platform_bionic/linker/linker.cpp
2019-04-22 23:26:36 +00:00

4255 lines
140 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <android/api-level.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/vfs.h>
#include <unistd.h>
#include <new>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/properties.h>
#include <android-base/scopeguard.h>
#include <async_safe/log.h>
// Private C library headers.
#include "linker.h"
#include "linker_block_allocator.h"
#include "linker_cfi.h"
#include "linker_config.h"
#include "linker_gdb_support.h"
#include "linker_globals.h"
#include "linker_debug.h"
#include "linker_dlwarning.h"
#include "linker_main.h"
#include "linker_namespaces.h"
#include "linker_sleb128.h"
#include "linker_phdr.h"
#include "linker_relocs.h"
#include "linker_reloc_iterators.h"
#include "linker_tls.h"
#include "linker_utils.h"
#include "private/bionic_globals.h"
#include "android-base/macros.h"
#include "android-base/strings.h"
#include "android-base/stringprintf.h"
#include "ziparchive/zip_archive.h"
static std::unordered_map<void*, size_t> g_dso_handle_counters;
static android_namespace_t* g_anonymous_namespace = &g_default_namespace;
static std::unordered_map<std::string, android_namespace_t*> g_exported_namespaces;
static LinkerTypeAllocator<soinfo> g_soinfo_allocator;
static LinkerTypeAllocator<LinkedListEntry<soinfo>> g_soinfo_links_allocator;
static LinkerTypeAllocator<android_namespace_t> g_namespace_allocator;
static LinkerTypeAllocator<LinkedListEntry<android_namespace_t>> g_namespace_list_allocator;
static const char* const kLdConfigArchFilePath = "/system/etc/ld.config." ABI_STRING ".txt";
static const char* const kLdConfigFilePath = "/system/etc/ld.config.txt";
static const char* const kLdConfigVndkLiteFilePath = "/system/etc/ld.config.vndk_lite.txt";
#if defined(__LP64__)
static const char* const kSystemLibDir = "/system/lib64";
static const char* const kOdmLibDir = "/odm/lib64";
static const char* const kVendorLibDir = "/vendor/lib64";
static const char* const kAsanSystemLibDir = "/data/asan/system/lib64";
static const char* const kAsanOdmLibDir = "/data/asan/odm/lib64";
static const char* const kAsanVendorLibDir = "/data/asan/vendor/lib64";
static const char* const kRuntimeApexLibDir = "/apex/com.android.runtime/lib64";
#else
static const char* const kSystemLibDir = "/system/lib";
static const char* const kOdmLibDir = "/odm/lib";
static const char* const kVendorLibDir = "/vendor/lib";
static const char* const kAsanSystemLibDir = "/data/asan/system/lib";
static const char* const kAsanOdmLibDir = "/data/asan/odm/lib";
static const char* const kAsanVendorLibDir = "/data/asan/vendor/lib";
static const char* const kRuntimeApexLibDir = "/apex/com.android.runtime/lib";
#endif
static const char* const kAsanLibDirPrefix = "/data/asan";
static const char* const kDefaultLdPaths[] = {
kSystemLibDir,
kOdmLibDir,
kVendorLibDir,
nullptr
};
static const char* const kAsanDefaultLdPaths[] = {
kAsanSystemLibDir,
kSystemLibDir,
kAsanOdmLibDir,
kOdmLibDir,
kAsanVendorLibDir,
kVendorLibDir,
nullptr
};
// Is ASAN enabled?
static bool g_is_asan = false;
static CFIShadowWriter g_cfi_shadow;
CFIShadowWriter* get_cfi_shadow() {
return &g_cfi_shadow;
}
static bool is_system_library(const std::string& realpath) {
for (const auto& dir : g_default_namespace.get_default_library_paths()) {
if (file_is_in_dir(realpath, dir)) {
return true;
}
}
return false;
}
// Checks if the file exists and not a directory.
static bool file_exists(const char* path) {
struct stat s;
if (stat(path, &s) != 0) {
return false;
}
return S_ISREG(s.st_mode);
}
static std::string resolve_soname(const std::string& name) {
// We assume that soname equals to basename here
// TODO(dimitry): consider having honest absolute-path -> soname resolution
// note that since we might end up refusing to load this library because
// it is not in shared libs list we need to get the soname without actually loading
// the library.
//
// On the other hand there are several places where we already assume that
// soname == basename in particular for any not-loaded library mentioned
// in DT_NEEDED list.
return basename(name.c_str());
}
static bool maybe_accessible_via_namespace_links(android_namespace_t* ns, const char* name) {
std::string soname = resolve_soname(name);
for (auto& ns_link : ns->linked_namespaces()) {
if (ns_link.is_accessible(soname.c_str())) {
return true;
}
}
return false;
}
// TODO(dimitry): The grey-list is a workaround for http://b/26394120 ---
// gradually remove libraries from this list until it is gone.
static bool is_greylisted(android_namespace_t* ns, const char* name, const soinfo* needed_by) {
static const char* const kLibraryGreyList[] = {
"libandroid_runtime.so",
"libbinder.so",
"libcrypto.so",
"libcutils.so",
"libexpat.so",
"libgui.so",
"libmedia.so",
"libnativehelper.so",
"libssl.so",
"libstagefright.so",
"libsqlite.so",
"libui.so",
"libutils.so",
"libvorbisidec.so",
nullptr
};
// If you're targeting N, you don't get the greylist.
if (g_greylist_disabled || get_application_target_sdk_version() >= __ANDROID_API_N__) {
return false;
}
// if the library needed by a system library - implicitly assume it
// is greylisted unless it is in the list of shared libraries for one or
// more linked namespaces
if (needed_by != nullptr && is_system_library(needed_by->get_realpath())) {
return !maybe_accessible_via_namespace_links(ns, name);
}
// if this is an absolute path - make sure it points to /system/lib(64)
if (name[0] == '/' && dirname(name) == kSystemLibDir) {
// and reduce the path to basename
name = basename(name);
}
for (size_t i = 0; kLibraryGreyList[i] != nullptr; ++i) {
if (strcmp(name, kLibraryGreyList[i]) == 0) {
return true;
}
}
return false;
}
// END OF WORKAROUND
// Workaround for dlopen(/system/lib(64)/<soname>) when .so is in /apex. http://b/121248172
/**
* Translate /system path to /apex path if needed
* The workaround should work only when targetSdkVersion < Q.
*
* param out_name_to_apex pointing to /apex path
* return true if translation is needed
*/
static bool translateSystemPathToApexPath(const char* name, std::string* out_name_to_apex) {
static const char* const kSystemToRuntimeApexLibs[] = {
"libicuuc.so",
"libicui18n.so",
};
// New mapping for new apex should be added below
// Nothing to do if target sdk version is Q or above
if (get_application_target_sdk_version() >= __ANDROID_API_Q__) {
return false;
}
// If the path isn't /system/lib, there's nothing to do.
if (name == nullptr || dirname(name) != kSystemLibDir) {
return false;
}
const char* base_name = basename(name);
for (const char* soname : kSystemToRuntimeApexLibs) {
if (strcmp(base_name, soname) == 0) {
*out_name_to_apex = std::string(kRuntimeApexLibDir) + "/" + base_name;
return true;
}
}
return false;
}
// End Workaround for dlopen(/system/lib/<soname>) when .so is in /apex.
static std::vector<std::string> g_ld_preload_names;
static bool g_anonymous_namespace_initialized;
#if STATS
struct linker_stats_t {
int count[kRelocMax];
};
static linker_stats_t linker_stats;
void count_relocation(RelocationKind kind) {
++linker_stats.count[kind];
}
#else
void count_relocation(RelocationKind) {
}
#endif
#if COUNT_PAGES
uint32_t bitmask[4096];
#endif
static void notify_gdb_of_load(soinfo* info) {
if (info->is_linker() || info->is_main_executable()) {
// gdb already knows about the linker and the main executable.
return;
}
link_map* map = &(info->link_map_head);
map->l_addr = info->load_bias;
// link_map l_name field is not const.
map->l_name = const_cast<char*>(info->get_realpath());
map->l_ld = info->dynamic;
CHECK(map->l_name != nullptr);
CHECK(map->l_name[0] != '\0');
notify_gdb_of_load(map);
}
static void notify_gdb_of_unload(soinfo* info) {
notify_gdb_of_unload(&(info->link_map_head));
}
LinkedListEntry<soinfo>* SoinfoListAllocator::alloc() {
return g_soinfo_links_allocator.alloc();
}
void SoinfoListAllocator::free(LinkedListEntry<soinfo>* entry) {
g_soinfo_links_allocator.free(entry);
}
LinkedListEntry<android_namespace_t>* NamespaceListAllocator::alloc() {
return g_namespace_list_allocator.alloc();
}
void NamespaceListAllocator::free(LinkedListEntry<android_namespace_t>* entry) {
g_namespace_list_allocator.free(entry);
}
soinfo* soinfo_alloc(android_namespace_t* ns, const char* name,
const struct stat* file_stat, off64_t file_offset,
uint32_t rtld_flags) {
if (strlen(name) >= PATH_MAX) {
async_safe_fatal("library name \"%s\" too long", name);
}
TRACE("name %s: allocating soinfo for ns=%p", name, ns);
soinfo* si = new (g_soinfo_allocator.alloc()) soinfo(ns, name, file_stat,
file_offset, rtld_flags);
solist_add_soinfo(si);
si->generate_handle();
ns->add_soinfo(si);
TRACE("name %s: allocated soinfo @ %p", name, si);
return si;
}
static void soinfo_free(soinfo* si) {
if (si == nullptr) {
return;
}
if (si->base != 0 && si->size != 0) {
if (!si->is_mapped_by_caller()) {
munmap(reinterpret_cast<void*>(si->base), si->size);
} else {
// remap the region as PROT_NONE, MAP_ANONYMOUS | MAP_NORESERVE
mmap(reinterpret_cast<void*>(si->base), si->size, PROT_NONE,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);
}
}
TRACE("name %s: freeing soinfo @ %p", si->get_realpath(), si);
if (!solist_remove_soinfo(si)) {
async_safe_fatal("soinfo=%p is not in soinfo_list (double unload?)", si);
}
// clear links to/from si
si->remove_all_links();
si->~soinfo();
g_soinfo_allocator.free(si);
}
static void parse_path(const char* path, const char* delimiters,
std::vector<std::string>* resolved_paths) {
std::vector<std::string> paths;
split_path(path, delimiters, &paths);
resolve_paths(paths, resolved_paths);
}
static void parse_LD_LIBRARY_PATH(const char* path) {
std::vector<std::string> ld_libary_paths;
parse_path(path, ":", &ld_libary_paths);
g_default_namespace.set_ld_library_paths(std::move(ld_libary_paths));
}
static bool realpath_fd(int fd, std::string* realpath) {
std::vector<char> buf(PATH_MAX), proc_self_fd(PATH_MAX);
async_safe_format_buffer(&proc_self_fd[0], proc_self_fd.size(), "/proc/self/fd/%d", fd);
if (readlink(&proc_self_fd[0], &buf[0], buf.size()) == -1) {
if (!is_first_stage_init()) {
PRINT("readlink(\"%s\") failed: %s [fd=%d]", &proc_self_fd[0], strerror(errno), fd);
}
return false;
}
*realpath = &buf[0];
return true;
}
#if defined(__arm__)
// For a given PC, find the .so that it belongs to.
// Returns the base address of the .ARM.exidx section
// for that .so, and the number of 8-byte entries
// in that section (via *pcount).
//
// Intended to be called by libc's __gnu_Unwind_Find_exidx().
_Unwind_Ptr do_dl_unwind_find_exidx(_Unwind_Ptr pc, int* pcount) {
if (soinfo* si = find_containing_library(reinterpret_cast<void*>(pc))) {
*pcount = si->ARM_exidx_count;
return reinterpret_cast<_Unwind_Ptr>(si->ARM_exidx);
}
*pcount = 0;
return 0;
}
#endif
// Here, we only have to provide a callback to iterate across all the
// loaded libraries. gcc_eh does the rest.
int do_dl_iterate_phdr(int (*cb)(dl_phdr_info* info, size_t size, void* data), void* data) {
int rv = 0;
for (soinfo* si = solist_get_head(); si != nullptr; si = si->next) {
dl_phdr_info dl_info;
dl_info.dlpi_addr = si->link_map_head.l_addr;
dl_info.dlpi_name = si->link_map_head.l_name;
dl_info.dlpi_phdr = si->phdr;
dl_info.dlpi_phnum = si->phnum;
rv = cb(&dl_info, sizeof(dl_phdr_info), data);
if (rv != 0) {
break;
}
}
return rv;
}
bool soinfo_do_lookup(soinfo* si_from, const char* name, const version_info* vi,
soinfo** si_found_in, const soinfo_list_t& global_group,
const soinfo_list_t& local_group, const ElfW(Sym)** symbol) {
SymbolName symbol_name(name);
const ElfW(Sym)* s = nullptr;
/* "This element's presence in a shared object library alters the dynamic linker's
* symbol resolution algorithm for references within the library. Instead of starting
* a symbol search with the executable file, the dynamic linker starts from the shared
* object itself. If the shared object fails to supply the referenced symbol, the
* dynamic linker then searches the executable file and other shared objects as usual."
*
* http://www.sco.com/developers/gabi/2012-12-31/ch5.dynamic.html
*
* Note that this is unlikely since static linker avoids generating
* relocations for -Bsymbolic linked dynamic executables.
*/
if (si_from->has_DT_SYMBOLIC) {
DEBUG("%s: looking up %s in local scope (DT_SYMBOLIC)", si_from->get_realpath(), name);
if (!si_from->find_symbol_by_name(symbol_name, vi, &s)) {
return false;
}
if (s != nullptr) {
*si_found_in = si_from;
}
}
// 1. Look for it in global_group
if (s == nullptr) {
bool error = false;
global_group.visit([&](soinfo* global_si) {
DEBUG("%s: looking up %s in %s (from global group)",
si_from->get_realpath(), name, global_si->get_realpath());
if (!global_si->find_symbol_by_name(symbol_name, vi, &s)) {
error = true;
return false;
}
if (s != nullptr) {
*si_found_in = global_si;
return false;
}
return true;
});
if (error) {
return false;
}
}
// 2. Look for it in the local group
if (s == nullptr) {
bool error = false;
local_group.visit([&](soinfo* local_si) {
if (local_si == si_from && si_from->has_DT_SYMBOLIC) {
// we already did this - skip
return true;
}
DEBUG("%s: looking up %s in %s (from local group)",
si_from->get_realpath(), name, local_si->get_realpath());
if (!local_si->find_symbol_by_name(symbol_name, vi, &s)) {
error = true;
return false;
}
if (s != nullptr) {
*si_found_in = local_si;
return false;
}
return true;
});
if (error) {
return false;
}
}
if (s != nullptr) {
TRACE_TYPE(LOOKUP, "si %s sym %s s->st_value = %p, "
"found in %s, base = %p, load bias = %p",
si_from->get_realpath(), name, reinterpret_cast<void*>(s->st_value),
(*si_found_in)->get_realpath(), reinterpret_cast<void*>((*si_found_in)->base),
reinterpret_cast<void*>((*si_found_in)->load_bias));
}
*symbol = s;
return true;
}
ProtectedDataGuard::ProtectedDataGuard() {
if (ref_count_++ == 0) {
protect_data(PROT_READ | PROT_WRITE);
}
if (ref_count_ == 0) { // overflow
async_safe_fatal("Too many nested calls to dlopen()");
}
}
ProtectedDataGuard::~ProtectedDataGuard() {
if (--ref_count_ == 0) {
protect_data(PROT_READ);
}
}
void ProtectedDataGuard::protect_data(int protection) {
g_soinfo_allocator.protect_all(protection);
g_soinfo_links_allocator.protect_all(protection);
g_namespace_allocator.protect_all(protection);
g_namespace_list_allocator.protect_all(protection);
}
size_t ProtectedDataGuard::ref_count_ = 0;
// Each size has it's own allocator.
template<size_t size>
class SizeBasedAllocator {
public:
static void* alloc() {
return allocator_.alloc();
}
static void free(void* ptr) {
allocator_.free(ptr);
}
static void purge() {
allocator_.purge();
}
private:
static LinkerBlockAllocator allocator_;
};
template<size_t size>
LinkerBlockAllocator SizeBasedAllocator<size>::allocator_(size);
template<typename T>
class TypeBasedAllocator {
public:
static T* alloc() {
return reinterpret_cast<T*>(SizeBasedAllocator<sizeof(T)>::alloc());
}
static void free(T* ptr) {
SizeBasedAllocator<sizeof(T)>::free(ptr);
}
static void purge() {
SizeBasedAllocator<sizeof(T)>::purge();
}
};
class LoadTask {
public:
struct deleter_t {
void operator()(LoadTask* t) {
t->~LoadTask();
TypeBasedAllocator<LoadTask>::free(t);
}
};
static deleter_t deleter;
static LoadTask* create(const char* name,
soinfo* needed_by,
android_namespace_t* start_from,
std::unordered_map<const soinfo*, ElfReader>* readers_map) {
LoadTask* ptr = TypeBasedAllocator<LoadTask>::alloc();
return new (ptr) LoadTask(name, needed_by, start_from, readers_map);
}
const char* get_name() const {
return name_;
}
soinfo* get_needed_by() const {
return needed_by_;
}
soinfo* get_soinfo() const {
return si_;
}
void set_soinfo(soinfo* si) {
si_ = si;
}
off64_t get_file_offset() const {
return file_offset_;
}
void set_file_offset(off64_t offset) {
file_offset_ = offset;
}
int get_fd() const {
return fd_;
}
void set_fd(int fd, bool assume_ownership) {
if (fd_ != -1 && close_fd_) {
close(fd_);
}
fd_ = fd;
close_fd_ = assume_ownership;
}
const android_dlextinfo* get_extinfo() const {
return extinfo_;
}
void set_extinfo(const android_dlextinfo* extinfo) {
extinfo_ = extinfo;
}
bool is_dt_needed() const {
return is_dt_needed_;
}
void set_dt_needed(bool is_dt_needed) {
is_dt_needed_ = is_dt_needed;
}
// returns the namespace from where we need to start loading this.
const android_namespace_t* get_start_from() const {
return start_from_;
}
const ElfReader& get_elf_reader() const {
CHECK(si_ != nullptr);
return (*elf_readers_map_)[si_];
}
ElfReader& get_elf_reader() {
CHECK(si_ != nullptr);
return (*elf_readers_map_)[si_];
}
std::unordered_map<const soinfo*, ElfReader>* get_readers_map() {
return elf_readers_map_;
}
bool read(const char* realpath, off64_t file_size) {
ElfReader& elf_reader = get_elf_reader();
return elf_reader.Read(realpath, fd_, file_offset_, file_size);
}
bool load(address_space_params* address_space) {
ElfReader& elf_reader = get_elf_reader();
if (!elf_reader.Load(address_space)) {
return false;
}
si_->base = elf_reader.load_start();
si_->size = elf_reader.load_size();
si_->set_mapped_by_caller(elf_reader.is_mapped_by_caller());
si_->load_bias = elf_reader.load_bias();
si_->phnum = elf_reader.phdr_count();
si_->phdr = elf_reader.loaded_phdr();
return true;
}
private:
LoadTask(const char* name,
soinfo* needed_by,
android_namespace_t* start_from,
std::unordered_map<const soinfo*, ElfReader>* readers_map)
: name_(name), needed_by_(needed_by), si_(nullptr),
fd_(-1), close_fd_(false), file_offset_(0), elf_readers_map_(readers_map),
is_dt_needed_(false), start_from_(start_from) {}
~LoadTask() {
if (fd_ != -1 && close_fd_) {
close(fd_);
}
}
const char* name_;
soinfo* needed_by_;
soinfo* si_;
const android_dlextinfo* extinfo_;
int fd_;
bool close_fd_;
off64_t file_offset_;
std::unordered_map<const soinfo*, ElfReader>* elf_readers_map_;
// TODO(dimitry): needed by workaround for http://b/26394120 (the grey-list)
bool is_dt_needed_;
// END OF WORKAROUND
const android_namespace_t* const start_from_;
DISALLOW_IMPLICIT_CONSTRUCTORS(LoadTask);
};
LoadTask::deleter_t LoadTask::deleter;
template <typename T>
using linked_list_t = LinkedList<T, TypeBasedAllocator<LinkedListEntry<T>>>;
typedef linked_list_t<soinfo> SoinfoLinkedList;
typedef linked_list_t<const char> StringLinkedList;
typedef std::vector<LoadTask*> LoadTaskList;
enum walk_action_result_t : uint32_t {
kWalkStop = 0,
kWalkContinue = 1,
kWalkSkip = 2
};
// This function walks down the tree of soinfo dependencies
// in breadth-first order and
// * calls action(soinfo* si) for each node, and
// * terminates walk if action returns kWalkStop
// * skips children of the node if action
// return kWalkSkip
//
// walk_dependencies_tree returns false if walk was terminated
// by the action and true otherwise.
template<typename F>
static bool walk_dependencies_tree(soinfo* root_soinfo, F action) {
SoinfoLinkedList visit_list;
SoinfoLinkedList visited;
visit_list.push_back(root_soinfo);
soinfo* si;
while ((si = visit_list.pop_front()) != nullptr) {
if (visited.contains(si)) {
continue;
}
walk_action_result_t result = action(si);
if (result == kWalkStop) {
return false;
}
visited.push_back(si);
if (result != kWalkSkip) {
si->get_children().for_each([&](soinfo* child) {
visit_list.push_back(child);
});
}
}
return true;
}
static const ElfW(Sym)* dlsym_handle_lookup(android_namespace_t* ns,
soinfo* root,
soinfo* skip_until,
soinfo** found,
SymbolName& symbol_name,
const version_info* vi) {
const ElfW(Sym)* result = nullptr;
bool skip_lookup = skip_until != nullptr;
walk_dependencies_tree(root, [&](soinfo* current_soinfo) {
if (skip_lookup) {
skip_lookup = current_soinfo != skip_until;
return kWalkContinue;
}
if (!ns->is_accessible(current_soinfo)) {
return kWalkSkip;
}
if (!current_soinfo->find_symbol_by_name(symbol_name, vi, &result)) {
result = nullptr;
return kWalkStop;
}
if (result != nullptr) {
*found = current_soinfo;
return kWalkStop;
}
return kWalkContinue;
});
return result;
}
static const ElfW(Sym)* dlsym_linear_lookup(android_namespace_t* ns,
const char* name,
const version_info* vi,
soinfo** found,
soinfo* caller,
void* handle);
// This is used by dlsym(3). It performs symbol lookup only within the
// specified soinfo object and its dependencies in breadth first order.
static const ElfW(Sym)* dlsym_handle_lookup(soinfo* si,
soinfo** found,
const char* name,
const version_info* vi) {
// According to man dlopen(3) and posix docs in the case when si is handle
// of the main executable we need to search not only in the executable and its
// dependencies but also in all libraries loaded with RTLD_GLOBAL.
//
// Since RTLD_GLOBAL is always set for the main executable and all dt_needed shared
// libraries and they are loaded in breath-first (correct) order we can just execute
// dlsym(RTLD_DEFAULT, ...); instead of doing two stage lookup.
if (si == solist_get_somain()) {
return dlsym_linear_lookup(&g_default_namespace, name, vi, found, nullptr, RTLD_DEFAULT);
}
SymbolName symbol_name(name);
// note that the namespace is not the namespace associated with caller_addr
// we use ns associated with root si intentionally here. Using caller_ns
// causes problems when user uses dlopen_ext to open a library in the separate
// namespace and then calls dlsym() on the handle.
return dlsym_handle_lookup(si->get_primary_namespace(), si, nullptr, found, symbol_name, vi);
}
/* This is used by dlsym(3) to performs a global symbol lookup. If the
start value is null (for RTLD_DEFAULT), the search starts at the
beginning of the global solist. Otherwise the search starts at the
specified soinfo (for RTLD_NEXT).
*/
static const ElfW(Sym)* dlsym_linear_lookup(android_namespace_t* ns,
const char* name,
const version_info* vi,
soinfo** found,
soinfo* caller,
void* handle) {
SymbolName symbol_name(name);
auto& soinfo_list = ns->soinfo_list();
auto start = soinfo_list.begin();
if (handle == RTLD_NEXT) {
if (caller == nullptr) {
return nullptr;
} else {
auto it = soinfo_list.find(caller);
CHECK (it != soinfo_list.end());
start = ++it;
}
}
const ElfW(Sym)* s = nullptr;
for (auto it = start, end = soinfo_list.end(); it != end; ++it) {
soinfo* si = *it;
// Do not skip RTLD_LOCAL libraries in dlsym(RTLD_DEFAULT, ...)
// if the library is opened by application with target api level < M.
// See http://b/21565766
if ((si->get_rtld_flags() & RTLD_GLOBAL) == 0 &&
si->get_target_sdk_version() >= __ANDROID_API_M__) {
continue;
}
if (!si->find_symbol_by_name(symbol_name, vi, &s)) {
return nullptr;
}
if (s != nullptr) {
*found = si;
break;
}
}
// If not found - use dlsym_handle_lookup for caller's local_group
if (s == nullptr && caller != nullptr) {
soinfo* local_group_root = caller->get_local_group_root();
return dlsym_handle_lookup(local_group_root->get_primary_namespace(),
local_group_root,
(handle == RTLD_NEXT) ? caller : nullptr,
found,
symbol_name,
vi);
}
if (s != nullptr) {
TRACE_TYPE(LOOKUP, "%s s->st_value = %p, found->base = %p",
name, reinterpret_cast<void*>(s->st_value), reinterpret_cast<void*>((*found)->base));
}
return s;
}
soinfo* find_containing_library(const void* p) {
ElfW(Addr) address = reinterpret_cast<ElfW(Addr)>(p);
for (soinfo* si = solist_get_head(); si != nullptr; si = si->next) {
if (address < si->base || address - si->base >= si->size) {
continue;
}
ElfW(Addr) vaddr = address - si->load_bias;
for (size_t i = 0; i != si->phnum; ++i) {
const ElfW(Phdr)* phdr = &si->phdr[i];
if (phdr->p_type != PT_LOAD) {
continue;
}
if (vaddr >= phdr->p_vaddr && vaddr < phdr->p_vaddr + phdr->p_memsz) {
return si;
}
}
}
return nullptr;
}
class ZipArchiveCache {
public:
ZipArchiveCache() {}
~ZipArchiveCache();
bool get_or_open(const char* zip_path, ZipArchiveHandle* handle);
private:
DISALLOW_COPY_AND_ASSIGN(ZipArchiveCache);
std::unordered_map<std::string, ZipArchiveHandle> cache_;
};
bool ZipArchiveCache::get_or_open(const char* zip_path, ZipArchiveHandle* handle) {
std::string key(zip_path);
auto it = cache_.find(key);
if (it != cache_.end()) {
*handle = it->second;
return true;
}
int fd = TEMP_FAILURE_RETRY(open(zip_path, O_RDONLY | O_CLOEXEC));
if (fd == -1) {
return false;
}
if (OpenArchiveFd(fd, "", handle) != 0) {
// invalid zip-file (?)
CloseArchive(*handle);
return false;
}
cache_[key] = *handle;
return true;
}
ZipArchiveCache::~ZipArchiveCache() {
for (const auto& it : cache_) {
CloseArchive(it.second);
}
}
static int open_library_in_zipfile(ZipArchiveCache* zip_archive_cache,
const char* const input_path,
off64_t* file_offset, std::string* realpath) {
std::string normalized_path;
if (!normalize_path(input_path, &normalized_path)) {
return -1;
}
const char* const path = normalized_path.c_str();
TRACE("Trying zip file open from path \"%s\" -> normalized \"%s\"", input_path, path);
// Treat an '!/' separator inside a path as the separator between the name
// of the zip file on disk and the subdirectory to search within it.
// For example, if path is "foo.zip!/bar/bas/x.so", then we search for
// "bar/bas/x.so" within "foo.zip".
const char* const separator = strstr(path, kZipFileSeparator);
if (separator == nullptr) {
return -1;
}
char buf[512];
if (strlcpy(buf, path, sizeof(buf)) >= sizeof(buf)) {
PRINT("Warning: ignoring very long library path: %s", path);
return -1;
}
buf[separator - path] = '\0';
const char* zip_path = buf;
const char* file_path = &buf[separator - path + 2];
int fd = TEMP_FAILURE_RETRY(open(zip_path, O_RDONLY | O_CLOEXEC));
if (fd == -1) {
return -1;
}
ZipArchiveHandle handle;
if (!zip_archive_cache->get_or_open(zip_path, &handle)) {
// invalid zip-file (?)
close(fd);
return -1;
}
ZipEntry entry;
if (FindEntry(handle, ZipString(file_path), &entry) != 0) {
// Entry was not found.
close(fd);
return -1;
}
// Check if it is properly stored
if (entry.method != kCompressStored || (entry.offset % PAGE_SIZE) != 0) {
close(fd);
return -1;
}
*file_offset = entry.offset;
if (realpath_fd(fd, realpath)) {
*realpath += separator;
} else {
if (!is_first_stage_init()) {
PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.",
normalized_path.c_str());
}
*realpath = normalized_path;
}
return fd;
}
static bool format_path(char* buf, size_t buf_size, const char* path, const char* name) {
int n = async_safe_format_buffer(buf, buf_size, "%s/%s", path, name);
if (n < 0 || n >= static_cast<int>(buf_size)) {
PRINT("Warning: ignoring very long library path: %s/%s", path, name);
return false;
}
return true;
}
static int open_library_at_path(ZipArchiveCache* zip_archive_cache,
const char* path, off64_t* file_offset,
std::string* realpath) {
int fd = -1;
if (strstr(path, kZipFileSeparator) != nullptr) {
fd = open_library_in_zipfile(zip_archive_cache, path, file_offset, realpath);
}
if (fd == -1) {
fd = TEMP_FAILURE_RETRY(open(path, O_RDONLY | O_CLOEXEC));
if (fd != -1) {
*file_offset = 0;
if (!realpath_fd(fd, realpath)) {
if (!is_first_stage_init()) {
PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.",
path);
}
*realpath = path;
}
}
}
return fd;
}
static int open_library_on_paths(ZipArchiveCache* zip_archive_cache,
const char* name, off64_t* file_offset,
const std::vector<std::string>& paths,
std::string* realpath) {
for (const auto& path : paths) {
char buf[512];
if (!format_path(buf, sizeof(buf), path.c_str(), name)) {
continue;
}
int fd = open_library_at_path(zip_archive_cache, buf, file_offset, realpath);
if (fd != -1) {
return fd;
}
}
return -1;
}
static int open_library(android_namespace_t* ns,
ZipArchiveCache* zip_archive_cache,
const char* name, soinfo *needed_by,
off64_t* file_offset, std::string* realpath) {
TRACE("[ opening %s from namespace %s ]", name, ns->get_name());
// If the name contains a slash, we should attempt to open it directly and not search the paths.
if (strchr(name, '/') != nullptr) {
int fd = -1;
if (strstr(name, kZipFileSeparator) != nullptr) {
fd = open_library_in_zipfile(zip_archive_cache, name, file_offset, realpath);
}
if (fd == -1) {
fd = TEMP_FAILURE_RETRY(open(name, O_RDONLY | O_CLOEXEC));
if (fd != -1) {
*file_offset = 0;
if (!realpath_fd(fd, realpath)) {
if (!is_first_stage_init()) {
PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.",
name);
}
*realpath = name;
}
}
}
return fd;
}
// Otherwise we try LD_LIBRARY_PATH first, and fall back to the default library path
int fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_ld_library_paths(), realpath);
if (fd == -1 && needed_by != nullptr) {
fd = open_library_on_paths(zip_archive_cache, name, file_offset, needed_by->get_dt_runpath(), realpath);
// Check if the library is accessible
if (fd != -1 && !ns->is_accessible(*realpath)) {
close(fd);
fd = -1;
}
}
if (fd == -1) {
fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_default_library_paths(), realpath);
}
return fd;
}
int open_executable(const char* path, off64_t* file_offset, std::string* realpath) {
ZipArchiveCache zip_archive_cache;
return open_library_at_path(&zip_archive_cache, path, file_offset, realpath);
}
const char* fix_dt_needed(const char* dt_needed, const char* sopath __unused) {
#if !defined(__LP64__)
// Work around incorrect DT_NEEDED entries for old apps: http://b/21364029
int app_target_api_level = get_application_target_sdk_version();
if (app_target_api_level < __ANDROID_API_M__) {
const char* bname = basename(dt_needed);
if (bname != dt_needed) {
DL_WARN_documented_change(__ANDROID_API_M__,
"invalid-dt_needed-entries-enforced-for-api-level-23",
"library \"%s\" has invalid DT_NEEDED entry \"%s\"",
sopath, dt_needed, app_target_api_level);
add_dlwarning(sopath, "invalid DT_NEEDED entry", dt_needed);
}
return bname;
}
#endif
return dt_needed;
}
template<typename F>
static void for_each_dt_needed(const ElfReader& elf_reader, F action) {
for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_NEEDED) {
action(fix_dt_needed(elf_reader.get_string(d->d_un.d_val), elf_reader.name()));
}
}
}
static bool find_loaded_library_by_inode(android_namespace_t* ns,
const struct stat& file_stat,
off64_t file_offset,
bool search_linked_namespaces,
soinfo** candidate) {
auto predicate = [&](soinfo* si) {
return si->get_st_dev() != 0 &&
si->get_st_ino() != 0 &&
si->get_st_dev() == file_stat.st_dev &&
si->get_st_ino() == file_stat.st_ino &&
si->get_file_offset() == file_offset;
};
*candidate = ns->soinfo_list().find_if(predicate);
if (*candidate == nullptr && search_linked_namespaces) {
for (auto& link : ns->linked_namespaces()) {
android_namespace_t* linked_ns = link.linked_namespace();
soinfo* si = linked_ns->soinfo_list().find_if(predicate);
if (si != nullptr && link.is_accessible(si->get_soname())) {
*candidate = si;
return true;
}
}
}
return *candidate != nullptr;
}
static bool find_loaded_library_by_realpath(android_namespace_t* ns, const char* realpath,
bool search_linked_namespaces, soinfo** candidate) {
auto predicate = [&](soinfo* si) { return strcmp(realpath, si->get_realpath()) == 0; };
*candidate = ns->soinfo_list().find_if(predicate);
if (*candidate == nullptr && search_linked_namespaces) {
for (auto& link : ns->linked_namespaces()) {
android_namespace_t* linked_ns = link.linked_namespace();
soinfo* si = linked_ns->soinfo_list().find_if(predicate);
if (si != nullptr && link.is_accessible(si->get_soname())) {
*candidate = si;
return true;
}
}
}
return *candidate != nullptr;
}
static bool load_library(android_namespace_t* ns,
LoadTask* task,
LoadTaskList* load_tasks,
int rtld_flags,
const std::string& realpath,
bool search_linked_namespaces) {
off64_t file_offset = task->get_file_offset();
const char* name = task->get_name();
const android_dlextinfo* extinfo = task->get_extinfo();
LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s, flags=0x%x, realpath=%s)", ns->get_name(), name,
rtld_flags, realpath.c_str());
if ((file_offset % PAGE_SIZE) != 0) {
DL_ERR("file offset for the library \"%s\" is not page-aligned: %" PRId64, name, file_offset);
return false;
}
if (file_offset < 0) {
DL_ERR("file offset for the library \"%s\" is negative: %" PRId64, name, file_offset);
return false;
}
struct stat file_stat;
if (TEMP_FAILURE_RETRY(fstat(task->get_fd(), &file_stat)) != 0) {
DL_ERR("unable to stat file for the library \"%s\": %s", name, strerror(errno));
return false;
}
if (file_offset >= file_stat.st_size) {
DL_ERR("file offset for the library \"%s\" >= file size: %" PRId64 " >= %" PRId64,
name, file_offset, file_stat.st_size);
return false;
}
// Check for symlink and other situations where
// file can have different names, unless ANDROID_DLEXT_FORCE_LOAD is set
if (extinfo == nullptr || (extinfo->flags & ANDROID_DLEXT_FORCE_LOAD) == 0) {
soinfo* si = nullptr;
if (find_loaded_library_by_inode(ns, file_stat, file_offset, search_linked_namespaces, &si)) {
LD_LOG(kLogDlopen,
"load_library(ns=%s, task=%s): Already loaded under different name/path \"%s\" - "
"will return existing soinfo",
ns->get_name(), name, si->get_realpath());
task->set_soinfo(si);
return true;
}
}
if ((rtld_flags & RTLD_NOLOAD) != 0) {
DL_ERR("library \"%s\" wasn't loaded and RTLD_NOLOAD prevented it", name);
return false;
}
struct statfs fs_stat;
if (TEMP_FAILURE_RETRY(fstatfs(task->get_fd(), &fs_stat)) != 0) {
DL_ERR("unable to fstatfs file for the library \"%s\": %s", name, strerror(errno));
return false;
}
// do not check accessibility using realpath if fd is located on tmpfs
// this enables use of memfd_create() for apps
if ((fs_stat.f_type != TMPFS_MAGIC) && (!ns->is_accessible(realpath))) {
// TODO(dimitry): workaround for http://b/26394120 - the grey-list
// TODO(dimitry) before O release: add a namespace attribute to have this enabled
// only for classloader-namespaces
const soinfo* needed_by = task->is_dt_needed() ? task->get_needed_by() : nullptr;
if (is_greylisted(ns, name, needed_by)) {
// print warning only if needed by non-system library
if (needed_by == nullptr || !is_system_library(needed_by->get_realpath())) {
const soinfo* needed_or_dlopened_by = task->get_needed_by();
const char* sopath = needed_or_dlopened_by == nullptr ? "(unknown)" :
needed_or_dlopened_by->get_realpath();
DL_WARN_documented_change(__ANDROID_API_N__,
"private-api-enforced-for-api-level-24",
"library \"%s\" (\"%s\") needed or dlopened by \"%s\" "
"is not accessible by namespace \"%s\"",
name, realpath.c_str(), sopath, ns->get_name());
add_dlwarning(sopath, "unauthorized access to", name);
}
} else {
// do not load libraries if they are not accessible for the specified namespace.
const char* needed_or_dlopened_by = task->get_needed_by() == nullptr ?
"(unknown)" :
task->get_needed_by()->get_realpath();
DL_ERR("library \"%s\" needed or dlopened by \"%s\" is not accessible for the namespace \"%s\"",
name, needed_or_dlopened_by, ns->get_name());
// do not print this if a library is in the list of shared libraries for linked namespaces
if (!maybe_accessible_via_namespace_links(ns, name)) {
PRINT("library \"%s\" (\"%s\") needed or dlopened by \"%s\" is not accessible for the"
" namespace: [name=\"%s\", ld_library_paths=\"%s\", default_library_paths=\"%s\","
" permitted_paths=\"%s\"]",
name, realpath.c_str(),
needed_or_dlopened_by,
ns->get_name(),
android::base::Join(ns->get_ld_library_paths(), ':').c_str(),
android::base::Join(ns->get_default_library_paths(), ':').c_str(),
android::base::Join(ns->get_permitted_paths(), ':').c_str());
}
return false;
}
}
soinfo* si = soinfo_alloc(ns, realpath.c_str(), &file_stat, file_offset, rtld_flags);
if (si == nullptr) {
return false;
}
task->set_soinfo(si);
// Read the ELF header and some of the segments.
if (!task->read(realpath.c_str(), file_stat.st_size)) {
soinfo_free(si);
task->set_soinfo(nullptr);
return false;
}
// find and set DT_RUNPATH and dt_soname
// Note that these field values are temporary and are
// going to be overwritten on soinfo::prelink_image
// with values from PT_LOAD segments.
const ElfReader& elf_reader = task->get_elf_reader();
for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_RUNPATH) {
si->set_dt_runpath(elf_reader.get_string(d->d_un.d_val));
}
if (d->d_tag == DT_SONAME) {
si->set_soname(elf_reader.get_string(d->d_un.d_val));
}
}
#if !defined(__ANDROID__)
// Bionic on the host currently uses some Android prebuilts, which don't set
// DT_RUNPATH with any relative paths, so they can't find their dependencies.
// b/118058804
if (si->get_dt_runpath().empty()) {
si->set_dt_runpath("$ORIGIN/../lib64:$ORIGIN/lib64");
}
#endif
for_each_dt_needed(task->get_elf_reader(), [&](const char* name) {
LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s): Adding DT_NEEDED task: %s",
ns->get_name(), task->get_name(), name);
load_tasks->push_back(LoadTask::create(name, si, ns, task->get_readers_map()));
});
return true;
}
static bool load_library(android_namespace_t* ns,
LoadTask* task,
ZipArchiveCache* zip_archive_cache,
LoadTaskList* load_tasks,
int rtld_flags,
bool search_linked_namespaces) {
const char* name = task->get_name();
soinfo* needed_by = task->get_needed_by();
const android_dlextinfo* extinfo = task->get_extinfo();
off64_t file_offset;
std::string realpath;
if (extinfo != nullptr && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) != 0) {
file_offset = 0;
if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) {
file_offset = extinfo->library_fd_offset;
}
if (!realpath_fd(extinfo->library_fd, &realpath)) {
if (!is_first_stage_init()) {
PRINT(
"warning: unable to get realpath for the library \"%s\" by extinfo->library_fd. "
"Will use given name.",
name);
}
realpath = name;
}
task->set_fd(extinfo->library_fd, false);
task->set_file_offset(file_offset);
return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces);
}
// Open the file.
int fd = open_library(ns, zip_archive_cache, name, needed_by, &file_offset, &realpath);
if (fd == -1) {
DL_ERR("library \"%s\" not found", name);
return false;
}
task->set_fd(fd, true);
task->set_file_offset(file_offset);
return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces);
}
static bool find_loaded_library_by_soname(android_namespace_t* ns,
const char* name,
soinfo** candidate) {
return !ns->soinfo_list().visit([&](soinfo* si) {
const char* soname = si->get_soname();
if (soname != nullptr && (strcmp(name, soname) == 0)) {
*candidate = si;
return false;
}
return true;
});
}
// Returns true if library was found and false otherwise
static bool find_loaded_library_by_soname(android_namespace_t* ns,
const char* name,
bool search_linked_namespaces,
soinfo** candidate) {
*candidate = nullptr;
// Ignore filename with path.
if (strchr(name, '/') != nullptr) {
return false;
}
bool found = find_loaded_library_by_soname(ns, name, candidate);
if (!found && search_linked_namespaces) {
// if a library was not found - look into linked namespaces
for (auto& link : ns->linked_namespaces()) {
if (!link.is_accessible(name)) {
continue;
}
android_namespace_t* linked_ns = link.linked_namespace();
if (find_loaded_library_by_soname(linked_ns, name, candidate)) {
return true;
}
}
}
return found;
}
static bool find_library_in_linked_namespace(const android_namespace_link_t& namespace_link,
LoadTask* task) {
android_namespace_t* ns = namespace_link.linked_namespace();
soinfo* candidate;
bool loaded = false;
std::string soname;
if (find_loaded_library_by_soname(ns, task->get_name(), false, &candidate)) {
loaded = true;
soname = candidate->get_soname();
} else {
soname = resolve_soname(task->get_name());
}
if (!namespace_link.is_accessible(soname.c_str())) {
// the library is not accessible via namespace_link
LD_LOG(kLogDlopen,
"find_library_in_linked_namespace(ns=%s, task=%s): Not accessible (soname=%s)",
ns->get_name(), task->get_name(), soname.c_str());
return false;
}
// if library is already loaded - return it
if (loaded) {
LD_LOG(kLogDlopen, "find_library_in_linked_namespace(ns=%s, task=%s): Already loaded",
ns->get_name(), task->get_name());
task->set_soinfo(candidate);
return true;
}
// returning true with empty soinfo means that the library is okay to be
// loaded in the namespace but has not yet been loaded there before.
LD_LOG(kLogDlopen, "find_library_in_linked_namespace(ns=%s, task=%s): Ok to load", ns->get_name(),
task->get_name());
task->set_soinfo(nullptr);
return true;
}
static bool find_library_internal(android_namespace_t* ns,
LoadTask* task,
ZipArchiveCache* zip_archive_cache,
LoadTaskList* load_tasks,
int rtld_flags,
bool search_linked_namespaces) {
soinfo* candidate;
if (find_loaded_library_by_soname(ns, task->get_name(), search_linked_namespaces, &candidate)) {
LD_LOG(kLogDlopen,
"find_library_internal(ns=%s, task=%s): Already loaded (by soname): %s",
ns->get_name(), task->get_name(), candidate->get_realpath());
task->set_soinfo(candidate);
return true;
}
// Library might still be loaded, the accurate detection
// of this fact is done by load_library.
TRACE("[ \"%s\" find_loaded_library_by_soname failed (*candidate=%s@%p). Trying harder... ]",
task->get_name(), candidate == nullptr ? "n/a" : candidate->get_realpath(), candidate);
if (load_library(ns, task, zip_archive_cache, load_tasks, rtld_flags, search_linked_namespaces)) {
return true;
}
// TODO(dimitry): workaround for http://b/26394120 (the grey-list)
if (ns->is_greylist_enabled() && is_greylisted(ns, task->get_name(), task->get_needed_by())) {
// For the libs in the greylist, switch to the default namespace and then
// try the load again from there. The library could be loaded from the
// default namespace or from another namespace (e.g. runtime) that is linked
// from the default namespace.
LD_LOG(kLogDlopen,
"find_library_internal(ns=%s, task=%s): Greylisted library - trying namespace %s",
ns->get_name(), task->get_name(), g_default_namespace.get_name());
ns = &g_default_namespace;
if (load_library(ns, task, zip_archive_cache, load_tasks, rtld_flags,
search_linked_namespaces)) {
return true;
}
}
// END OF WORKAROUND
if (search_linked_namespaces) {
// if a library was not found - look into linked namespaces
// preserve current dlerror in the case it fails.
DlErrorRestorer dlerror_restorer;
LD_LOG(kLogDlopen, "find_library_internal(ns=%s, task=%s): Trying %zu linked namespaces",
ns->get_name(), task->get_name(), ns->linked_namespaces().size());
for (auto& linked_namespace : ns->linked_namespaces()) {
if (find_library_in_linked_namespace(linked_namespace, task)) {
if (task->get_soinfo() == nullptr) {
// try to load the library - once namespace boundary is crossed
// we need to load a library within separate load_group
// to avoid using symbols from foreign namespace while.
//
// However, actual linking is deferred until when the global group
// is fully identified and is applied to all namespaces.
// Otherwise, the libs in the linked namespace won't get symbols from
// the global group.
if (load_library(linked_namespace.linked_namespace(), task, zip_archive_cache, load_tasks, rtld_flags, false)) {
LD_LOG(
kLogDlopen, "find_library_internal(ns=%s, task=%s): Found in linked namespace %s",
ns->get_name(), task->get_name(), linked_namespace.linked_namespace()->get_name());
return true;
}
} else {
// lib is already loaded
return true;
}
}
}
}
return false;
}
static void soinfo_unload(soinfo* si);
static void shuffle(std::vector<LoadTask*>* v) {
if (is_first_stage_init()) {
// arc4random* is not available in first stage init because /dev/random
// hasn't yet been created.
return;
}
for (size_t i = 0, size = v->size(); i < size; ++i) {
size_t n = size - i;
size_t r = arc4random_uniform(n);
std::swap((*v)[n-1], (*v)[r]);
}
}
// add_as_children - add first-level loaded libraries (i.e. library_names[], but
// not their transitive dependencies) as children of the start_with library.
// This is false when find_libraries is called for dlopen(), when newly loaded
// libraries must form a disjoint tree.
bool find_libraries(android_namespace_t* ns,
soinfo* start_with,
const char* const library_names[],
size_t library_names_count,
soinfo* soinfos[],
std::vector<soinfo*>* ld_preloads,
size_t ld_preloads_count,
int rtld_flags,
const android_dlextinfo* extinfo,
bool add_as_children,
bool search_linked_namespaces,
std::vector<android_namespace_t*>* namespaces) {
// Step 0: prepare.
std::unordered_map<const soinfo*, ElfReader> readers_map;
LoadTaskList load_tasks;
for (size_t i = 0; i < library_names_count; ++i) {
const char* name = library_names[i];
load_tasks.push_back(LoadTask::create(name, start_with, ns, &readers_map));
}
// If soinfos array is null allocate one on stack.
// The array is needed in case of failure; for example
// when library_names[] = {libone.so, libtwo.so} and libone.so
// is loaded correctly but libtwo.so failed for some reason.
// In this case libone.so should be unloaded on return.
// See also implementation of failure_guard below.
if (soinfos == nullptr) {
size_t soinfos_size = sizeof(soinfo*)*library_names_count;
soinfos = reinterpret_cast<soinfo**>(alloca(soinfos_size));
memset(soinfos, 0, soinfos_size);
}
// list of libraries to link - see step 2.
size_t soinfos_count = 0;
auto scope_guard = android::base::make_scope_guard([&]() {
for (LoadTask* t : load_tasks) {
LoadTask::deleter(t);
}
});
ZipArchiveCache zip_archive_cache;
// Step 1: expand the list of load_tasks to include
// all DT_NEEDED libraries (do not load them just yet)
for (size_t i = 0; i<load_tasks.size(); ++i) {
LoadTask* task = load_tasks[i];
soinfo* needed_by = task->get_needed_by();
bool is_dt_needed = needed_by != nullptr && (needed_by != start_with || add_as_children);
task->set_extinfo(is_dt_needed ? nullptr : extinfo);
task->set_dt_needed(is_dt_needed);
LD_LOG(kLogDlopen, "find_libraries(ns=%s): task=%s, is_dt_needed=%d", ns->get_name(),
task->get_name(), is_dt_needed);
// Note: start from the namespace that is stored in the LoadTask. This namespace
// is different from the current namespace when the LoadTask is for a transitive
// dependency and the lib that created the LoadTask is not found in the
// current namespace but in one of the linked namespace.
if (!find_library_internal(const_cast<android_namespace_t*>(task->get_start_from()),
task,
&zip_archive_cache,
&load_tasks,
rtld_flags,
search_linked_namespaces || is_dt_needed)) {
return false;
}
soinfo* si = task->get_soinfo();
if (is_dt_needed) {
needed_by->add_child(si);
}
// When ld_preloads is not null, the first
// ld_preloads_count libs are in fact ld_preloads.
if (ld_preloads != nullptr && soinfos_count < ld_preloads_count) {
ld_preloads->push_back(si);
}
if (soinfos_count < library_names_count) {
soinfos[soinfos_count++] = si;
}
}
// Step 2: Load libraries in random order (see b/24047022)
LoadTaskList load_list;
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
auto pred = [&](const LoadTask* t) {
return t->get_soinfo() == si;
};
if (!si->is_linked() &&
std::find_if(load_list.begin(), load_list.end(), pred) == load_list.end() ) {
load_list.push_back(task);
}
}
bool reserved_address_recursive = false;
if (extinfo) {
reserved_address_recursive = extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_RECURSIVE;
}
if (!reserved_address_recursive) {
// Shuffle the load order in the normal case, but not if we are loading all
// the libraries to a reserved address range.
shuffle(&load_list);
}
// Set up address space parameters.
address_space_params extinfo_params, default_params;
size_t relro_fd_offset = 0;
if (extinfo) {
if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
extinfo_params.start_addr = extinfo->reserved_addr;
extinfo_params.reserved_size = extinfo->reserved_size;
extinfo_params.must_use_address = true;
} else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
extinfo_params.start_addr = extinfo->reserved_addr;
extinfo_params.reserved_size = extinfo->reserved_size;
}
}
for (auto&& task : load_list) {
address_space_params* address_space =
(reserved_address_recursive || !task->is_dt_needed()) ? &extinfo_params : &default_params;
if (!task->load(address_space)) {
return false;
}
}
// Step 3: pre-link all DT_NEEDED libraries in breadth first order.
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
if (!si->is_linked() && !si->prelink_image()) {
return false;
}
register_soinfo_tls(si);
}
// Step 4: Construct the global group. Note: DF_1_GLOBAL bit of a library is
// determined at step 3.
// Step 4-1: DF_1_GLOBAL bit is force set for LD_PRELOADed libs because they
// must be added to the global group
if (ld_preloads != nullptr) {
for (auto&& si : *ld_preloads) {
si->set_dt_flags_1(si->get_dt_flags_1() | DF_1_GLOBAL);
}
}
// Step 4-2: Gather all DF_1_GLOBAL libs which were newly loaded during this
// run. These will be the new member of the global group
soinfo_list_t new_global_group_members;
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
if (!si->is_linked() && (si->get_dt_flags_1() & DF_1_GLOBAL) != 0) {
new_global_group_members.push_back(si);
}
}
// Step 4-3: Add the new global group members to all the linked namespaces
if (namespaces != nullptr) {
for (auto linked_ns : *namespaces) {
for (auto si : new_global_group_members) {
if (si->get_primary_namespace() != linked_ns) {
linked_ns->add_soinfo(si);
si->add_secondary_namespace(linked_ns);
}
}
}
}
// Step 5: Collect roots of local_groups.
// Whenever needed_by->si link crosses a namespace boundary it forms its own local_group.
// Here we collect new roots to link them separately later on. Note that we need to avoid
// collecting duplicates. Also the order is important. They need to be linked in the same
// BFS order we link individual libraries.
std::vector<soinfo*> local_group_roots;
if (start_with != nullptr && add_as_children) {
local_group_roots.push_back(start_with);
} else {
CHECK(soinfos_count == 1);
local_group_roots.push_back(soinfos[0]);
}
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
soinfo* needed_by = task->get_needed_by();
bool is_dt_needed = needed_by != nullptr && (needed_by != start_with || add_as_children);
android_namespace_t* needed_by_ns =
is_dt_needed ? needed_by->get_primary_namespace() : ns;
if (!si->is_linked() && si->get_primary_namespace() != needed_by_ns) {
auto it = std::find(local_group_roots.begin(), local_group_roots.end(), si);
LD_LOG(kLogDlopen,
"Crossing namespace boundary (si=%s@%p, si_ns=%s@%p, needed_by=%s@%p, ns=%s@%p, needed_by_ns=%s@%p) adding to local_group_roots: %s",
si->get_realpath(),
si,
si->get_primary_namespace()->get_name(),
si->get_primary_namespace(),
needed_by == nullptr ? "(nullptr)" : needed_by->get_realpath(),
needed_by,
ns->get_name(),
ns,
needed_by_ns->get_name(),
needed_by_ns,
it == local_group_roots.end() ? "yes" : "no");
if (it == local_group_roots.end()) {
local_group_roots.push_back(si);
}
}
}
// Step 6: Link all local groups
for (auto root : local_group_roots) {
soinfo_list_t local_group;
android_namespace_t* local_group_ns = root->get_primary_namespace();
walk_dependencies_tree(root,
[&] (soinfo* si) {
if (local_group_ns->is_accessible(si)) {
local_group.push_back(si);
return kWalkContinue;
} else {
return kWalkSkip;
}
});
soinfo_list_t global_group = local_group_ns->get_global_group();
bool linked = local_group.visit([&](soinfo* si) {
// Even though local group may contain accessible soinfos from other namespaces
// we should avoid linking them (because if they are not linked -> they
// are in the local_group_roots and will be linked later).
if (!si->is_linked() && si->get_primary_namespace() == local_group_ns) {
const android_dlextinfo* link_extinfo = nullptr;
if (si == soinfos[0] || reserved_address_recursive) {
// Only forward extinfo for the first library unless the recursive
// flag is set.
link_extinfo = extinfo;
}
if (!si->link_image(global_group, local_group, link_extinfo, &relro_fd_offset) ||
!get_cfi_shadow()->AfterLoad(si, solist_get_head())) {
return false;
}
}
return true;
});
if (!linked) {
return false;
}
}
// Step 7: Mark all load_tasks as linked and increment refcounts
// for references between load_groups (at this point it does not matter if
// referenced load_groups were loaded by previous dlopen or as part of this
// one on step 6)
if (start_with != nullptr && add_as_children) {
start_with->set_linked();
}
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
si->set_linked();
}
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
soinfo* needed_by = task->get_needed_by();
if (needed_by != nullptr &&
needed_by != start_with &&
needed_by->get_local_group_root() != si->get_local_group_root()) {
si->increment_ref_count();
}
}
return true;
}
static soinfo* find_library(android_namespace_t* ns,
const char* name, int rtld_flags,
const android_dlextinfo* extinfo,
soinfo* needed_by) {
soinfo* si = nullptr;
if (name == nullptr) {
si = solist_get_somain();
} else if (!find_libraries(ns,
needed_by,
&name,
1,
&si,
nullptr,
0,
rtld_flags,
extinfo,
false /* add_as_children */,
true /* search_linked_namespaces */)) {
if (si != nullptr) {
soinfo_unload(si);
}
return nullptr;
}
si->increment_ref_count();
return si;
}
static void soinfo_unload_impl(soinfo* root) {
ScopedTrace trace((std::string("unload ") + root->get_realpath()).c_str());
bool is_linked = root->is_linked();
if (!root->can_unload()) {
LD_LOG(kLogDlopen,
"... dlclose(root=\"%s\"@%p) ... not unloading - the load group is flagged with NODELETE",
root->get_realpath(),
root);
return;
}
soinfo_list_t unload_list;
unload_list.push_back(root);
soinfo_list_t local_unload_list;
soinfo_list_t external_unload_list;
soinfo* si = nullptr;
while ((si = unload_list.pop_front()) != nullptr) {
if (local_unload_list.contains(si)) {
continue;
}
local_unload_list.push_back(si);
if (si->has_min_version(0)) {
soinfo* child = nullptr;
while ((child = si->get_children().pop_front()) != nullptr) {
TRACE("%s@%p needs to unload %s@%p", si->get_realpath(), si,
child->get_realpath(), child);
child->get_parents().remove(si);
if (local_unload_list.contains(child)) {
continue;
} else if (child->is_linked() && child->get_local_group_root() != root) {
external_unload_list.push_back(child);
} else if (child->get_parents().empty()) {
unload_list.push_back(child);
}
}
} else {
async_safe_fatal("soinfo for \"%s\"@%p has no version", si->get_realpath(), si);
}
}
local_unload_list.for_each([](soinfo* si) {
LD_LOG(kLogDlopen,
"... dlclose: calling destructors for \"%s\"@%p ... ",
si->get_realpath(),
si);
si->call_destructors();
LD_LOG(kLogDlopen,
"... dlclose: calling destructors for \"%s\"@%p ... done",
si->get_realpath(),
si);
});
while ((si = local_unload_list.pop_front()) != nullptr) {
LD_LOG(kLogDlopen,
"... dlclose: unloading \"%s\"@%p ...",
si->get_realpath(),
si);
notify_gdb_of_unload(si);
unregister_soinfo_tls(si);
get_cfi_shadow()->BeforeUnload(si);
soinfo_free(si);
}
if (is_linked) {
while ((si = external_unload_list.pop_front()) != nullptr) {
LD_LOG(kLogDlopen,
"... dlclose: unloading external reference \"%s\"@%p ...",
si->get_realpath(),
si);
soinfo_unload(si);
}
} else {
LD_LOG(kLogDlopen,
"... dlclose: unload_si was not linked - not unloading external references ...");
}
}
static void soinfo_unload(soinfo* unload_si) {
// Note that the library can be loaded but not linked;
// in which case there is no root but we still need
// to walk the tree and unload soinfos involved.
//
// This happens on unsuccessful dlopen, when one of
// the DT_NEEDED libraries could not be linked/found.
bool is_linked = unload_si->is_linked();
soinfo* root = is_linked ? unload_si->get_local_group_root() : unload_si;
LD_LOG(kLogDlopen,
"... dlclose(realpath=\"%s\"@%p) ... load group root is \"%s\"@%p",
unload_si->get_realpath(),
unload_si,
root->get_realpath(),
root);
size_t ref_count = is_linked ? root->decrement_ref_count() : 0;
if (ref_count > 0) {
LD_LOG(kLogDlopen,
"... dlclose(root=\"%s\"@%p) ... not unloading - decrementing ref_count to %zd",
root->get_realpath(),
root,
ref_count);
return;
}
soinfo_unload_impl(root);
}
void increment_dso_handle_reference_counter(void* dso_handle) {
if (dso_handle == nullptr) {
return;
}
auto it = g_dso_handle_counters.find(dso_handle);
if (it != g_dso_handle_counters.end()) {
CHECK(++it->second != 0);
} else {
soinfo* si = find_containing_library(dso_handle);
if (si != nullptr) {
ProtectedDataGuard guard;
si->increment_ref_count();
} else {
async_safe_fatal(
"increment_dso_handle_reference_counter: Couldn't find soinfo by dso_handle=%p",
dso_handle);
}
g_dso_handle_counters[dso_handle] = 1U;
}
}
void decrement_dso_handle_reference_counter(void* dso_handle) {
if (dso_handle == nullptr) {
return;
}
auto it = g_dso_handle_counters.find(dso_handle);
CHECK(it != g_dso_handle_counters.end());
CHECK(it->second != 0);
if (--it->second == 0) {
soinfo* si = find_containing_library(dso_handle);
if (si != nullptr) {
ProtectedDataGuard guard;
soinfo_unload(si);
} else {
async_safe_fatal(
"decrement_dso_handle_reference_counter: Couldn't find soinfo by dso_handle=%p",
dso_handle);
}
g_dso_handle_counters.erase(it);
}
}
static std::string symbol_display_name(const char* sym_name, const char* sym_ver) {
if (sym_ver == nullptr) {
return sym_name;
}
return std::string(sym_name) + ", version " + sym_ver;
}
static android_namespace_t* get_caller_namespace(soinfo* caller) {
return caller != nullptr ? caller->get_primary_namespace() : g_anonymous_namespace;
}
void do_android_get_LD_LIBRARY_PATH(char* buffer, size_t buffer_size) {
// Use basic string manipulation calls to avoid snprintf.
// snprintf indirectly calls pthread_getspecific to get the size of a buffer.
// When debug malloc is enabled, this call returns 0. This in turn causes
// snprintf to do nothing, which causes libraries to fail to load.
// See b/17302493 for further details.
// Once the above bug is fixed, this code can be modified to use
// snprintf again.
const auto& default_ld_paths = g_default_namespace.get_default_library_paths();
size_t required_size = 0;
for (const auto& path : default_ld_paths) {
required_size += path.size() + 1;
}
if (buffer_size < required_size) {
async_safe_fatal("android_get_LD_LIBRARY_PATH failed, buffer too small: "
"buffer len %zu, required len %zu", buffer_size, required_size);
}
char* end = buffer;
for (size_t i = 0; i < default_ld_paths.size(); ++i) {
if (i > 0) *end++ = ':';
end = stpcpy(end, default_ld_paths[i].c_str());
}
}
void do_android_update_LD_LIBRARY_PATH(const char* ld_library_path) {
parse_LD_LIBRARY_PATH(ld_library_path);
}
static std::string android_dlextinfo_to_string(const android_dlextinfo* info) {
if (info == nullptr) {
return "(null)";
}
return android::base::StringPrintf("[flags=0x%" PRIx64 ","
" reserved_addr=%p,"
" reserved_size=0x%zx,"
" relro_fd=%d,"
" library_fd=%d,"
" library_fd_offset=0x%" PRIx64 ","
" library_namespace=%s@%p]",
info->flags,
info->reserved_addr,
info->reserved_size,
info->relro_fd,
info->library_fd,
info->library_fd_offset,
(info->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0 ?
(info->library_namespace != nullptr ?
info->library_namespace->get_name() : "(null)") : "(n/a)",
(info->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0 ?
info->library_namespace : nullptr);
}
void* do_dlopen(const char* name, int flags,
const android_dlextinfo* extinfo,
const void* caller_addr) {
std::string trace_prefix = std::string("dlopen: ") + (name == nullptr ? "(nullptr)" : name);
ScopedTrace trace(trace_prefix.c_str());
ScopedTrace loading_trace((trace_prefix + " - loading and linking").c_str());
soinfo* const caller = find_containing_library(caller_addr);
android_namespace_t* ns = get_caller_namespace(caller);
LD_LOG(kLogDlopen,
"dlopen(name=\"%s\", flags=0x%x, extinfo=%s, caller=\"%s\", caller_ns=%s@%p, targetSdkVersion=%i) ...",
name,
flags,
android_dlextinfo_to_string(extinfo).c_str(),
caller == nullptr ? "(null)" : caller->get_realpath(),
ns == nullptr ? "(null)" : ns->get_name(),
ns,
get_application_target_sdk_version());
auto purge_guard = android::base::make_scope_guard([&]() { purge_unused_memory(); });
auto failure_guard = android::base::make_scope_guard(
[&]() { LD_LOG(kLogDlopen, "... dlopen failed: %s", linker_get_error_buffer()); });
if ((flags & ~(RTLD_NOW|RTLD_LAZY|RTLD_LOCAL|RTLD_GLOBAL|RTLD_NODELETE|RTLD_NOLOAD)) != 0) {
DL_ERR("invalid flags to dlopen: %x", flags);
return nullptr;
}
if (extinfo != nullptr) {
if ((extinfo->flags & ~(ANDROID_DLEXT_VALID_FLAG_BITS)) != 0) {
DL_ERR("invalid extended flags to android_dlopen_ext: 0x%" PRIx64, extinfo->flags);
return nullptr;
}
if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) == 0 &&
(extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) {
DL_ERR("invalid extended flag combination (ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET without "
"ANDROID_DLEXT_USE_LIBRARY_FD): 0x%" PRIx64, extinfo->flags);
return nullptr;
}
if ((extinfo->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0) {
if (extinfo->library_namespace == nullptr) {
DL_ERR("ANDROID_DLEXT_USE_NAMESPACE is set but extinfo->library_namespace is null");
return nullptr;
}
ns = extinfo->library_namespace;
}
}
// Workaround for dlopen(/system/lib/<soname>) when .so is in /apex. http://b/121248172
// The workaround works only when targetSdkVersion < Q.
std::string name_to_apex;
if (translateSystemPathToApexPath(name, &name_to_apex)) {
const char* new_name = name_to_apex.c_str();
LD_LOG(kLogDlopen, "dlopen considering translation from %s to APEX path %s",
name,
new_name);
// Some APEXs could be optionally disabled. Only translate the path
// when the old file is absent and the new file exists.
// TODO(b/124218500): Re-enable it once app compat issue is resolved
/*
if (file_exists(name)) {
LD_LOG(kLogDlopen, "dlopen %s exists, not translating", name);
} else
*/
if (!file_exists(new_name)) {
LD_LOG(kLogDlopen, "dlopen %s does not exist, not translating",
new_name);
} else {
LD_LOG(kLogDlopen, "dlopen translation accepted: using %s", new_name);
name = new_name;
}
}
// End Workaround for dlopen(/system/lib/<soname>) when .so is in /apex.
std::string asan_name_holder;
const char* translated_name = name;
if (g_is_asan && translated_name != nullptr && translated_name[0] == '/') {
char original_path[PATH_MAX];
if (realpath(name, original_path) != nullptr) {
asan_name_holder = std::string(kAsanLibDirPrefix) + original_path;
if (file_exists(asan_name_holder.c_str())) {
soinfo* si = nullptr;
if (find_loaded_library_by_realpath(ns, original_path, true, &si)) {
PRINT("linker_asan dlopen NOT translating \"%s\" -> \"%s\": library already loaded", name,
asan_name_holder.c_str());
} else {
PRINT("linker_asan dlopen translating \"%s\" -> \"%s\"", name, translated_name);
translated_name = asan_name_holder.c_str();
}
}
}
}
ProtectedDataGuard guard;
soinfo* si = find_library(ns, translated_name, flags, extinfo, caller);
loading_trace.End();
if (si != nullptr) {
void* handle = si->to_handle();
LD_LOG(kLogDlopen,
"... dlopen calling constructors: realpath=\"%s\", soname=\"%s\", handle=%p",
si->get_realpath(), si->get_soname(), handle);
si->call_constructors();
failure_guard.Disable();
LD_LOG(kLogDlopen,
"... dlopen successful: realpath=\"%s\", soname=\"%s\", handle=%p",
si->get_realpath(), si->get_soname(), handle);
return handle;
}
return nullptr;
}
int do_dladdr(const void* addr, Dl_info* info) {
// Determine if this address can be found in any library currently mapped.
soinfo* si = find_containing_library(addr);
if (si == nullptr) {
return 0;
}
memset(info, 0, sizeof(Dl_info));
info->dli_fname = si->get_realpath();
// Address at which the shared object is loaded.
info->dli_fbase = reinterpret_cast<void*>(si->base);
// Determine if any symbol in the library contains the specified address.
ElfW(Sym)* sym = si->find_symbol_by_address(addr);
if (sym != nullptr) {
info->dli_sname = si->get_string(sym->st_name);
info->dli_saddr = reinterpret_cast<void*>(si->resolve_symbol_address(sym));
}
return 1;
}
static soinfo* soinfo_from_handle(void* handle) {
if ((reinterpret_cast<uintptr_t>(handle) & 1) != 0) {
auto it = g_soinfo_handles_map.find(reinterpret_cast<uintptr_t>(handle));
if (it == g_soinfo_handles_map.end()) {
return nullptr;
} else {
return it->second;
}
}
return static_cast<soinfo*>(handle);
}
bool do_dlsym(void* handle,
const char* sym_name,
const char* sym_ver,
const void* caller_addr,
void** symbol) {
ScopedTrace trace("dlsym");
#if !defined(__LP64__)
if (handle == nullptr) {
DL_ERR("dlsym failed: library handle is null");
return false;
}
#endif
soinfo* found = nullptr;
const ElfW(Sym)* sym = nullptr;
soinfo* caller = find_containing_library(caller_addr);
android_namespace_t* ns = get_caller_namespace(caller);
soinfo* si = nullptr;
if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) {
si = soinfo_from_handle(handle);
}
LD_LOG(kLogDlsym,
"dlsym(handle=%p(\"%s\"), sym_name=\"%s\", sym_ver=\"%s\", caller=\"%s\", caller_ns=%s@%p) ...",
handle,
si != nullptr ? si->get_realpath() : "n/a",
sym_name,
sym_ver,
caller == nullptr ? "(null)" : caller->get_realpath(),
ns == nullptr ? "(null)" : ns->get_name(),
ns);
auto failure_guard = android::base::make_scope_guard(
[&]() { LD_LOG(kLogDlsym, "... dlsym failed: %s", linker_get_error_buffer()); });
if (sym_name == nullptr) {
DL_ERR("dlsym failed: symbol name is null");
return false;
}
version_info vi_instance;
version_info* vi = nullptr;
if (sym_ver != nullptr) {
vi_instance.name = sym_ver;
vi_instance.elf_hash = calculate_elf_hash(sym_ver);
vi = &vi_instance;
}
if (handle == RTLD_DEFAULT || handle == RTLD_NEXT) {
sym = dlsym_linear_lookup(ns, sym_name, vi, &found, caller, handle);
} else {
if (si == nullptr) {
DL_ERR("dlsym failed: invalid handle: %p", handle);
return false;
}
sym = dlsym_handle_lookup(si, &found, sym_name, vi);
}
if (sym != nullptr) {
uint32_t bind = ELF_ST_BIND(sym->st_info);
uint32_t type = ELF_ST_TYPE(sym->st_info);
if ((bind == STB_GLOBAL || bind == STB_WEAK) && sym->st_shndx != 0) {
if (type == STT_TLS) {
// For a TLS symbol, dlsym returns the address of the current thread's
// copy of the symbol. This function may allocate a DTV and/or storage
// for the source TLS module. (Allocating a DTV isn't necessary if the
// symbol is part of static TLS, but it's simpler to reuse
// __tls_get_addr.)
soinfo_tls* tls_module = found->get_tls();
if (tls_module == nullptr) {
DL_ERR("TLS symbol \"%s\" in solib \"%s\" with no TLS segment",
sym_name, found->get_realpath());
return false;
}
const TlsIndex ti { tls_module->module_id, sym->st_value };
*symbol = TLS_GET_ADDR(&ti);
} else {
*symbol = reinterpret_cast<void*>(found->resolve_symbol_address(sym));
}
failure_guard.Disable();
LD_LOG(kLogDlsym,
"... dlsym successful: sym_name=\"%s\", sym_ver=\"%s\", found in=\"%s\", address=%p",
sym_name, sym_ver, found->get_soname(), *symbol);
return true;
}
DL_ERR("symbol \"%s\" found but not global", symbol_display_name(sym_name, sym_ver).c_str());
return false;
}
DL_ERR("undefined symbol: %s", symbol_display_name(sym_name, sym_ver).c_str());
return false;
}
int do_dlclose(void* handle) {
ScopedTrace trace("dlclose");
ProtectedDataGuard guard;
soinfo* si = soinfo_from_handle(handle);
if (si == nullptr) {
DL_ERR("invalid handle: %p", handle);
return -1;
}
LD_LOG(kLogDlopen,
"dlclose(handle=%p, realpath=\"%s\"@%p) ...",
handle,
si->get_realpath(),
si);
soinfo_unload(si);
LD_LOG(kLogDlopen,
"dlclose(handle=%p) ... done",
handle);
return 0;
}
bool init_anonymous_namespace(const char* shared_lib_sonames, const char* library_search_path) {
if (g_anonymous_namespace_initialized) {
DL_ERR("anonymous namespace has already been initialized.");
return false;
}
ProtectedDataGuard guard;
// create anonymous namespace
// When the caller is nullptr - create_namespace will take global group
// from the anonymous namespace, which is fine because anonymous namespace
// is still pointing to the default one.
android_namespace_t* anon_ns =
create_namespace(nullptr,
"(anonymous)",
nullptr,
library_search_path,
ANDROID_NAMESPACE_TYPE_ISOLATED,
nullptr,
&g_default_namespace);
if (anon_ns == nullptr) {
return false;
}
if (!link_namespaces(anon_ns, &g_default_namespace, shared_lib_sonames)) {
return false;
}
g_anonymous_namespace = anon_ns;
g_anonymous_namespace_initialized = true;
return true;
}
static void add_soinfos_to_namespace(const soinfo_list_t& soinfos, android_namespace_t* ns) {
ns->add_soinfos(soinfos);
for (auto si : soinfos) {
si->add_secondary_namespace(ns);
}
}
android_namespace_t* create_namespace(const void* caller_addr,
const char* name,
const char* ld_library_path,
const char* default_library_path,
uint64_t type,
const char* permitted_when_isolated_path,
android_namespace_t* parent_namespace) {
if (parent_namespace == nullptr) {
// if parent_namespace is nullptr -> set it to the caller namespace
soinfo* caller_soinfo = find_containing_library(caller_addr);
parent_namespace = caller_soinfo != nullptr ?
caller_soinfo->get_primary_namespace() :
g_anonymous_namespace;
}
ProtectedDataGuard guard;
std::vector<std::string> ld_library_paths;
std::vector<std::string> default_library_paths;
std::vector<std::string> permitted_paths;
parse_path(ld_library_path, ":", &ld_library_paths);
parse_path(default_library_path, ":", &default_library_paths);
parse_path(permitted_when_isolated_path, ":", &permitted_paths);
android_namespace_t* ns = new (g_namespace_allocator.alloc()) android_namespace_t();
ns->set_name(name);
ns->set_isolated((type & ANDROID_NAMESPACE_TYPE_ISOLATED) != 0);
ns->set_greylist_enabled((type & ANDROID_NAMESPACE_TYPE_GREYLIST_ENABLED) != 0);
if ((type & ANDROID_NAMESPACE_TYPE_SHARED) != 0) {
// append parent namespace paths.
std::copy(parent_namespace->get_ld_library_paths().begin(),
parent_namespace->get_ld_library_paths().end(),
back_inserter(ld_library_paths));
std::copy(parent_namespace->get_default_library_paths().begin(),
parent_namespace->get_default_library_paths().end(),
back_inserter(default_library_paths));
std::copy(parent_namespace->get_permitted_paths().begin(),
parent_namespace->get_permitted_paths().end(),
back_inserter(permitted_paths));
// If shared - clone the parent namespace
add_soinfos_to_namespace(parent_namespace->soinfo_list(), ns);
// and copy parent namespace links
for (auto& link : parent_namespace->linked_namespaces()) {
ns->add_linked_namespace(link.linked_namespace(), link.shared_lib_sonames(),
link.allow_all_shared_libs());
}
} else {
// If not shared - copy only the shared group
add_soinfos_to_namespace(parent_namespace->get_shared_group(), ns);
}
ns->set_ld_library_paths(std::move(ld_library_paths));
ns->set_default_library_paths(std::move(default_library_paths));
ns->set_permitted_paths(std::move(permitted_paths));
return ns;
}
bool link_namespaces(android_namespace_t* namespace_from,
android_namespace_t* namespace_to,
const char* shared_lib_sonames) {
if (namespace_to == nullptr) {
namespace_to = &g_default_namespace;
}
if (namespace_from == nullptr) {
DL_ERR("error linking namespaces: namespace_from is null.");
return false;
}
if (shared_lib_sonames == nullptr || shared_lib_sonames[0] == '\0') {
DL_ERR("error linking namespaces \"%s\"->\"%s\": the list of shared libraries is empty.",
namespace_from->get_name(), namespace_to->get_name());
return false;
}
auto sonames = android::base::Split(shared_lib_sonames, ":");
std::unordered_set<std::string> sonames_set(sonames.begin(), sonames.end());
ProtectedDataGuard guard;
namespace_from->add_linked_namespace(namespace_to, sonames_set, false);
return true;
}
bool link_namespaces_all_libs(android_namespace_t* namespace_from,
android_namespace_t* namespace_to) {
if (namespace_from == nullptr) {
DL_ERR("error linking namespaces: namespace_from is null.");
return false;
}
if (namespace_to == nullptr) {
DL_ERR("error linking namespaces: namespace_to is null.");
return false;
}
ProtectedDataGuard guard;
namespace_from->add_linked_namespace(namespace_to, std::unordered_set<std::string>(), true);
return true;
}
ElfW(Addr) call_ifunc_resolver(ElfW(Addr) resolver_addr) {
typedef ElfW(Addr) (*ifunc_resolver_t)(void);
ifunc_resolver_t ifunc_resolver = reinterpret_cast<ifunc_resolver_t>(resolver_addr);
ElfW(Addr) ifunc_addr = ifunc_resolver();
TRACE_TYPE(RELO, "Called ifunc_resolver@%p. The result is %p",
ifunc_resolver, reinterpret_cast<void*>(ifunc_addr));
return ifunc_addr;
}
const version_info* VersionTracker::get_version_info(ElfW(Versym) source_symver) const {
if (source_symver < 2 ||
source_symver >= version_infos.size() ||
version_infos[source_symver].name == nullptr) {
return nullptr;
}
return &version_infos[source_symver];
}
void VersionTracker::add_version_info(size_t source_index,
ElfW(Word) elf_hash,
const char* ver_name,
const soinfo* target_si) {
if (source_index >= version_infos.size()) {
version_infos.resize(source_index+1);
}
version_infos[source_index].elf_hash = elf_hash;
version_infos[source_index].name = ver_name;
version_infos[source_index].target_si = target_si;
}
bool VersionTracker::init_verneed(const soinfo* si_from) {
uintptr_t verneed_ptr = si_from->get_verneed_ptr();
if (verneed_ptr == 0) {
return true;
}
size_t verneed_cnt = si_from->get_verneed_cnt();
for (size_t i = 0, offset = 0; i<verneed_cnt; ++i) {
const ElfW(Verneed)* verneed = reinterpret_cast<ElfW(Verneed)*>(verneed_ptr + offset);
size_t vernaux_offset = offset + verneed->vn_aux;
offset += verneed->vn_next;
if (verneed->vn_version != 1) {
DL_ERR("unsupported verneed[%zd] vn_version: %d (expected 1)", i, verneed->vn_version);
return false;
}
const char* target_soname = si_from->get_string(verneed->vn_file);
// find it in dependencies
soinfo* target_si = si_from->get_children().find_if([&](const soinfo* si) {
return si->get_soname() != nullptr && strcmp(si->get_soname(), target_soname) == 0;
});
if (target_si == nullptr) {
DL_ERR("cannot find \"%s\" from verneed[%zd] in DT_NEEDED list for \"%s\"",
target_soname, i, si_from->get_realpath());
return false;
}
for (size_t j = 0; j<verneed->vn_cnt; ++j) {
const ElfW(Vernaux)* vernaux = reinterpret_cast<ElfW(Vernaux)*>(verneed_ptr + vernaux_offset);
vernaux_offset += vernaux->vna_next;
const ElfW(Word) elf_hash = vernaux->vna_hash;
const char* ver_name = si_from->get_string(vernaux->vna_name);
ElfW(Half) source_index = vernaux->vna_other;
add_version_info(source_index, elf_hash, ver_name, target_si);
}
}
return true;
}
template <typename F>
static bool for_each_verdef(const soinfo* si, F functor) {
if (!si->has_min_version(2)) {
return true;
}
uintptr_t verdef_ptr = si->get_verdef_ptr();
if (verdef_ptr == 0) {
return true;
}
size_t offset = 0;
size_t verdef_cnt = si->get_verdef_cnt();
for (size_t i = 0; i<verdef_cnt; ++i) {
const ElfW(Verdef)* verdef = reinterpret_cast<ElfW(Verdef)*>(verdef_ptr + offset);
size_t verdaux_offset = offset + verdef->vd_aux;
offset += verdef->vd_next;
if (verdef->vd_version != 1) {
DL_ERR("unsupported verdef[%zd] vd_version: %d (expected 1) library: %s",
i, verdef->vd_version, si->get_realpath());
return false;
}
if ((verdef->vd_flags & VER_FLG_BASE) != 0) {
// "this is the version of the file itself. It must not be used for
// matching a symbol. It can be used to match references."
//
// http://www.akkadia.org/drepper/symbol-versioning
continue;
}
if (verdef->vd_cnt == 0) {
DL_ERR("invalid verdef[%zd] vd_cnt == 0 (version without a name)", i);
return false;
}
const ElfW(Verdaux)* verdaux = reinterpret_cast<ElfW(Verdaux)*>(verdef_ptr + verdaux_offset);
if (functor(i, verdef, verdaux) == true) {
break;
}
}
return true;
}
bool find_verdef_version_index(const soinfo* si, const version_info* vi, ElfW(Versym)* versym) {
if (vi == nullptr) {
*versym = kVersymNotNeeded;
return true;
}
*versym = kVersymGlobal;
return for_each_verdef(si,
[&](size_t, const ElfW(Verdef)* verdef, const ElfW(Verdaux)* verdaux) {
if (verdef->vd_hash == vi->elf_hash &&
strcmp(vi->name, si->get_string(verdaux->vda_name)) == 0) {
*versym = verdef->vd_ndx;
return true;
}
return false;
}
);
}
bool VersionTracker::init_verdef(const soinfo* si_from) {
return for_each_verdef(si_from,
[&](size_t, const ElfW(Verdef)* verdef, const ElfW(Verdaux)* verdaux) {
add_version_info(verdef->vd_ndx, verdef->vd_hash,
si_from->get_string(verdaux->vda_name), si_from);
return false;
}
);
}
bool VersionTracker::init(const soinfo* si_from) {
if (!si_from->has_min_version(2)) {
return true;
}
return init_verneed(si_from) && init_verdef(si_from);
}
// TODO (dimitry): Methods below need to be moved out of soinfo
// and in more isolated file in order minimize dependencies on
// unnecessary object in the linker binary. Consider making them
// independent from soinfo (?).
bool soinfo::lookup_version_info(const VersionTracker& version_tracker, ElfW(Word) sym,
const char* sym_name, const version_info** vi) {
const ElfW(Versym)* sym_ver_ptr = get_versym(sym);
ElfW(Versym) sym_ver = sym_ver_ptr == nullptr ? 0 : *sym_ver_ptr;
if (sym_ver != VER_NDX_LOCAL && sym_ver != VER_NDX_GLOBAL) {
*vi = version_tracker.get_version_info(sym_ver);
if (*vi == nullptr) {
DL_ERR("cannot find verneed/verdef for version index=%d "
"referenced by symbol \"%s\" at \"%s\"", sym_ver, sym_name, get_realpath());
return false;
}
} else {
// there is no version info
*vi = nullptr;
}
return true;
}
void soinfo::apply_relr_reloc(ElfW(Addr) offset) {
ElfW(Addr) address = offset + load_bias;
*reinterpret_cast<ElfW(Addr)*>(address) += load_bias;
}
// Process relocations in SHT_RELR section (experimental).
// Details of the encoding are described in this post:
// https://groups.google.com/d/msg/generic-abi/bX460iggiKg/Pi9aSwwABgAJ
bool soinfo::relocate_relr() {
ElfW(Relr)* begin = relr_;
ElfW(Relr)* end = relr_ + relr_count_;
constexpr size_t wordsize = sizeof(ElfW(Addr));
ElfW(Addr) base = 0;
for (ElfW(Relr)* current = begin; current < end; ++current) {
ElfW(Relr) entry = *current;
ElfW(Addr) offset;
if ((entry&1) == 0) {
// Even entry: encodes the offset for next relocation.
offset = static_cast<ElfW(Addr)>(entry);
apply_relr_reloc(offset);
// Set base offset for subsequent bitmap entries.
base = offset + wordsize;
continue;
}
// Odd entry: encodes bitmap for relocations starting at base.
offset = base;
while (entry != 0) {
entry >>= 1;
if ((entry&1) != 0) {
apply_relr_reloc(offset);
}
offset += wordsize;
}
// Advance base offset by 63 words for 64-bit platforms,
// or 31 words for 32-bit platforms.
base += (8*wordsize - 1) * wordsize;
}
return true;
}
#if !defined(__mips__)
#if defined(USE_RELA)
static ElfW(Addr) get_addend(ElfW(Rela)* rela, ElfW(Addr) reloc_addr __unused) {
return rela->r_addend;
}
#else
static ElfW(Addr) get_addend(ElfW(Rel)* rel, ElfW(Addr) reloc_addr) {
if (ELFW(R_TYPE)(rel->r_info) == R_GENERIC_RELATIVE ||
ELFW(R_TYPE)(rel->r_info) == R_GENERIC_IRELATIVE ||
ELFW(R_TYPE)(rel->r_info) == R_GENERIC_TLS_DTPREL ||
ELFW(R_TYPE)(rel->r_info) == R_GENERIC_TLS_TPREL) {
return *reinterpret_cast<ElfW(Addr)*>(reloc_addr);
}
return 0;
}
#endif
static bool is_tls_reloc(ElfW(Word) type) {
switch (type) {
case R_GENERIC_TLS_DTPMOD:
case R_GENERIC_TLS_DTPREL:
case R_GENERIC_TLS_TPREL:
case R_GENERIC_TLSDESC:
return true;
default:
return false;
}
}
template<typename ElfRelIteratorT>
bool soinfo::relocate(const VersionTracker& version_tracker, ElfRelIteratorT&& rel_iterator,
const soinfo_list_t& global_group, const soinfo_list_t& local_group) {
const size_t tls_tp_base = __libc_shared_globals()->static_tls_layout.offset_thread_pointer();
std::vector<std::pair<TlsDescriptor*, size_t>> deferred_tlsdesc_relocs;
for (size_t idx = 0; rel_iterator.has_next(); ++idx) {
const auto rel = rel_iterator.next();
if (rel == nullptr) {
return false;
}
ElfW(Word) type = ELFW(R_TYPE)(rel->r_info);
ElfW(Word) sym = ELFW(R_SYM)(rel->r_info);
ElfW(Addr) reloc = static_cast<ElfW(Addr)>(rel->r_offset + load_bias);
ElfW(Addr) sym_addr = 0;
const char* sym_name = nullptr;
ElfW(Addr) addend = get_addend(rel, reloc);
DEBUG("Processing \"%s\" relocation at index %zd", get_realpath(), idx);
if (type == R_GENERIC_NONE) {
continue;
}
const ElfW(Sym)* s = nullptr;
soinfo* lsi = nullptr;
if (sym == 0) {
// By convention in ld.bfd and lld, an omitted symbol on a TLS relocation
// is a reference to the current module.
if (is_tls_reloc(type)) {
lsi = this;
}
} else if (ELF_ST_BIND(symtab_[sym].st_info) == STB_LOCAL && is_tls_reloc(type)) {
// In certain situations, the Gold linker accesses a TLS symbol using a
// relocation to an STB_LOCAL symbol in .dynsym of either STT_SECTION or
// STT_TLS type. Bionic doesn't support these relocations, so issue an
// error. References:
// - https://groups.google.com/d/topic/generic-abi/dJ4_Y78aQ2M/discussion
// - https://sourceware.org/bugzilla/show_bug.cgi?id=17699
s = &symtab_[sym];
sym_name = get_string(s->st_name);
DL_ERR("unexpected TLS reference to local symbol \"%s\": "
"sym type %d, rel type %u (idx %zu of \"%s\")",
sym_name, ELF_ST_TYPE(s->st_info), type, idx, get_realpath());
return false;
} else {
sym_name = get_string(symtab_[sym].st_name);
const version_info* vi = nullptr;
if (!lookup_version_info(version_tracker, sym, sym_name, &vi)) {
return false;
}
if (!soinfo_do_lookup(this, sym_name, vi, &lsi, global_group, local_group, &s)) {
return false;
}
if (s == nullptr) {
// We only allow an undefined symbol if this is a weak reference...
s = &symtab_[sym];
if (ELF_ST_BIND(s->st_info) != STB_WEAK) {
DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, get_realpath());
return false;
}
/* IHI0044C AAELF 4.5.1.1:
Libraries are not searched to resolve weak references.
It is not an error for a weak reference to remain unsatisfied.
During linking, the value of an undefined weak reference is:
- Zero if the relocation type is absolute
- The address of the place if the relocation is pc-relative
- The address of nominal base address if the relocation
type is base-relative.
*/
switch (type) {
case R_GENERIC_JUMP_SLOT:
case R_GENERIC_GLOB_DAT:
case R_GENERIC_RELATIVE:
case R_GENERIC_IRELATIVE:
case R_GENERIC_TLS_DTPMOD:
case R_GENERIC_TLS_DTPREL:
case R_GENERIC_TLS_TPREL:
case R_GENERIC_TLSDESC:
#if defined(__aarch64__)
case R_AARCH64_ABS64:
case R_AARCH64_ABS32:
case R_AARCH64_ABS16:
#elif defined(__x86_64__)
case R_X86_64_32:
case R_X86_64_64:
#elif defined(__arm__)
case R_ARM_ABS32:
#elif defined(__i386__)
case R_386_32:
#endif
/*
* The sym_addr was initialized to be zero above, or the relocation
* code below does not care about value of sym_addr.
* No need to do anything.
*/
break;
#if defined(__x86_64__)
case R_X86_64_PC32:
sym_addr = reloc;
break;
#elif defined(__i386__)
case R_386_PC32:
sym_addr = reloc;
break;
#endif
default:
DL_ERR("unknown weak reloc type %d @ %p (%zu)", type, rel, idx);
return false;
}
} else { // We got a definition.
#if !defined(__LP64__)
// When relocating dso with text_relocation .text segment is
// not executable. We need to restore elf flags before resolving
// STT_GNU_IFUNC symbol.
bool protect_segments = has_text_relocations &&
lsi == this &&
ELF_ST_TYPE(s->st_info) == STT_GNU_IFUNC;
if (protect_segments) {
if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) {
DL_ERR("can't protect segments for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
}
#endif
if (is_tls_reloc(type)) {
if (ELF_ST_TYPE(s->st_info) != STT_TLS) {
DL_ERR("reference to non-TLS symbol \"%s\" from TLS relocation in \"%s\"",
sym_name, get_realpath());
return false;
}
if (lsi->get_tls() == nullptr) {
DL_ERR("TLS relocation refers to symbol \"%s\" in solib \"%s\" with no TLS segment",
sym_name, lsi->get_realpath());
return false;
}
sym_addr = s->st_value;
} else {
if (ELF_ST_TYPE(s->st_info) == STT_TLS) {
DL_ERR("reference to TLS symbol \"%s\" from non-TLS relocation in \"%s\"",
sym_name, get_realpath());
return false;
}
sym_addr = lsi->resolve_symbol_address(s);
}
#if !defined(__LP64__)
if (protect_segments) {
if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) {
DL_ERR("can't unprotect loadable segments for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
}
#endif
}
count_relocation(kRelocSymbol);
}
switch (type) {
case R_GENERIC_JUMP_SLOT:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO JMP_SLOT %16p <- %16p %s\n",
reinterpret_cast<void*>(reloc),
reinterpret_cast<void*>(sym_addr + addend), sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) = (sym_addr + addend);
break;
case R_GENERIC_GLOB_DAT:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO GLOB_DAT %16p <- %16p %s\n",
reinterpret_cast<void*>(reloc),
reinterpret_cast<void*>(sym_addr + addend), sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) = (sym_addr + addend);
break;
case R_GENERIC_RELATIVE:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO RELATIVE %16p <- %16p\n",
reinterpret_cast<void*>(reloc),
reinterpret_cast<void*>(load_bias + addend));
*reinterpret_cast<ElfW(Addr)*>(reloc) = (load_bias + addend);
break;
case R_GENERIC_IRELATIVE:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO IRELATIVE %16p <- %16p\n",
reinterpret_cast<void*>(reloc),
reinterpret_cast<void*>(load_bias + addend));
{
#if !defined(__LP64__)
// When relocating dso with text_relocation .text segment is
// not executable. We need to restore elf flags for this
// particular call.
if (has_text_relocations) {
if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) {
DL_ERR("can't protect segments for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
}
#endif
ElfW(Addr) ifunc_addr = call_ifunc_resolver(load_bias + addend);
#if !defined(__LP64__)
// Unprotect it afterwards...
if (has_text_relocations) {
if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) {
DL_ERR("can't unprotect loadable segments for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
}
#endif
*reinterpret_cast<ElfW(Addr)*>(reloc) = ifunc_addr;
}
break;
case R_GENERIC_TLS_TPREL:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
{
ElfW(Addr) tpoff = 0;
if (lsi == nullptr) {
// Unresolved weak relocation. Leave tpoff at 0 to resolve
// &weak_tls_symbol to __get_tls().
} else {
CHECK(lsi->get_tls() != nullptr); // We rejected a missing TLS segment above.
const TlsModule& mod = get_tls_module(lsi->get_tls()->module_id);
if (mod.static_offset != SIZE_MAX) {
tpoff += mod.static_offset - tls_tp_base;
} else {
DL_ERR("TLS symbol \"%s\" in dlopened \"%s\" referenced from \"%s\" using IE access model",
sym_name, lsi->get_realpath(), get_realpath());
return false;
}
}
tpoff += sym_addr + addend;
TRACE_TYPE(RELO, "RELO TLS_TPREL %16p <- %16p %s\n",
reinterpret_cast<void*>(reloc),
reinterpret_cast<void*>(tpoff), sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) = tpoff;
}
break;
#if !defined(__aarch64__)
// Omit support for DTPMOD/DTPREL on arm64, at least until
// http://b/123385182 is fixed. arm64 uses TLSDESC instead.
case R_GENERIC_TLS_DTPMOD:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
{
size_t module_id = 0;
if (lsi == nullptr) {
// Unresolved weak relocation. Evaluate the module ID to 0.
} else {
CHECK(lsi->get_tls() != nullptr); // We rejected a missing TLS segment above.
module_id = lsi->get_tls()->module_id;
}
TRACE_TYPE(RELO, "RELO TLS_DTPMOD %16p <- %zu %s\n",
reinterpret_cast<void*>(reloc), module_id, sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) = module_id;
}
break;
case R_GENERIC_TLS_DTPREL:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO TLS_DTPREL %16p <- %16p %s\n",
reinterpret_cast<void*>(reloc),
reinterpret_cast<void*>(sym_addr + addend), sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) = sym_addr + addend;
break;
#endif // !defined(__aarch64__)
#if defined(__aarch64__)
// Bionic currently only implements TLSDESC for arm64. This implementation should work with
// other architectures, as long as the resolver functions are implemented.
case R_GENERIC_TLSDESC:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
{
TlsDescriptor* desc = reinterpret_cast<TlsDescriptor*>(reloc);
if (lsi == nullptr) {
// Unresolved weak relocation.
desc->func = tlsdesc_resolver_unresolved_weak;
desc->arg = addend;
TRACE_TYPE(RELO, "RELO TLSDESC %16p <- unresolved weak 0x%zx %s\n",
reinterpret_cast<void*>(reloc), static_cast<size_t>(addend), sym_name);
} else {
CHECK(lsi->get_tls() != nullptr); // We rejected a missing TLS segment above.
size_t module_id = lsi->get_tls()->module_id;
const TlsModule& mod = get_tls_module(module_id);
if (mod.static_offset != SIZE_MAX) {
desc->func = tlsdesc_resolver_static;
desc->arg = mod.static_offset - tls_tp_base + sym_addr + addend;
TRACE_TYPE(RELO, "RELO TLSDESC %16p <- static (0x%zx - 0x%zx + 0x%zx + 0x%zx) %s\n",
reinterpret_cast<void*>(reloc), mod.static_offset, tls_tp_base,
static_cast<size_t>(sym_addr), static_cast<size_t>(addend), sym_name);
} else {
tlsdesc_args_.push_back({
.generation = mod.first_generation,
.index.module_id = module_id,
.index.offset = sym_addr + addend,
});
// Defer the TLSDESC relocation until the address of the TlsDynamicResolverArg object
// is finalized.
deferred_tlsdesc_relocs.push_back({ desc, tlsdesc_args_.size() - 1 });
const TlsDynamicResolverArg& desc_arg = tlsdesc_args_.back();
TRACE_TYPE(RELO, "RELO TLSDESC %16p <- dynamic (gen %zu, mod %zu, off %zu) %s",
reinterpret_cast<void*>(reloc), desc_arg.generation,
desc_arg.index.module_id, desc_arg.index.offset, sym_name);
}
}
}
break;
#endif // defined(__aarch64__)
#if defined(__aarch64__)
case R_AARCH64_ABS64:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO ABS64 %16llx <- %16llx %s\n",
reloc, sym_addr + addend, sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) = sym_addr + addend;
break;
case R_AARCH64_ABS32:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO ABS32 %16llx <- %16llx %s\n",
reloc, sym_addr + addend, sym_name);
{
const ElfW(Addr) min_value = static_cast<ElfW(Addr)>(INT32_MIN);
const ElfW(Addr) max_value = static_cast<ElfW(Addr)>(UINT32_MAX);
if ((min_value <= (sym_addr + addend)) &&
((sym_addr + addend) <= max_value)) {
*reinterpret_cast<ElfW(Addr)*>(reloc) = sym_addr + addend;
} else {
DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx",
sym_addr + addend, min_value, max_value);
return false;
}
}
break;
case R_AARCH64_ABS16:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO ABS16 %16llx <- %16llx %s\n",
reloc, sym_addr + addend, sym_name);
{
const ElfW(Addr) min_value = static_cast<ElfW(Addr)>(INT16_MIN);
const ElfW(Addr) max_value = static_cast<ElfW(Addr)>(UINT16_MAX);
if ((min_value <= (sym_addr + addend)) &&
((sym_addr + addend) <= max_value)) {
*reinterpret_cast<ElfW(Addr)*>(reloc) = (sym_addr + addend);
} else {
DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx",
sym_addr + addend, min_value, max_value);
return false;
}
}
break;
case R_AARCH64_PREL64:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO REL64 %16llx <- %16llx - %16llx %s\n",
reloc, sym_addr + addend, rel->r_offset, sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) = sym_addr + addend - rel->r_offset;
break;
case R_AARCH64_PREL32:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO REL32 %16llx <- %16llx - %16llx %s\n",
reloc, sym_addr + addend, rel->r_offset, sym_name);
{
const ElfW(Addr) min_value = static_cast<ElfW(Addr)>(INT32_MIN);
const ElfW(Addr) max_value = static_cast<ElfW(Addr)>(UINT32_MAX);
if ((min_value <= (sym_addr + addend - rel->r_offset)) &&
((sym_addr + addend - rel->r_offset) <= max_value)) {
*reinterpret_cast<ElfW(Addr)*>(reloc) = sym_addr + addend - rel->r_offset;
} else {
DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx",
sym_addr + addend - rel->r_offset, min_value, max_value);
return false;
}
}
break;
case R_AARCH64_PREL16:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO REL16 %16llx <- %16llx - %16llx %s\n",
reloc, sym_addr + addend, rel->r_offset, sym_name);
{
const ElfW(Addr) min_value = static_cast<ElfW(Addr)>(INT16_MIN);
const ElfW(Addr) max_value = static_cast<ElfW(Addr)>(UINT16_MAX);
if ((min_value <= (sym_addr + addend - rel->r_offset)) &&
((sym_addr + addend - rel->r_offset) <= max_value)) {
*reinterpret_cast<ElfW(Addr)*>(reloc) = sym_addr + addend - rel->r_offset;
} else {
DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx",
sym_addr + addend - rel->r_offset, min_value, max_value);
return false;
}
}
break;
case R_AARCH64_COPY:
/*
* ET_EXEC is not supported so this should not happen.
*
* http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
*
* Section 4.6.11 "Dynamic relocations"
* R_AARCH64_COPY may only appear in executable objects where e_type is
* set to ET_EXEC.
*/
DL_ERR("%s R_AARCH64_COPY relocations are not supported", get_realpath());
return false;
#elif defined(__x86_64__)
case R_X86_64_32:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO R_X86_64_32 %08zx <- +%08zx %s", static_cast<size_t>(reloc),
static_cast<size_t>(sym_addr), sym_name);
*reinterpret_cast<Elf32_Addr*>(reloc) = sym_addr + addend;
break;
case R_X86_64_64:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO R_X86_64_64 %08zx <- +%08zx %s", static_cast<size_t>(reloc),
static_cast<size_t>(sym_addr), sym_name);
*reinterpret_cast<Elf64_Addr*>(reloc) = sym_addr + addend;
break;
case R_X86_64_PC32:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO R_X86_64_PC32 %08zx <- +%08zx (%08zx - %08zx) %s",
static_cast<size_t>(reloc), static_cast<size_t>(sym_addr - reloc),
static_cast<size_t>(sym_addr), static_cast<size_t>(reloc), sym_name);
*reinterpret_cast<Elf32_Addr*>(reloc) = sym_addr + addend - reloc;
break;
#elif defined(__arm__)
case R_ARM_ABS32:
count_relocation(kRelocAbsolute);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO ABS %08x <- %08x %s", reloc, sym_addr, sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) += sym_addr;
break;
case R_ARM_REL32:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO REL32 %08x <- %08x - %08x %s",
reloc, sym_addr, rel->r_offset, sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) += sym_addr - rel->r_offset;
break;
case R_ARM_COPY:
/*
* ET_EXEC is not supported so this should not happen.
*
* http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044d/IHI0044D_aaelf.pdf
*
* Section 4.6.1.10 "Dynamic relocations"
* R_ARM_COPY may only appear in executable objects where e_type is
* set to ET_EXEC.
*/
DL_ERR("%s R_ARM_COPY relocations are not supported", get_realpath());
return false;
#elif defined(__i386__)
case R_386_32:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO R_386_32 %08x <- +%08x %s", reloc, sym_addr, sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) += sym_addr;
break;
case R_386_PC32:
count_relocation(kRelocRelative);
MARK(rel->r_offset);
TRACE_TYPE(RELO, "RELO R_386_PC32 %08x <- +%08x (%08x - %08x) %s",
reloc, (sym_addr - reloc), sym_addr, reloc, sym_name);
*reinterpret_cast<ElfW(Addr)*>(reloc) += (sym_addr - reloc);
break;
#endif
default:
DL_ERR("unknown reloc type %d @ %p (%zu)", type, rel, idx);
return false;
}
}
#if defined(__aarch64__)
// Bionic currently only implements TLSDESC for arm64.
for (const std::pair<TlsDescriptor*, size_t>& pair : deferred_tlsdesc_relocs) {
TlsDescriptor* desc = pair.first;
desc->func = tlsdesc_resolver_dynamic;
desc->arg = reinterpret_cast<size_t>(&tlsdesc_args_[pair.second]);
}
#endif
return true;
}
#endif // !defined(__mips__)
// An empty list of soinfos
static soinfo_list_t g_empty_list;
bool soinfo::prelink_image() {
/* Extract dynamic section */
ElfW(Word) dynamic_flags = 0;
phdr_table_get_dynamic_section(phdr, phnum, load_bias, &dynamic, &dynamic_flags);
/* We can't log anything until the linker is relocated */
bool relocating_linker = (flags_ & FLAG_LINKER) != 0;
if (!relocating_linker) {
INFO("[ Linking \"%s\" ]", get_realpath());
DEBUG("si->base = %p si->flags = 0x%08x", reinterpret_cast<void*>(base), flags_);
}
if (dynamic == nullptr) {
if (!relocating_linker) {
DL_ERR("missing PT_DYNAMIC in \"%s\"", get_realpath());
}
return false;
} else {
if (!relocating_linker) {
DEBUG("dynamic = %p", dynamic);
}
}
#if defined(__arm__)
(void) phdr_table_get_arm_exidx(phdr, phnum, load_bias,
&ARM_exidx, &ARM_exidx_count);
#endif
TlsSegment tls_segment;
if (__bionic_get_tls_segment(phdr, phnum, load_bias, &tls_segment)) {
if (!__bionic_check_tls_alignment(&tls_segment.alignment)) {
if (!relocating_linker) {
DL_ERR("TLS segment alignment in \"%s\" is not a power of 2: %zu",
get_realpath(), tls_segment.alignment);
}
return false;
}
tls_ = std::make_unique<soinfo_tls>();
tls_->segment = tls_segment;
}
// Extract useful information from dynamic section.
// Note that: "Except for the DT_NULL element at the end of the array,
// and the relative order of DT_NEEDED elements, entries may appear in any order."
//
// source: http://www.sco.com/developers/gabi/1998-04-29/ch5.dynamic.html
uint32_t needed_count = 0;
for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) {
DEBUG("d = %p, d[0](tag) = %p d[1](val) = %p",
d, reinterpret_cast<void*>(d->d_tag), reinterpret_cast<void*>(d->d_un.d_val));
switch (d->d_tag) {
case DT_SONAME:
// this is parsed after we have strtab initialized (see below).
break;
case DT_HASH:
nbucket_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[0];
nchain_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[1];
bucket_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr + 8);
chain_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr + 8 + nbucket_ * 4);
break;
case DT_GNU_HASH:
gnu_nbucket_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[0];
// skip symndx
gnu_maskwords_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[2];
gnu_shift2_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[3];
gnu_bloom_filter_ = reinterpret_cast<ElfW(Addr)*>(load_bias + d->d_un.d_ptr + 16);
gnu_bucket_ = reinterpret_cast<uint32_t*>(gnu_bloom_filter_ + gnu_maskwords_);
// amend chain for symndx = header[1]
gnu_chain_ = gnu_bucket_ + gnu_nbucket_ -
reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[1];
if (!powerof2(gnu_maskwords_)) {
DL_ERR("invalid maskwords for gnu_hash = 0x%x, in \"%s\" expecting power to two",
gnu_maskwords_, get_realpath());
return false;
}
--gnu_maskwords_;
flags_ |= FLAG_GNU_HASH;
break;
case DT_STRTAB:
strtab_ = reinterpret_cast<const char*>(load_bias + d->d_un.d_ptr);
break;
case DT_STRSZ:
strtab_size_ = d->d_un.d_val;
break;
case DT_SYMTAB:
symtab_ = reinterpret_cast<ElfW(Sym)*>(load_bias + d->d_un.d_ptr);
break;
case DT_SYMENT:
if (d->d_un.d_val != sizeof(ElfW(Sym))) {
DL_ERR("invalid DT_SYMENT: %zd in \"%s\"",
static_cast<size_t>(d->d_un.d_val), get_realpath());
return false;
}
break;
case DT_PLTREL:
#if defined(USE_RELA)
if (d->d_un.d_val != DT_RELA) {
DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_RELA", get_realpath());
return false;
}
#else
if (d->d_un.d_val != DT_REL) {
DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_REL", get_realpath());
return false;
}
#endif
break;
case DT_JMPREL:
#if defined(USE_RELA)
plt_rela_ = reinterpret_cast<ElfW(Rela)*>(load_bias + d->d_un.d_ptr);
#else
plt_rel_ = reinterpret_cast<ElfW(Rel)*>(load_bias + d->d_un.d_ptr);
#endif
break;
case DT_PLTRELSZ:
#if defined(USE_RELA)
plt_rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela));
#else
plt_rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel));
#endif
break;
case DT_PLTGOT:
#if defined(__mips__)
// Used by mips and mips64.
plt_got_ = reinterpret_cast<ElfW(Addr)**>(load_bias + d->d_un.d_ptr);
#endif
// Ignore for other platforms... (because RTLD_LAZY is not supported)
break;
case DT_DEBUG:
// Set the DT_DEBUG entry to the address of _r_debug for GDB
// if the dynamic table is writable
// FIXME: not working currently for N64
// The flags for the LOAD and DYNAMIC program headers do not agree.
// The LOAD section containing the dynamic table has been mapped as
// read-only, but the DYNAMIC header claims it is writable.
#if !(defined(__mips__) && defined(__LP64__))
if ((dynamic_flags & PF_W) != 0) {
d->d_un.d_val = reinterpret_cast<uintptr_t>(&_r_debug);
}
#endif
break;
#if defined(USE_RELA)
case DT_RELA:
rela_ = reinterpret_cast<ElfW(Rela)*>(load_bias + d->d_un.d_ptr);
break;
case DT_RELASZ:
rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela));
break;
case DT_ANDROID_RELA:
android_relocs_ = reinterpret_cast<uint8_t*>(load_bias + d->d_un.d_ptr);
break;
case DT_ANDROID_RELASZ:
android_relocs_size_ = d->d_un.d_val;
break;
case DT_ANDROID_REL:
DL_ERR("unsupported DT_ANDROID_REL in \"%s\"", get_realpath());
return false;
case DT_ANDROID_RELSZ:
DL_ERR("unsupported DT_ANDROID_RELSZ in \"%s\"", get_realpath());
return false;
case DT_RELAENT:
if (d->d_un.d_val != sizeof(ElfW(Rela))) {
DL_ERR("invalid DT_RELAENT: %zd", static_cast<size_t>(d->d_un.d_val));
return false;
}
break;
// Ignored (see DT_RELCOUNT comments for details).
case DT_RELACOUNT:
break;
case DT_REL:
DL_ERR("unsupported DT_REL in \"%s\"", get_realpath());
return false;
case DT_RELSZ:
DL_ERR("unsupported DT_RELSZ in \"%s\"", get_realpath());
return false;
#else
case DT_REL:
rel_ = reinterpret_cast<ElfW(Rel)*>(load_bias + d->d_un.d_ptr);
break;
case DT_RELSZ:
rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel));
break;
case DT_RELENT:
if (d->d_un.d_val != sizeof(ElfW(Rel))) {
DL_ERR("invalid DT_RELENT: %zd", static_cast<size_t>(d->d_un.d_val));
return false;
}
break;
case DT_ANDROID_REL:
android_relocs_ = reinterpret_cast<uint8_t*>(load_bias + d->d_un.d_ptr);
break;
case DT_ANDROID_RELSZ:
android_relocs_size_ = d->d_un.d_val;
break;
case DT_ANDROID_RELA:
DL_ERR("unsupported DT_ANDROID_RELA in \"%s\"", get_realpath());
return false;
case DT_ANDROID_RELASZ:
DL_ERR("unsupported DT_ANDROID_RELASZ in \"%s\"", get_realpath());
return false;
// "Indicates that all RELATIVE relocations have been concatenated together,
// and specifies the RELATIVE relocation count."
//
// TODO: Spec also mentions that this can be used to optimize relocation process;
// Not currently used by bionic linker - ignored.
case DT_RELCOUNT:
break;
case DT_RELA:
DL_ERR("unsupported DT_RELA in \"%s\"", get_realpath());
return false;
case DT_RELASZ:
DL_ERR("unsupported DT_RELASZ in \"%s\"", get_realpath());
return false;
#endif
case DT_RELR:
relr_ = reinterpret_cast<ElfW(Relr)*>(load_bias + d->d_un.d_ptr);
break;
case DT_RELRSZ:
relr_count_ = d->d_un.d_val / sizeof(ElfW(Relr));
break;
case DT_RELRENT:
if (d->d_un.d_val != sizeof(ElfW(Relr))) {
DL_ERR("invalid DT_RELRENT: %zd", static_cast<size_t>(d->d_un.d_val));
return false;
}
break;
// Ignored (see DT_RELCOUNT comments for details).
case DT_RELRCOUNT:
break;
case DT_INIT:
init_func_ = reinterpret_cast<linker_ctor_function_t>(load_bias + d->d_un.d_ptr);
DEBUG("%s constructors (DT_INIT) found at %p", get_realpath(), init_func_);
break;
case DT_FINI:
fini_func_ = reinterpret_cast<linker_dtor_function_t>(load_bias + d->d_un.d_ptr);
DEBUG("%s destructors (DT_FINI) found at %p", get_realpath(), fini_func_);
break;
case DT_INIT_ARRAY:
init_array_ = reinterpret_cast<linker_ctor_function_t*>(load_bias + d->d_un.d_ptr);
DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", get_realpath(), init_array_);
break;
case DT_INIT_ARRAYSZ:
init_array_count_ = static_cast<uint32_t>(d->d_un.d_val) / sizeof(ElfW(Addr));
break;
case DT_FINI_ARRAY:
fini_array_ = reinterpret_cast<linker_dtor_function_t*>(load_bias + d->d_un.d_ptr);
DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", get_realpath(), fini_array_);
break;
case DT_FINI_ARRAYSZ:
fini_array_count_ = static_cast<uint32_t>(d->d_un.d_val) / sizeof(ElfW(Addr));
break;
case DT_PREINIT_ARRAY:
preinit_array_ = reinterpret_cast<linker_ctor_function_t*>(load_bias + d->d_un.d_ptr);
DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", get_realpath(), preinit_array_);
break;
case DT_PREINIT_ARRAYSZ:
preinit_array_count_ = static_cast<uint32_t>(d->d_un.d_val) / sizeof(ElfW(Addr));
break;
case DT_TEXTREL:
#if defined(__LP64__)
DL_ERR("\"%s\" has text relocations", get_realpath());
return false;
#else
has_text_relocations = true;
break;
#endif
case DT_SYMBOLIC:
has_DT_SYMBOLIC = true;
break;
case DT_NEEDED:
++needed_count;
break;
case DT_FLAGS:
if (d->d_un.d_val & DF_TEXTREL) {
#if defined(__LP64__)
DL_ERR("\"%s\" has text relocations", get_realpath());
return false;
#else
has_text_relocations = true;
#endif
}
if (d->d_un.d_val & DF_SYMBOLIC) {
has_DT_SYMBOLIC = true;
}
break;
case DT_FLAGS_1:
set_dt_flags_1(d->d_un.d_val);
if ((d->d_un.d_val & ~SUPPORTED_DT_FLAGS_1) != 0) {
DL_WARN("Warning: \"%s\" has unsupported flags DT_FLAGS_1=%p "
"(ignoring unsupported flags)",
get_realpath(), reinterpret_cast<void*>(d->d_un.d_val));
}
break;
#if defined(__mips__)
case DT_MIPS_RLD_MAP:
// Set the DT_MIPS_RLD_MAP entry to the address of _r_debug for GDB.
{
r_debug** dp = reinterpret_cast<r_debug**>(load_bias + d->d_un.d_ptr);
*dp = &_r_debug;
}
break;
case DT_MIPS_RLD_MAP_REL:
// Set the DT_MIPS_RLD_MAP_REL entry to the address of _r_debug for GDB.
{
r_debug** dp = reinterpret_cast<r_debug**>(
reinterpret_cast<ElfW(Addr)>(d) + d->d_un.d_val);
*dp = &_r_debug;
}
break;
case DT_MIPS_RLD_VERSION:
case DT_MIPS_FLAGS:
case DT_MIPS_BASE_ADDRESS:
case DT_MIPS_UNREFEXTNO:
break;
case DT_MIPS_SYMTABNO:
mips_symtabno_ = d->d_un.d_val;
break;
case DT_MIPS_LOCAL_GOTNO:
mips_local_gotno_ = d->d_un.d_val;
break;
case DT_MIPS_GOTSYM:
mips_gotsym_ = d->d_un.d_val;
break;
#endif
// Ignored: "Its use has been superseded by the DF_BIND_NOW flag"
case DT_BIND_NOW:
break;
case DT_VERSYM:
versym_ = reinterpret_cast<ElfW(Versym)*>(load_bias + d->d_un.d_ptr);
break;
case DT_VERDEF:
verdef_ptr_ = load_bias + d->d_un.d_ptr;
break;
case DT_VERDEFNUM:
verdef_cnt_ = d->d_un.d_val;
break;
case DT_VERNEED:
verneed_ptr_ = load_bias + d->d_un.d_ptr;
break;
case DT_VERNEEDNUM:
verneed_cnt_ = d->d_un.d_val;
break;
case DT_RUNPATH:
// this is parsed after we have strtab initialized (see below).
break;
case DT_TLSDESC_GOT:
case DT_TLSDESC_PLT:
// These DT entries are used for lazy TLSDESC relocations. Bionic
// resolves everything eagerly, so these can be ignored.
break;
default:
if (!relocating_linker) {
const char* tag_name;
if (d->d_tag == DT_RPATH) {
tag_name = "DT_RPATH";
} else if (d->d_tag == DT_ENCODING) {
tag_name = "DT_ENCODING";
} else if (d->d_tag >= DT_LOOS && d->d_tag <= DT_HIOS) {
tag_name = "unknown OS-specific";
} else if (d->d_tag >= DT_LOPROC && d->d_tag <= DT_HIPROC) {
tag_name = "unknown processor-specific";
} else {
tag_name = "unknown";
}
DL_WARN("Warning: \"%s\" unused DT entry: %s (type %p arg %p) (ignoring)",
get_realpath(),
tag_name,
reinterpret_cast<void*>(d->d_tag),
reinterpret_cast<void*>(d->d_un.d_val));
}
break;
}
}
#if defined(__mips__) && !defined(__LP64__)
if (!mips_check_and_adjust_fp_modes()) {
return false;
}
#endif
DEBUG("si->base = %p, si->strtab = %p, si->symtab = %p",
reinterpret_cast<void*>(base), strtab_, symtab_);
// Sanity checks.
if (relocating_linker && needed_count != 0) {
DL_ERR("linker cannot have DT_NEEDED dependencies on other libraries");
return false;
}
if (nbucket_ == 0 && gnu_nbucket_ == 0) {
DL_ERR("empty/missing DT_HASH/DT_GNU_HASH in \"%s\" "
"(new hash type from the future?)", get_realpath());
return false;
}
if (strtab_ == nullptr) {
DL_ERR("empty/missing DT_STRTAB in \"%s\"", get_realpath());
return false;
}
if (symtab_ == nullptr) {
DL_ERR("empty/missing DT_SYMTAB in \"%s\"", get_realpath());
return false;
}
// second pass - parse entries relying on strtab
for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) {
switch (d->d_tag) {
case DT_SONAME:
set_soname(get_string(d->d_un.d_val));
break;
case DT_RUNPATH:
set_dt_runpath(get_string(d->d_un.d_val));
break;
}
}
// Before M release linker was using basename in place of soname.
// In the case when dt_soname is absent some apps stop working
// because they can't find dt_needed library by soname.
// This workaround should keep them working. (Applies only
// for apps targeting sdk version < M.) Make an exception for
// the main executable and linker; they do not need to have dt_soname.
// TODO: >= O the linker doesn't need this workaround.
if (soname_ == nullptr &&
this != solist_get_somain() &&
(flags_ & FLAG_LINKER) == 0 &&
get_application_target_sdk_version() < __ANDROID_API_M__) {
soname_ = basename(realpath_.c_str());
DL_WARN_documented_change(__ANDROID_API_M__,
"missing-soname-enforced-for-api-level-23",
"\"%s\" has no DT_SONAME (will use %s instead)",
get_realpath(), soname_);
// Don't call add_dlwarning because a missing DT_SONAME isn't important enough to show in the UI
}
return true;
}
bool soinfo::link_image(const soinfo_list_t& global_group, const soinfo_list_t& local_group,
const android_dlextinfo* extinfo, size_t* relro_fd_offset) {
if (is_image_linked()) {
// already linked.
return true;
}
local_group_root_ = local_group.front();
if (local_group_root_ == nullptr) {
local_group_root_ = this;
}
if ((flags_ & FLAG_LINKER) == 0 && local_group_root_ == this) {
target_sdk_version_ = get_application_target_sdk_version();
}
VersionTracker version_tracker;
if (!version_tracker.init(this)) {
return false;
}
#if !defined(__LP64__)
if (has_text_relocations) {
// Fail if app is targeting M or above.
int app_target_api_level = get_application_target_sdk_version();
if (app_target_api_level >= __ANDROID_API_M__) {
DL_ERR_AND_LOG("\"%s\" has text relocations (https://android.googlesource.com/platform/"
"bionic/+/master/android-changes-for-ndk-developers.md#Text-Relocations-"
"Enforced-for-API-level-23)", get_realpath());
return false;
}
// Make segments writable to allow text relocations to work properly. We will later call
// phdr_table_protect_segments() after all of them are applied.
DL_WARN_documented_change(__ANDROID_API_M__,
"Text-Relocations-Enforced-for-API-level-23",
"\"%s\" has text relocations",
get_realpath());
add_dlwarning(get_realpath(), "text relocations");
if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) {
DL_ERR("can't unprotect loadable segments for \"%s\": %s", get_realpath(), strerror(errno));
return false;
}
}
#endif
if (android_relocs_ != nullptr) {
// check signature
if (android_relocs_size_ > 3 &&
android_relocs_[0] == 'A' &&
android_relocs_[1] == 'P' &&
android_relocs_[2] == 'S' &&
android_relocs_[3] == '2') {
DEBUG("[ android relocating %s ]", get_realpath());
bool relocated = false;
const uint8_t* packed_relocs = android_relocs_ + 4;
const size_t packed_relocs_size = android_relocs_size_ - 4;
relocated = relocate(
version_tracker,
packed_reloc_iterator<sleb128_decoder>(
sleb128_decoder(packed_relocs, packed_relocs_size)),
global_group, local_group);
if (!relocated) {
return false;
}
} else {
DL_ERR("bad android relocation header.");
return false;
}
}
if (relr_ != nullptr) {
DEBUG("[ relocating %s relr ]", get_realpath());
if (!relocate_relr()) {
return false;
}
}
#if defined(USE_RELA)
if (rela_ != nullptr) {
DEBUG("[ relocating %s rela ]", get_realpath());
if (!relocate(version_tracker,
plain_reloc_iterator(rela_, rela_count_), global_group, local_group)) {
return false;
}
}
if (plt_rela_ != nullptr) {
DEBUG("[ relocating %s plt rela ]", get_realpath());
if (!relocate(version_tracker,
plain_reloc_iterator(plt_rela_, plt_rela_count_), global_group, local_group)) {
return false;
}
}
#else
if (rel_ != nullptr) {
DEBUG("[ relocating %s rel ]", get_realpath());
if (!relocate(version_tracker,
plain_reloc_iterator(rel_, rel_count_), global_group, local_group)) {
return false;
}
}
if (plt_rel_ != nullptr) {
DEBUG("[ relocating %s plt rel ]", get_realpath());
if (!relocate(version_tracker,
plain_reloc_iterator(plt_rel_, plt_rel_count_), global_group, local_group)) {
return false;
}
}
#endif
#if defined(__mips__)
if (!mips_relocate_got(version_tracker, global_group, local_group)) {
return false;
}
#endif
DEBUG("[ finished linking %s ]", get_realpath());
#if !defined(__LP64__)
if (has_text_relocations) {
// All relocations are done, we can protect our segments back to read-only.
if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) {
DL_ERR("can't protect segments for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
}
#endif
// We can also turn on GNU RELRO protection if we're not linking the dynamic linker
// itself --- it can't make system calls yet, and will have to call protect_relro later.
if (!is_linker() && !protect_relro()) {
return false;
}
/* Handle serializing/sharing the RELRO segment */
if (extinfo && (extinfo->flags & ANDROID_DLEXT_WRITE_RELRO)) {
if (phdr_table_serialize_gnu_relro(phdr, phnum, load_bias,
extinfo->relro_fd, relro_fd_offset) < 0) {
DL_ERR("failed serializing GNU RELRO section for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
} else if (extinfo && (extinfo->flags & ANDROID_DLEXT_USE_RELRO)) {
if (phdr_table_map_gnu_relro(phdr, phnum, load_bias,
extinfo->relro_fd, relro_fd_offset) < 0) {
DL_ERR("failed mapping GNU RELRO section for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
}
notify_gdb_of_load(this);
set_image_linked();
return true;
}
bool soinfo::protect_relro() {
if (phdr_table_protect_gnu_relro(phdr, phnum, load_bias) < 0) {
DL_ERR("can't enable GNU RELRO protection for \"%s\": %s",
get_realpath(), strerror(errno));
return false;
}
return true;
}
static std::vector<android_namespace_t*> init_default_namespace_no_config(bool is_asan) {
g_default_namespace.set_isolated(false);
auto default_ld_paths = is_asan ? kAsanDefaultLdPaths : kDefaultLdPaths;
char real_path[PATH_MAX];
std::vector<std::string> ld_default_paths;
for (size_t i = 0; default_ld_paths[i] != nullptr; ++i) {
if (realpath(default_ld_paths[i], real_path) != nullptr) {
ld_default_paths.push_back(real_path);
} else {
ld_default_paths.push_back(default_ld_paths[i]);
}
}
g_default_namespace.set_default_library_paths(std::move(ld_default_paths));
std::vector<android_namespace_t*> namespaces;
namespaces.push_back(&g_default_namespace);
return namespaces;
}
// return /apex/<name>/etc/ld.config.txt from /apex/<name>/bin/<exec>
static std::string get_ld_config_file_apex_path(const char* executable_path) {
std::vector<std::string> paths = android::base::Split(executable_path, "/");
if (paths.size() == 5 && paths[1] == "apex" && paths[3] == "bin") {
return std::string("/apex/") + paths[2] + "/etc/ld.config.txt";
}
return "";
}
static std::string get_ld_config_file_vndk_path() {
if (android::base::GetBoolProperty("ro.vndk.lite", false)) {
return kLdConfigVndkLiteFilePath;
}
std::string ld_config_file_vndk = kLdConfigFilePath;
size_t insert_pos = ld_config_file_vndk.find_last_of('.');
if (insert_pos == std::string::npos) {
insert_pos = ld_config_file_vndk.length();
}
ld_config_file_vndk.insert(insert_pos, Config::get_vndk_version_string('.'));
return ld_config_file_vndk;
}
static std::string get_ld_config_file_path(const char* executable_path) {
#ifdef USE_LD_CONFIG_FILE
// This is a debugging/testing only feature. Must not be available on
// production builds.
const char* ld_config_file_env = getenv("LD_CONFIG_FILE");
if (ld_config_file_env != nullptr && file_exists(ld_config_file_env)) {
return ld_config_file_env;
}
#endif
std::string path = get_ld_config_file_apex_path(executable_path);
if (!path.empty()) {
if (file_exists(path.c_str())) {
return path;
}
DL_WARN("Warning: couldn't read config file \"%s\" for \"%s\"",
path.c_str(), executable_path);
}
path = kLdConfigArchFilePath;
if (file_exists(path.c_str())) {
return path;
}
path = get_ld_config_file_vndk_path();
if (file_exists(path.c_str())) {
return path;
}
return kLdConfigFilePath;
}
std::vector<android_namespace_t*> init_default_namespaces(const char* executable_path) {
g_default_namespace.set_name("(default)");
soinfo* somain = solist_get_somain();
const char *interp = phdr_table_get_interpreter_name(somain->phdr, somain->phnum,
somain->load_bias);
const char* bname = (interp != nullptr) ? basename(interp) : nullptr;
g_is_asan = bname != nullptr &&
(strcmp(bname, "linker_asan") == 0 ||
strcmp(bname, "linker_asan64") == 0);
const Config* config = nullptr;
std::string error_msg;
std::string ld_config_file_path = get_ld_config_file_path(executable_path);
INFO("[ Reading linker config \"%s\" ]", ld_config_file_path.c_str());
if (!Config::read_binary_config(ld_config_file_path.c_str(),
executable_path,
g_is_asan,
&config,
&error_msg)) {
if (!error_msg.empty()) {
DL_WARN("Warning: couldn't read \"%s\" for \"%s\" (using default configuration instead): %s",
ld_config_file_path.c_str(),
executable_path,
error_msg.c_str());
}
config = nullptr;
}
if (config == nullptr) {
return init_default_namespace_no_config(g_is_asan);
}
const auto& namespace_configs = config->namespace_configs();
std::unordered_map<std::string, android_namespace_t*> namespaces;
// 1. Initialize default namespace
const NamespaceConfig* default_ns_config = config->default_namespace_config();
g_default_namespace.set_isolated(default_ns_config->isolated());
g_default_namespace.set_default_library_paths(default_ns_config->search_paths());
g_default_namespace.set_permitted_paths(default_ns_config->permitted_paths());
namespaces[default_ns_config->name()] = &g_default_namespace;
if (default_ns_config->visible()) {
g_exported_namespaces[default_ns_config->name()] = &g_default_namespace;
}
// 2. Initialize other namespaces
for (auto& ns_config : namespace_configs) {
if (namespaces.find(ns_config->name()) != namespaces.end()) {
continue;
}
android_namespace_t* ns = new (g_namespace_allocator.alloc()) android_namespace_t();
ns->set_name(ns_config->name());
ns->set_isolated(ns_config->isolated());
ns->set_default_library_paths(ns_config->search_paths());
ns->set_permitted_paths(ns_config->permitted_paths());
ns->set_whitelisted_libs(ns_config->whitelisted_libs());
namespaces[ns_config->name()] = ns;
if (ns_config->visible()) {
g_exported_namespaces[ns_config->name()] = ns;
}
}
// 3. Establish links between namespaces
for (auto& ns_config : namespace_configs) {
auto it_from = namespaces.find(ns_config->name());
CHECK(it_from != namespaces.end());
android_namespace_t* namespace_from = it_from->second;
for (const NamespaceLinkConfig& ns_link : ns_config->links()) {
auto it_to = namespaces.find(ns_link.ns_name());
CHECK(it_to != namespaces.end());
android_namespace_t* namespace_to = it_to->second;
if (ns_link.allow_all_shared_libs()) {
link_namespaces_all_libs(namespace_from, namespace_to);
} else {
link_namespaces(namespace_from, namespace_to, ns_link.shared_libs().c_str());
}
}
}
// we can no longer rely on the fact that libdl.so is part of default namespace
// this is why we want to add ld-android.so to all namespaces from ld.config.txt
soinfo* ld_android_so = solist_get_head();
// we also need vdso to be available for all namespaces (if present)
soinfo* vdso = solist_get_vdso();
for (auto it : namespaces) {
it.second->add_soinfo(ld_android_so);
if (vdso != nullptr) {
it.second->add_soinfo(vdso);
}
// somain and ld_preloads are added to these namespaces after LD_PRELOAD libs are linked
}
set_application_target_sdk_version(config->target_sdk_version());
std::vector<android_namespace_t*> created_namespaces;
created_namespaces.reserve(namespaces.size());
for (const auto& kv : namespaces) {
created_namespaces.push_back(kv.second);
}
return created_namespaces;
}
// This function finds a namespace exported in ld.config.txt by its name.
// A namespace can be exported by setting .visible property to true.
android_namespace_t* get_exported_namespace(const char* name) {
if (name == nullptr) {
return nullptr;
}
auto it = g_exported_namespaces.find(std::string(name));
if (it == g_exported_namespaces.end()) {
return nullptr;
}
return it->second;
}
void purge_unused_memory() {
// For now, we only purge the memory used by LoadTask because we know those
// are temporary objects.
//
// Purging other LinkerBlockAllocator hardly yields much because they hold
// information about namespaces and opened libraries, which are not freed
// when the control leaves the linker.
//
// Purging BionicAllocator may give us a few dirty pages back, but those pages
// would be already zeroed out, so they compress easily in ZRAM. Therefore,
// it is not worth munmap()'ing those pages.
TypeBasedAllocator<LoadTask>::purge();
}