -1;
|
|
}
|
|
TRACE_TYPE(RELO, "%5d RELO RELATIVE %08x <- +%08x\n", pid,
|
|
reloc, si->base);
|
|
*((unsigned*)reloc) += si->base;
|
|
break;
|
|
|
|
#if defined(ANDROID_X86_LINKER)
|
|
case R_386_32:
|
|
COUNT_RELOC(RELOC_RELATIVE);
|
|
MARK(rel->r_offset);
|
|
|
|
TRACE_TYPE(RELO, "%5d RELO R_386_32 %08x <- +%08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned *)reloc) += (unsigned)sym_addr;
|
|
break;
|
|
|
|
case R_386_PC32:
|
|
COUNT_RELOC(RELOC_RELATIVE);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO R_386_PC32 %08x <- "
|
|
"+%08x (%08x - %08x) %s\n", pid, reloc,
|
|
(sym_addr - reloc), sym_addr, reloc, sym_name);
|
|
*((unsigned *)reloc) += (unsigned)(sym_addr - reloc);
|
|
break;
|
|
#endif /* ANDROID_X86_LINKER */
|
|
|
|
#ifdef ANDROID_ARM_LINKER
|
|
case R_ARM_COPY:
|
|
COUNT_RELOC(RELOC_COPY);
|
|
MARK(rel->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO %08x <- %d @ %08x %s\n", pid,
|
|
reloc, s->st_size, sym_addr, sym_name);
|
|
memcpy((void*)reloc, (void*)sym_addr, s->st_size);
|
|
break;
|
|
case R_ARM_NONE:
|
|
break;
|
|
#endif /* ANDROID_ARM_LINKER */
|
|
|
|
default:
|
|
DL_ERR("%5d unknown reloc type %d @ %p (%d)",
|
|
pid, type, rel, (int) (rel - start));
|
|
return -1;
|
|
}
|
|
rel++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if defined(ANDROID_SH_LINKER)
|
|
static int reloc_library_a(soinfo *si, Elf32_Rela *rela, unsigned count)
|
|
{
|
|
Elf32_Sym *symtab = si->symtab;
|
|
const char *strtab = si->strtab;
|
|
Elf32_Sym *s;
|
|
unsigned base;
|
|
Elf32_Rela *start = rela;
|
|
unsigned idx;
|
|
|
|
for (idx = 0; idx < count; ++idx) {
|
|
unsigned type = ELF32_R_TYPE(rela->r_info);
|
|
unsigned sym = ELF32_R_SYM(rela->r_info);
|
|
unsigned reloc = (unsigned)(rela->r_offset + si->base);
|
|
unsigned sym_addr = 0;
|
|
char *sym_name = NULL;
|
|
|
|
DEBUG("%5d Processing '%s' relocation at index %d\n", pid,
|
|
si->name, idx);
|
|
if(sym != 0) {
|
|
sym_name = (char *)(strtab + symtab[sym].st_name);
|
|
s = _do_lookup(si, sym_name, &base);
|
|
if(s == 0) {
|
|
DL_ERR("%5d cannot locate '%s'...", pid, sym_name);
|
|
return -1;
|
|
}
|
|
#if 0
|
|
if((base == 0) && (si->base != 0)){
|
|
/* linking from libraries to main image is bad */
|
|
DL_ERR("%5d cannot locate '%s'...",
|
|
pid, strtab + symtab[sym].st_name);
|
|
return -1;
|
|
}
|
|
#endif
|
|
if ((s->st_shndx == SHN_UNDEF) && (s->st_value != 0)) {
|
|
DL_ERR("%5d In '%s', shndx=%d && value=0x%08x. We do not "
|
|
"handle this yet", pid, si->name, s->st_shndx,
|
|
s->st_value);
|
|
return -1;
|
|
}
|
|
sym_addr = (unsigned)(s->st_value + base);
|
|
COUNT_RELOC(RELOC_SYMBOL);
|
|
} else {
|
|
s = 0;
|
|
}
|
|
|
|
/* TODO: This is ugly. Split up the relocations by arch into
|
|
* different files.
|
|
*/
|
|
switch(type){
|
|
case R_SH_JUMP_SLOT:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rela->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO JMP_SLOT %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) = sym_addr;
|
|
break;
|
|
case R_SH_GLOB_DAT:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rela->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO GLOB_DAT %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) = sym_addr;
|
|
break;
|
|
case R_SH_DIR32:
|
|
COUNT_RELOC(RELOC_ABSOLUTE);
|
|
MARK(rela->r_offset);
|
|
TRACE_TYPE(RELO, "%5d RELO DIR32 %08x <- %08x %s\n", pid,
|
|
reloc, sym_addr, sym_name);
|
|
*((unsigned*)reloc) += sym_addr;
|
|
break;
|
|
case R_SH_RELATIVE:
|
|
COUNT_RELOC(RELOC_RELATIVE);
|
|
MARK(rela->r_offset);
|
|
if(sym){
|
|
DL_ERR("%5d odd RELATIVE form...", pid);
|
|
return -1;
|
|
}
|
|
TRACE_TYPE(RELO, "%5d RELO RELATIVE %08x <- +%08x\n", pid,
|
|
reloc, si->base);
|
|
*((unsigned*)reloc) += si->base;
|
|
break;
|
|
|
|
default:
|
|
DL_ERR("%5d unknown reloc type %d @ %p (%d)",
|
|
pid, type, rela, (int) (rela - start));
|
|
return -1;
|
|
}
|
|
rela++;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* ANDROID_SH_LINKER */
|
|
|
|
|
|
/* Please read the "Initialization and Termination functions" functions.
|
|
* of the linker design note in bionic/linker/README.TXT to understand
|
|
* what the following code is doing.
|
|
*
|
|
* The important things to remember are:
|
|
*
|
|
* DT_PREINIT_ARRAY must be called first for executables, and should
|
|
* not appear in shared libraries.
|
|
*
|
|
* DT_INIT should be called before DT_INIT_ARRAY if both are present
|
|
*
|
|
* DT_FINI should be called after DT_FINI_ARRAY if both are present
|
|
*
|
|
* DT_FINI_ARRAY must be parsed in reverse order.
|
|
*/
|
|
|
|
static void call_array(unsigned *ctor, int count, int reverse)
|
|
{
|
|
int n, inc = 1;
|
|
|
|
if (reverse) {
|
|
ctor += (count-1);
|
|
inc = -1;
|
|
}
|
|
|
|
for(n = count; n > 0; n--) {
|
|
TRACE("[ %5d Looking at %s *0x%08x == 0x%08x ]\n", pid,
|
|
reverse ? "dtor" : "ctor",
|
|
(unsigned)ctor, (unsigned)*ctor);
|
|
void (*func)() = (void (*)()) *ctor;
|
|
ctor += inc;
|
|
if(((int) func == 0) || ((int) func == -1)) continue;
|
|
TRACE("[ %5d Calling func @ 0x%08x ]\n", pid, (unsigned)func);
|
|
func();
|
|
}
|
|
}
|
|
|
|
static void call_constructors(soinfo *si)
|
|
{
|
|
if (si->flags & FLAG_EXE) {
|
|
TRACE("[ %5d Calling preinit_array @ 0x%08x [%d] for '%s' ]\n",
|
|
pid, (unsigned)si->preinit_array, si->preinit_array_count,
|
|
si->name);
|
|
call_array(si->preinit_array, si->preinit_array_count, 0);
|
|
TRACE("[ %5d Done calling preinit_array for '%s' ]\n", pid, si->name);
|
|
} else {
|
|
if (si->preinit_array) {
|
|
DL_ERR("%5d Shared library '%s' has a preinit_array table @ 0x%08x."
|
|
" This is INVALID.", pid, si->name,
|
|
(unsigned)si->preinit_array);
|
|
}
|
|
}
|
|
|
|
if (si->init_func) {
|
|
TRACE("[ %5d Calling init_func @ 0x%08x for '%s' ]\n", pid,
|
|
(unsigned)si->init_func, si->name);
|
|
si->init_func();
|
|
TRACE("[ %5d Done calling init_func for '%s' ]\n", pid, si->name);
|
|
}
|
|
|
|
if (si->init_array) {
|
|
TRACE("[ %5d Calling init_array @ 0x%08x [%d] for '%s' ]\n", pid,
|
|
(unsigned)si->init_array, si->init_array_count, si->name);
|
|
call_array(si->init_array, si->init_array_count, 0);
|
|
TRACE("[ %5d Done calling init_array for '%s' ]\n", pid, si->name);
|
|
}
|
|
}
|
|
|
|
|
|
static void call_destructors(soinfo *si)
|
|
{
|
|
if (si->fini_array) {
|
|
TRACE("[ %5d Calling fini_array @ 0x%08x [%d] for '%s' ]\n", pid,
|
|
(unsigned)si->fini_array, si->fini_array_count, si->name);
|
|
call_array(si->fini_array, si->fini_array_count, 1);
|
|
TRACE("[ %5d Done calling fini_array for '%s' ]\n", pid, si->name);
|
|
}
|
|
|
|
if (si->fini_func) {
|
|
TRACE("[ %5d Calling fini_func @ 0x%08x for '%s' ]\n", pid,
|
|
(unsigned)si->fini_func, si->name);
|
|
si->fini_func();
|
|
TRACE("[ %5d Done calling fini_func for '%s' ]\n", pid, si->name);
|
|
}
|
|
}
|
|
|
|
/* Force any of the closed stdin, stdout and stderr to be associated with
|
|
/dev/null. */
|
|
static int nullify_closed_stdio (void)
|
|
{
|
|
int dev_null, i, status;
|
|
int return_value = 0;
|
|
|
|
dev_null = open("/dev/null", O_RDWR);
|
|
if (dev_null < 0) {
|
|
DL_ERR("Cannot open /dev/null.");
|
|
return -1;
|
|
}
|
|
TRACE("[ %5d Opened /dev/null file-descriptor=%d]\n", pid, dev_null);
|
|
|
|
/* If any of the stdio file descriptors is valid and not associated
|
|
with /dev/null, dup /dev/null to it. */
|
|
for (i = 0; i < 3; i++) {
|
|
/* If it is /dev/null already, we are done. */
|
|
if (i == dev_null)
|
|
continue;
|
|
|
|
TRACE("[ %5d Nullifying stdio file descriptor %d]\n", pid, i);
|
|
/* The man page of fcntl does not say that fcntl(..,F_GETFL)
|
|
can be interrupted but we do this just to be safe. */
|
|
do {
|
|
status = fcntl(i, F_GETFL);
|
|
} while (status < 0 && errno == EINTR);
|
|
|
|
/* If file is openned, we are good. */
|
|
if (status >= 0)
|
|
continue;
|
|
|
|
/* The only error we allow is that the file descriptor does not
|
|
exist, in which case we dup /dev/null to it. */
|
|
if (errno != EBADF) {
|
|
DL_ERR("nullify_stdio: unhandled error %s", strerror(errno));
|
|
return_value = -1;
|
|
continue;
|
|
}
|
|
|
|
/* Try dupping /dev/null to this stdio file descriptor and
|
|
repeat if there is a signal. Note that any errors in closing
|
|
the stdio descriptor are lost. */
|
|
do {
|
|
status = dup2(dev_null, i);
|
|
} while (status < 0 && errno == EINTR);
|
|
|
|
if (status < 0) {
|
|
DL_ERR("nullify_stdio: dup2 error %s", strerror(errno));
|
|
return_value = -1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* If /dev/null is not one of the stdio file descriptors, close it. */
|
|
if (dev_null > 2) {
|
|
TRACE("[ %5d Closing /dev/null file-descriptor=%d]\n", pid, dev_null);
|
|
do {
|
|
status = close(dev_null);
|
|
} while (status < 0 && errno == EINTR);
|
|
|
|
if (status < 0) {
|
|
DL_ERR("nullify_stdio: close error %s", strerror(errno));
|
|
return_value = -1;
|
|
}
|
|
}
|
|
|
|
return return_value;
|
|
}
|
|
|
|
static int link_image(soinfo *si, unsigned wr_offset)
|
|
{
|
|
unsigned *d;
|
|
Elf32_Phdr *phdr = si->phdr;
|
|
int phnum = si->phnum;
|
|
|
|
INFO("[ %5d linking %s ]\n", pid, si->name);
|
|
DEBUG("%5d si->base = 0x%08x si->flags = 0x%08x\n", pid,
|
|
si->base, si->flags);
|
|
|
|
if (si->flags & FLAG_EXE) {
|
|
/* Locate the needed program segments (DYNAMIC/ARM_EXIDX) for
|
|
* linkage info if this is the executable. If this was a
|
|
* dynamic lib, that would have been done at load time.
|
|
*
|
|
* TODO: It's unfortunate that small pieces of this are
|
|
* repeated from the load_library routine. Refactor this just
|
|
* slightly to reuse these bits.
|
|
*/
|
|
si->size = 0;
|
|
for(; phnum > 0; --phnum, ++phdr) {
|
|
#ifdef ANDROID_ARM_LINKER
|
|
if(phdr->p_type == PT_ARM_EXIDX) {
|
|
/* exidx entries (used for stack unwinding) are 8 bytes each.
|
|
*/
|
|
si->ARM_exidx = (unsigned *)phdr->p_vaddr;
|
|
si->ARM_exidx_count = phdr->p_memsz / 8;
|
|
}
|
|
#endif
|
|
if (phdr->p_type == PT_LOAD) {
|
|
/* For the executable, we use the si->size field only in
|
|
dl_unwind_find_exidx(), so the meaning of si->size
|
|
is not the size of the executable; it is the last
|
|
virtual address of the loadable part of the executable;
|
|
since si->base == 0 for an executable, we use the
|
|
range [0, si->size) to determine whether a PC value
|
|
falls within the executable section. Of course, if
|
|
a value is below phdr->p_vaddr, it's not in the
|
|
executable section, but a) we shouldn't be asking for
|
|
such a value anyway, and b) if we have to provide
|
|
an EXIDX for such a value, then the executable's
|
|
EXIDX is probably the better choice.
|
|
*/
|
|
DEBUG_DUMP_PHDR(phdr, "PT_LOAD", pid);
|
|
if (phdr->p_vaddr + phdr->p_memsz > si->size)
|
|
si->size = phdr->p_vaddr + phdr->p_memsz;
|
|
/* try to remember what range of addresses should be write
|
|
* protected */
|
|
if (!(phdr->p_flags & PF_W)) {
|
|
unsigned _end;
|
|
|
|
if (phdr->p_vaddr < si->wrprotect_start)
|
|
si->wrprotect_start = phdr->p_vaddr;
|
|
_end = (((phdr->p_vaddr + phdr->p_memsz + PAGE_SIZE - 1) &
|
|
(~PAGE_MASK)));
|
|
if (_end > si->wrprotect_end)
|
|
si->wrprotect_end = _end;
|
|
}
|
|
} else if (phdr->p_type == PT_DYNAMIC) {
|
|
if (si->dynamic != (unsigned *)-1) {
|
|
DL_ERR("%5d multiple PT_DYNAMIC segments found in '%s'. "
|
|
"Segment at 0x%08x, previously one found at 0x%08x",
|
|
pid, si->name, si->base + phdr->p_vaddr,
|
|
(unsigned)si->dynamic);
|
|
goto fail;
|
|
}
|
|
DEBUG_DUMP_PHDR(phdr, "PT_DYNAMIC", pid);
|
|
si->dynamic = (unsigned *) (si->base + phdr->p_vaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (si->dynamic == (unsigned *)-1) {
|
|
DL_ERR("%5d missing PT_DYNAMIC?!", pid);
|
|
goto fail;
|
|
}
|
|
|
|
DEBUG("%5d dynamic = %p\n", pid, si->dynamic);
|
|
|
|
/* extract useful information from dynamic section */
|
|
for(d = si->dynamic; *d; d++){
|
|
DEBUG("%5d d = %p, d[0] = 0x%08x d[1] = 0x%08x\n", pid, d, d[0], d[1]);
|
|
switch(*d++){
|
|
case DT_HASH:
|
|
si->nbucket = ((unsigned *) (si->base + *d))[0];
|
|
si->nchain = ((unsigned *) (si->base + *d))[1];
|
|
si->bucket = (unsigned *) (si->base + *d + 8);
|
|
si->chain = (unsigned *) (si->base + *d + 8 + si->nbucket * 4);
|
|
break;
|
|
case DT_STRTAB:
|
|
si->strtab = (const char *) (si->base + *d);
|
|
break;
|
|
case DT_SYMTAB:
|
|
si->symtab = (Elf32_Sym *) (si->base + *d);
|
|
break;
|
|
#if !defined(ANDROID_SH_LINKER)
|
|
case DT_PLTREL:
|
|
if(*d != DT_REL) {
|
|
DL_ERR("DT_RELA not supported");
|
|
goto fail;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef ANDROID_SH_LINKER
|
|
case DT_JMPREL:
|
|
si->plt_rela = (Elf32_Rela*) (si->base + *d);
|
|
break;
|
|
case DT_PLTRELSZ:
|
|
si->plt_rela_count = *d / sizeof(Elf32_Rela);
|
|
break;
|
|
#else
|
|
case DT_JMPREL:
|
|
si->plt_rel = (Elf32_Rel*) (si->base + *d);
|
|
break;
|
|
case DT_PLTRELSZ:
|
|
si->plt_rel_count = *d / 8;
|
|
break;
|
|
#endif
|
|
case DT_REL:
|
|
si->rel = (Elf32_Rel*) (si->base + *d);
|
|
break;
|
|
case DT_RELSZ:
|
|
si->rel_count = *d / 8;
|
|
break;
|
|
#ifdef ANDROID_SH_LINKER
|
|
case DT_RELASZ:
|
|
si->rela_count = *d / sizeof(Elf32_Rela);
|
|
break;
|
|
#endif
|
|
case DT_PLTGOT:
|
|
/* Save this in case we decide to do lazy binding. We don't yet. */
|
|
si->plt_got = (unsigned *)(si->base + *d);
|
|
break;
|
|
case DT_DEBUG:
|
|
// Set the DT_DEBUG entry to the addres of _r_debug for GDB
|
|
*d = (int) &_r_debug;
|
|
break;
|
|
#ifdef ANDROID_SH_LINKER
|
|
case DT_RELA:
|
|
si->rela = (Elf32_Rela *) (si->base + *d);
|
|
break;
|
|
#else
|
|
case DT_RELA:
|
|
DL_ERR("%5d DT_RELA not supported", pid);
|
|
goto fail;
|
|
#endif
|
|
case DT_INIT:
|
|
si->init_func = (void (*)(void))(si->base + *d);
|
|
DEBUG("%5d %s constructors (init func) found at %p\n",
|
|
pid, si->name, si->init_func);
|
|
break;
|
|
case DT_FINI:
|
|
si->fini_func = (void (*)(void))(si->base + *d);
|
|
DEBUG("%5d %s destructors (fini func) found at %p\n",
|
|
pid, si->name, si->fini_func);
|
|
break;
|
|
case DT_INIT_ARRAY:
|
|
si->init_array = (unsigned *)(si->base + *d);
|
|
DEBUG("%5d %s constructors (init_array) found at %p\n",
|
|
pid, si->name, si->init_array);
|
|
break;
|
|
case DT_INIT_ARRAYSZ:
|
|
si->init_array_count = ((unsigned)*d) / sizeof(Elf32_Addr);
|
|
break;
|
|
case DT_FINI_ARRAY:
|
|
si->fini_array = (unsigned *)(si->base + *d);
|
|
DEBUG("%5d %s destructors (fini_array) found at %p\n",
|
|
pid, si->name, si->fini_array);
|
|
break;
|
|
case DT_FINI_ARRAYSZ:
|
|
si->fini_array_count = ((unsigned)*d) / sizeof(Elf32_Addr);
|
|
break;
|
|
case DT_PREINIT_ARRAY:
|
|
si->preinit_array = (unsigned *)(si->base + *d);
|
|
DEBUG("%5d %s constructors (preinit_array) found at %p\n",
|
|
pid, si->name, si->preinit_array);
|
|
break;
|
|
case DT_PREINIT_ARRAYSZ:
|
|
si->preinit_array_count = ((unsigned)*d) / sizeof(Elf32_Addr);
|
|
break;
|
|
case DT_TEXTREL:
|
|
/* TODO: make use of this. */
|
|
/* this means that we might have to write into where the text
|
|
* segment was loaded during relocation... Do something with
|
|
* it.
|
|
*/
|
|
DEBUG("%5d Text segment should be writable during relocation.\n",
|
|
pid);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DEBUG("%5d si->base = 0x%08x, si->strtab = %p, si->symtab = %p\n",
|
|
pid, si->base, si->strtab, si->symtab);
|
|
|
|
if((si->strtab == 0) || (si->symtab == 0)) {
|
|
DL_ERR("%5d missing essential tables", pid);
|
|
goto fail;
|
|
}
|
|
|
|
/* if this is the main executable, then load all of the preloads now */
|
|
if(si->flags & FLAG_EXE) {
|
|
int i;
|
|
memset(preloads, 0, sizeof(preloads));
|
|
for(i = 0; ldpreload_names[i] != NULL; i++) {
|
|
soinfo *lsi = find_library(ldpreload_names[i]);
|
|
if(lsi == 0) {
|
|
strlcpy(tmp_err_buf, linker_get_error(), sizeof(tmp_err_buf));
|
|
DL_ERR("%5d could not load needed library '%s' for '%s' (%s)",
|
|
pid, ldpreload_names[i], si->name, tmp_err_buf);
|
|
goto fail;
|
|
}
|
|
lsi->refcount++;
|
|
preloads[i] = lsi;
|
|
}
|
|
}
|
|
|
|
for(d = si->dynamic; *d; d += 2) {
|
|
if(d[0] == DT_NEEDED){
|
|
DEBUG("%5d %s needs %s\n", pid, si->name, si->strtab + d[1]);
|
|
soinfo *lsi = find_library(si->strtab + d[1]);
|
|
if(lsi == 0) {
|
|
strlcpy(tmp_err_buf, linker_get_error(), sizeof(tmp_err_buf));
|
|
DL_ERR("%5d could not load needed library '%s' for '%s' (%s)",
|
|
pid, si->strtab + d[1], si->name, tmp_err_buf);
|
|
goto fail;
|
|
}
|
|
/* Save the soinfo of the loaded DT_NEEDED library in the payload
|
|
of the DT_NEEDED entry itself, so that we can retrieve the
|
|
soinfo directly later from the dynamic segment. This is a hack,
|
|
but it allows us to map from DT_NEEDED to soinfo efficiently
|
|
later on when we resolve relocations, trying to look up a symgol
|
|
with dlsym().
|
|
*/
|
|
d[1] = (unsigned)lsi;
|
|
lsi->refcount++;
|
|
}
|
|
}
|
|
|
|
if(si->plt_rel) {
|
|
DEBUG("[ %5d relocating %s plt ]\n", pid, si->name );
|
|
if(reloc_library(si, si->plt_rel, si->plt_rel_count))
|
|
goto fail;
|
|
}
|
|
if(si->rel) {
|
|
DEBUG("[ %5d relocating %s ]\n", pid, si->name );
|
|
if(reloc_library(si, si->rel, si->rel_count))
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef ANDROID_SH_LINKER
|
|
if(si->plt_rela) {
|
|
DEBUG("[ %5d relocating %s plt ]\n", pid, si->name );
|
|
if(reloc_library_a(si, si->plt_rela, si->plt_rela_count))
|
|
goto fail;
|
|
}
|
|
if(si->rela) {
|
|
DEBUG("[ %5d relocating %s ]\n", pid, si->name );
|
|
if(reloc_library_a(si, si->rela, si->rela_count))
|
|
goto fail;
|
|
}
|
|
#endif /* ANDROID_SH_LINKER */
|
|
|
|
si->flags |= FLAG_LINKED;
|
|
DEBUG("[ %5d finished linking %s ]\n", pid, si->name);
|
|
|
|
#if 0
|
|
/* This is the way that the old dynamic linker did protection of
|
|
* non-writable areas. It would scan section headers and find where
|
|
* .text ended (rather where .data/.bss began) and assume that this is
|
|
* the upper range of the non-writable area. This is too coarse,
|
|
* and is kept here for reference until we fully move away from single
|
|
* segment elf objects. See the code in get_wr_offset (also #if'd 0)
|
|
* that made this possible.
|
|
*/
|
|
if(wr_offset < 0xffffffff){
|
|
mprotect((void*) si->base, wr_offset, PROT_READ | PROT_EXEC);
|
|
}
|
|
#else
|
|
/* TODO: Verify that this does the right thing in all cases, as it
|
|
* presently probably does not. It is possible that an ELF image will
|
|
* come with multiple read-only segments. What we ought to do is scan
|
|
* the program headers again and mprotect all the read-only segments.
|
|
* To prevent re-scanning the program header, we would have to build a
|
|
* list of loadable segments in si, and then scan that instead. */
|
|
if (si->wrprotect_start != 0xffffffff && si->wrprotect_end != 0) {
|
|
mprotect((void *)si->wrprotect_start,
|
|
si->wrprotect_end - si->wrprotect_start,
|
|
PROT_READ | PROT_EXEC);
|
|
}
|
|
#endif
|
|
|
|
/* If this is a SET?ID program, dup /dev/null to opened stdin,
|
|
stdout and stderr to close a security hole described in:
|
|
|
|
ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories/FreeBSD-SA-02:23.stdio.asc
|
|
|
|
*/
|
|
if (getuid() != geteuid() || getgid() != getegid())
|
|
nullify_closed_stdio ();
|
|
call_constructors(si);
|
|
notify_gdb_of_load(si);
|
|
return 0;
|
|
|
|
fail:
|
|
DL_ERR("failed to link %s\n", si->name);
|
|
si->flags |= FLAG_ERROR;
|
|
return -1;
|
|
}
|
|
|
|
static void parse_library_path(char *path, char *delim)
|
|
{
|
|
size_t len;
|
|
char *ldpaths_bufp = ldpaths_buf;
|
|
int i = 0;
|
|
|
|
len = strlcpy(ldpaths_buf, path, sizeof(ldpaths_buf));
|
|
|
|
while (i < LDPATH_MAX && (ldpaths[i] = strsep(&ldpaths_bufp, delim))) {
|
|
if (*ldpaths[i] != '\0')
|
|
++i;
|
|
}
|
|
|
|
/* Forget the last path if we had to truncate; this occurs if the 2nd to
|
|
* last char isn't '\0' (i.e. not originally a delim). */
|
|
if (i > 0 && len >= sizeof(ldpaths_buf) &&
|
|
ldpaths_buf[sizeof(ldpaths_buf) - 2] != '\0') {
|
|
ldpaths[i - 1] = NULL;
|
|
} else {
|
|
ldpaths[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void parse_preloads(char *path, char *delim)
|
|
{
|
|
size_t len;
|
|
char *ldpreloads_bufp = ldpreloads_buf;
|
|
int i = 0;
|
|
|
|
len = strlcpy(ldpreloads_buf, path, sizeof(ldpreloads_buf));
|
|
|
|
while (i < LDPRELOAD_MAX && (ldpreload_names[i] = strsep(&ldpreloads_bufp, delim))) {
|
|
if (*ldpreload_names[i] != '\0') {
|
|
++i;
|
|
}
|
|
}
|
|
|
|
/* Forget the last path if we had to truncate; this occurs if the 2nd to
|
|
* last char isn't '\0' (i.e. not originally a delim). */
|
|
if (i > 0 && len >= sizeof(ldpreloads_buf) &&
|
|
ldpreloads_buf[sizeof(ldpreloads_buf) - 2] != '\0') {
|
|
ldpreload_names[i - 1] = NULL;
|
|
} else {
|
|
ldpreload_names[i] = NULL;
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#define ANDROID_TLS_SLOTS BIONIC_TLS_SLOTS
|
|
|
|
static void * __tls_area[ANDROID_TLS_SLOTS];
|
|
|
|
unsigned __linker_init(unsigned **elfdata)
|
|
{
|
|
static soinfo linker_soinfo;
|
|
|
|
int argc = (int) *elfdata;
|
|
char **argv = (char**) (elfdata + 1);
|
|
unsigned *vecs = (unsigned*) (argv + argc + 1);
|
|
soinfo *si;
|
|
struct link_map * map;
|
|
char *ldpath_env = NULL;
|
|
char *ldpreload_env = NULL;
|
|
|
|
/* Setup a temporary TLS area that is used to get a working
|
|
* errno for system calls.
|
|
*/
|
|
__set_tls(__tls_area);
|
|
|
|
pid = getpid();
|
|
|
|
#if TIMING
|
|
struct timeval t0, t1;
|
|
gettimeofday(&t0, 0);
|
|
#endif
|
|
|
|
/* NOTE: we store the elfdata pointer on a special location
|
|
* of the temporary TLS area in order to pass it to
|
|
* the C Library's runtime initializer.
|
|
*
|
|
* The initializer must clear the slot and reset the TLS
|
|
* to point to a different location to ensure that no other
|
|
* shared library constructor can access it.
|
|
*/
|
|
__tls_area[TLS_SLOT_BIONIC_PREINIT] = elfdata;
|
|
|
|
debugger_init();
|
|
|
|
/* skip past the environment */
|
|
while(vecs[0] != 0) {
|
|
if(!strncmp((char*) vecs[0], "DEBUG=", 6)) {
|
|
debug_verbosity = atoi(((char*) vecs[0]) + 6);
|
|
} else if(!strncmp((char*) vecs[0], "LD_LIBRARY_PATH=", 16)) {
|
|
ldpath_env = (char*) vecs[0] + 16;
|
|
} else if(!strncmp((char*) vecs[0], "LD_PRELOAD=", 11)) {
|
|
ldpreload_env = (char*) vecs[0] + 11;
|
|
}
|
|
vecs++;
|
|
}
|
|
vecs++;
|
|
|
|
INFO("[ android linker & debugger ]\n");
|
|
DEBUG("%5d elfdata @ 0x%08x\n", pid, (unsigned)elfdata);
|
|
|
|
si = alloc_info(argv[0]);
|
|
if(si == 0) {
|
|
exit(-1);
|
|
}
|
|
|
|
/* bootstrap the link map, the main exe always needs to be first */
|
|
si->flags |= FLAG_EXE;
|
|
map = &(si->linkmap);
|
|
|
|
map->l_addr = 0;
|
|
map->l_name = argv[0];
|
|
map->l_prev = NULL;
|
|
map->l_next = NULL;
|
|
|
|
_r_debug.r_map = map;
|
|
r_debug_tail = map;
|
|
|
|
/* gdb expects the linker to be in the debug shared object list,
|
|
* and we need to make sure that the reported load address is zero.
|
|
* Without this, gdb gets the wrong idea of where rtld_db_dlactivity()
|
|
* is. Don't use alloc_info(), because the linker shouldn't
|
|
* be on the soinfo list.
|
|
*/
|
|
strcpy((char*) linker_soinfo.name, "/system/bin/linker");
|
|
linker_soinfo.flags = 0;
|
|
linker_soinfo.base = 0; // This is the important part; must be zero.
|
|
insert_soinfo_into_debug_map(&linker_soinfo);
|
|
|
|
/* extract information passed from the kernel */
|
|
while(vecs[0] != 0){
|
|
switch(vecs[0]){
|
|
case AT_PHDR:
|
|
si->phdr = (Elf32_Phdr*) vecs[1];
|
|
break;
|
|
case AT_PHNUM:
|
|
si->phnum = (int) vecs[1];
|
|
break;
|
|
case AT_ENTRY:
|
|
si->entry = vecs[1];
|
|
break;
|
|
}
|
|
vecs += 2;
|
|
}
|
|
|
|
ba_init(&ba_nonprelink);
|
|
|
|
si->base = 0;
|
|
si->dynamic = (unsigned *)-1;
|
|
si->wrprotect_start = 0xffffffff;
|
|
si->wrprotect_end = 0;
|
|
|
|
/* Use LD_LIBRARY_PATH if we aren't setuid/setgid */
|
|
if (ldpath_env && getuid() == geteuid() && getgid() == getegid())
|
|
parse_library_path(ldpath_env, ":");
|
|
|
|
if (ldpreload_env && getuid() == geteuid() && getgid() == getegid()) {
|
|
parse_preloads(ldpreload_env, " :");
|
|
}
|
|
|
|
if(link_image(si, 0)) {
|
|
char errmsg[] = "CANNOT LINK EXECUTABLE\n";
|
|
write(2, __linker_dl_err_buf, strlen(__linker_dl_err_buf));
|
|
write(2, errmsg, sizeof(errmsg));
|
|
exit(-1);
|
|
}
|
|
|
|
#if ALLOW_SYMBOLS_FROM_MAIN
|
|
/* Set somain after we've loaded all the libraries in order to prevent
|
|
* linking of symbols back to the main image, which is not set up at that
|
|
* point yet.
|
|
*/
|
|
somain = si;
|
|
#endif
|
|
|
|
#if TIMING
|
|
gettimeofday(&t1,NULL);
|
|
PRINT("LINKER TIME: %s: %d microseconds\n", argv[0], (int) (
|
|
(((long long)t1.tv_sec * 1000000LL) + (long long)t1.tv_usec) -
|
|
(((long long)t0.tv_sec * 1000000LL) + (long long)t0.tv_usec)
|
|
));
|
|
#endif
|
|
#if STATS
|
|
PRINT("RELO STATS: %s: %d abs, %d rel, %d copy, %d symbol\n", argv[0],
|
|
linker_stats.reloc[RELOC_ABSOLUTE],
|
|
linker_stats.reloc[RELOC_RELATIVE],
|
|
linker_stats.reloc[RELOC_COPY],
|
|
linker_stats.reloc[RELOC_SYMBOL]);
|
|
#endif
|
|
#if COUNT_PAGES
|
|
{
|
|
unsigned n;
|
|
unsigned i;
|
|
unsigned count = 0;
|
|
for(n = 0; n < 4096; n++){
|
|
if(bitmask[n]){
|
|
unsigned x = bitmask[n];
|
|
for(i = 0; i < 8; i++){
|
|
if(x & 1) count++;
|
|
x >>= 1;
|
|
}
|
|
}
|
|
}
|
|
PRINT("PAGES MODIFIED: %s: %d (%dKB)\n", argv[0], count, count * 4);
|
|
}
|
|
#endif
|
|
|
|
#if TIMING || STATS || COUNT_PAGES
|
|
fflush(stdout);
|
|
#endif
|
|
|
|
TRACE("[ %5d Ready to execute '%s' @ 0x%08x ]\n", pid, si->name,
|
|
si->entry);
|
|
return si->entry;
|
|
}
|