platform_bionic/libc/bionic/pthread_create.cpp
Peter Collingbourne f1ed31ffe1 Increase the size of the shadow call stack guard region to 16MB.
Increasing the size of the guard region helps with the security of SCS,
but it's blocked on landing [1], which in turn is blocked on landing
[2]. Once those two CLs land we will be able to land this one.

[1] https://android-review.googlesource.com/c/platform/frameworks/av/+/837745
[2] https://android-review.googlesource.com/c/platform/bionic/+/818973

Bug: 118642754
Change-Id: I35409cbb6bfcd77e632567dd755376e345cfe67b
2019-01-31 14:37:34 -08:00

430 lines
16 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <pthread.h>
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/random.h>
#include <unistd.h>
#include "pthread_internal.h"
#include <async_safe/log.h>
#include "private/bionic_constants.h"
#include "private/bionic_defs.h"
#include "private/bionic_globals.h"
#include "private/bionic_macros.h"
#include "private/bionic_ssp.h"
#include "private/bionic_systrace.h"
#include "private/bionic_tls.h"
#include "private/ErrnoRestorer.h"
// x86 uses segment descriptors rather than a direct pointer to TLS.
#if defined(__i386__)
#include <asm/ldt.h>
void __init_user_desc(struct user_desc*, bool, void*);
#endif
// This code is used both by each new pthread and the code that initializes the main thread.
__attribute__((no_stack_protector))
void __init_tcb(bionic_tcb* tcb, pthread_internal_t* thread) {
#ifdef TLS_SLOT_SELF
// On x86, slot 0 must point to itself so code can read the thread pointer by
// loading %fs:0 or %gs:0.
tcb->tls_slot(TLS_SLOT_SELF) = &tcb->tls_slot(TLS_SLOT_SELF);
#endif
tcb->tls_slot(TLS_SLOT_THREAD_ID) = thread;
}
__attribute__((no_stack_protector))
void __init_tcb_stack_guard(bionic_tcb* tcb) {
// GCC looks in the TLS for the stack guard on x86, so copy it there from our global.
tcb->tls_slot(TLS_SLOT_STACK_GUARD) = reinterpret_cast<void*>(__stack_chk_guard);
}
__attribute__((no_stack_protector))
void __init_tcb_dtv(bionic_tcb* tcb) {
// Initialize the DTV slot to a statically-allocated empty DTV. The first
// access to a dynamic TLS variable allocates a new DTV.
static const TlsDtv zero_dtv = {};
__set_tcb_dtv(tcb, const_cast<TlsDtv*>(&zero_dtv));
}
void __init_bionic_tls_ptrs(bionic_tcb* tcb, bionic_tls* tls) {
tcb->thread()->bionic_tls = tls;
tcb->tls_slot(TLS_SLOT_BIONIC_TLS) = tls;
}
// Allocate a temporary bionic_tls that the dynamic linker's main thread can
// use while it's loading the initial set of ELF modules.
bionic_tls* __allocate_temp_bionic_tls() {
size_t allocation_size = __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE);
void* allocation = mmap(nullptr, allocation_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (allocation == MAP_FAILED) {
// Avoid strerror because it might need bionic_tls.
async_safe_fatal("failed to allocate bionic_tls: error %d", errno);
}
return static_cast<bionic_tls*>(allocation);
}
void __free_temp_bionic_tls(bionic_tls* tls) {
munmap(tls, __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE));
}
static void __init_alternate_signal_stack(pthread_internal_t* thread) {
// Create and set an alternate signal stack.
void* stack_base = mmap(nullptr, SIGNAL_STACK_SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (stack_base != MAP_FAILED) {
// Create a guard to catch stack overflows in signal handlers.
if (mprotect(stack_base, PTHREAD_GUARD_SIZE, PROT_NONE) == -1) {
munmap(stack_base, SIGNAL_STACK_SIZE);
return;
}
stack_t ss;
ss.ss_sp = reinterpret_cast<uint8_t*>(stack_base) + PTHREAD_GUARD_SIZE;
ss.ss_size = SIGNAL_STACK_SIZE - PTHREAD_GUARD_SIZE;
ss.ss_flags = 0;
sigaltstack(&ss, nullptr);
thread->alternate_signal_stack = stack_base;
// We can only use const static allocated string for mapped region name, as Android kernel
// uses the string pointer directly when dumping /proc/pid/maps.
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ss.ss_sp, ss.ss_size, "thread signal stack");
}
}
static void __init_shadow_call_stack(pthread_internal_t* thread __unused) {
#ifdef __aarch64__
// Allocate the stack and the guard region.
char* scs_guard_region = reinterpret_cast<char*>(
mmap(nullptr, SCS_GUARD_REGION_SIZE, 0, MAP_PRIVATE | MAP_ANON, -1, 0));
thread->shadow_call_stack_guard_region = scs_guard_region;
// The address is aligned to SCS_SIZE so that we only need to store the lower log2(SCS_SIZE) bits
// in jmp_buf.
char* scs_aligned_guard_region =
reinterpret_cast<char*>(align_up(reinterpret_cast<uintptr_t>(scs_guard_region), SCS_SIZE));
// We need to ensure that [scs_offset,scs_offset+SCS_SIZE) is in the guard region and that there
// is at least one unmapped page after the shadow call stack (to catch stack overflows). We can't
// use arc4random_uniform in init because /dev/urandom might not have been created yet.
size_t scs_offset =
(getpid() == 1) ? 0 : (arc4random_uniform(SCS_GUARD_REGION_SIZE / SCS_SIZE - 1) * SCS_SIZE);
// Make the stack readable and writable and store its address in register x18. This is
// deliberately the only place where the address is stored.
char *scs = scs_aligned_guard_region + scs_offset;
mprotect(scs, SCS_SIZE, PROT_READ | PROT_WRITE);
__asm__ __volatile__("mov x18, %0" ::"r"(scs));
#endif
}
void __init_additional_stacks(pthread_internal_t* thread) {
__init_alternate_signal_stack(thread);
__init_shadow_call_stack(thread);
}
int __init_thread(pthread_internal_t* thread) {
thread->cleanup_stack = nullptr;
if (__predict_true((thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) == 0)) {
atomic_init(&thread->join_state, THREAD_NOT_JOINED);
} else {
atomic_init(&thread->join_state, THREAD_DETACHED);
}
// Set the scheduling policy/priority of the thread if necessary.
bool need_set = true;
int policy;
sched_param param;
if ((thread->attr.flags & PTHREAD_ATTR_FLAG_INHERIT) != 0) {
// Unless the parent has SCHED_RESET_ON_FORK set, we've already inherited from the parent.
policy = sched_getscheduler(0);
need_set = ((policy & SCHED_RESET_ON_FORK) != 0);
if (need_set) {
if (policy == -1) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create sched_getscheduler failed: %s", strerror(errno));
return errno;
}
if (sched_getparam(0, &param) == -1) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create sched_getparam failed: %s", strerror(errno));
return errno;
}
}
} else {
policy = thread->attr.sched_policy;
param.sched_priority = thread->attr.sched_priority;
}
// Backwards compatibility: before P, Android didn't have pthread_attr_setinheritsched,
// and our behavior was neither of the POSIX behaviors.
if ((thread->attr.flags & (PTHREAD_ATTR_FLAG_INHERIT|PTHREAD_ATTR_FLAG_EXPLICIT)) == 0) {
need_set = (thread->attr.sched_policy != SCHED_NORMAL);
}
if (need_set) {
if (sched_setscheduler(thread->tid, policy, &param) == -1) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create sched_setscheduler(%d, {%d}) call failed: %s", policy,
param.sched_priority, strerror(errno));
#if defined(__LP64__)
// For backwards compatibility reasons, we only report failures on 64-bit devices.
return errno;
#endif
}
}
return 0;
}
// Allocate a thread's primary mapping. This mapping includes static TLS and
// optionally a stack. Static TLS includes ELF TLS segments and the bionic_tls
// struct.
//
// The stack_guard_size must be a multiple of the PAGE_SIZE.
ThreadMapping __allocate_thread_mapping(size_t stack_size, size_t stack_guard_size) {
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
// Allocate in order: stack guard, stack, static TLS, guard page.
size_t mmap_size;
if (__builtin_add_overflow(stack_size, stack_guard_size, &mmap_size)) return {};
if (__builtin_add_overflow(mmap_size, layout.size(), &mmap_size)) return {};
if (__builtin_add_overflow(mmap_size, PTHREAD_GUARD_SIZE, &mmap_size)) return {};
// Align the result to a page size.
const size_t unaligned_size = mmap_size;
mmap_size = __BIONIC_ALIGN(mmap_size, PAGE_SIZE);
if (mmap_size < unaligned_size) return {};
// Create a new private anonymous map. Make the entire mapping PROT_NONE, then carve out a
// read+write area in the middle.
const int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
char* const space = static_cast<char*>(mmap(nullptr, mmap_size, PROT_NONE, flags, -1, 0));
if (space == MAP_FAILED) {
async_safe_format_log(ANDROID_LOG_WARN,
"libc",
"pthread_create failed: couldn't allocate %zu-bytes mapped space: %s",
mmap_size, strerror(errno));
return {};
}
const size_t writable_size = mmap_size - stack_guard_size - PTHREAD_GUARD_SIZE;
if (mprotect(space + stack_guard_size,
writable_size,
PROT_READ | PROT_WRITE) != 0) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create failed: couldn't mprotect R+W %zu-byte thread mapping region: %s",
writable_size, strerror(errno));
munmap(space, mmap_size);
return {};
}
ThreadMapping result = {};
result.mmap_base = space;
result.mmap_size = mmap_size;
result.static_tls = space + mmap_size - PTHREAD_GUARD_SIZE - layout.size();
result.stack_base = space;
result.stack_top = result.static_tls;
return result;
}
static int __allocate_thread(pthread_attr_t* attr, bionic_tcb** tcbp, void** child_stack) {
ThreadMapping mapping;
char* stack_top;
bool stack_clean = false;
if (attr->stack_base == nullptr) {
// The caller didn't provide a stack, so allocate one.
// Make sure the guard size is a multiple of PAGE_SIZE.
const size_t unaligned_guard_size = attr->guard_size;
attr->guard_size = __BIONIC_ALIGN(attr->guard_size, PAGE_SIZE);
if (attr->guard_size < unaligned_guard_size) return EAGAIN;
mapping = __allocate_thread_mapping(attr->stack_size, attr->guard_size);
if (mapping.mmap_base == nullptr) return EAGAIN;
stack_top = mapping.stack_top;
attr->stack_base = mapping.stack_base;
stack_clean = true;
} else {
mapping = __allocate_thread_mapping(0, PTHREAD_GUARD_SIZE);
if (mapping.mmap_base == nullptr) return EAGAIN;
stack_top = static_cast<char*>(attr->stack_base) + attr->stack_size;
}
// Carve out space from the stack for the thread's pthread_internal_t. This
// memory isn't counted in pthread_attr_getstacksize.
// To safely access the pthread_internal_t and thread stack, we need to find a 16-byte aligned boundary.
stack_top = align_down(stack_top - sizeof(pthread_internal_t), 16);
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(stack_top);
if (!stack_clean) {
// If thread was not allocated by mmap(), it may not have been cleared to zero.
// So assume the worst and zero it.
memset(thread, 0, sizeof(pthread_internal_t));
}
// Locate static TLS structures within the mapped region.
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
auto tcb = reinterpret_cast<bionic_tcb*>(mapping.static_tls + layout.offset_bionic_tcb());
auto tls = reinterpret_cast<bionic_tls*>(mapping.static_tls + layout.offset_bionic_tls());
// Initialize TLS memory.
__init_static_tls(mapping.static_tls);
__init_tcb(tcb, thread);
__init_tcb_dtv(tcb);
__init_tcb_stack_guard(tcb);
__init_bionic_tls_ptrs(tcb, tls);
attr->stack_size = stack_top - static_cast<char*>(attr->stack_base);
thread->attr = *attr;
thread->mmap_base = mapping.mmap_base;
thread->mmap_size = mapping.mmap_size;
*tcbp = tcb;
*child_stack = stack_top;
return 0;
}
__attribute__((no_sanitize("hwaddress")))
static int __pthread_start(void* arg) {
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(arg);
__hwasan_thread_enter();
// Wait for our creating thread to release us. This lets it have time to
// notify gdb about this thread before we start doing anything.
// This also provides the memory barrier needed to ensure that all memory
// accesses previously made by the creating thread are visible to us.
thread->startup_handshake_lock.lock();
__init_additional_stacks(thread);
void* result = thread->start_routine(thread->start_routine_arg);
pthread_exit(result);
return 0;
}
// A dummy start routine for pthread_create failures where we've created a thread but aren't
// going to run user code on it. We swap out the user's start routine for this and take advantage
// of the regular thread teardown to free up resources.
static void* __do_nothing(void*) {
return nullptr;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_create(pthread_t* thread_out, pthread_attr_t const* attr,
void* (*start_routine)(void*), void* arg) {
ErrnoRestorer errno_restorer;
pthread_attr_t thread_attr;
ScopedTrace trace("pthread_create");
if (attr == nullptr) {
pthread_attr_init(&thread_attr);
} else {
thread_attr = *attr;
attr = nullptr; // Prevent misuse below.
}
bionic_tcb* tcb = nullptr;
void* child_stack = nullptr;
int result = __allocate_thread(&thread_attr, &tcb, &child_stack);
if (result != 0) {
return result;
}
pthread_internal_t* thread = tcb->thread();
// Create a lock for the thread to wait on once it starts so we can keep
// it from doing anything until after we notify the debugger about it
//
// This also provides the memory barrier we need to ensure that all
// memory accesses previously performed by this thread are visible to
// the new thread.
thread->startup_handshake_lock.init(false);
thread->startup_handshake_lock.lock();
thread->start_routine = start_routine;
thread->start_routine_arg = arg;
thread->set_cached_pid(getpid());
int flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM |
CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID;
void* tls = &tcb->tls_slot(0);
#if defined(__i386__)
// On x86 (but not x86-64), CLONE_SETTLS takes a pointer to a struct user_desc rather than
// a pointer to the TLS itself.
user_desc tls_descriptor;
__init_user_desc(&tls_descriptor, false, tls);
tls = &tls_descriptor;
#endif
int rc = clone(__pthread_start, child_stack, flags, thread, &(thread->tid), tls, &(thread->tid));
if (rc == -1) {
int clone_errno = errno;
// We don't have to unlock the mutex at all because clone(2) failed so there's no child waiting to
// be unblocked, but we're about to unmap the memory the mutex is stored in, so this serves as a
// reminder that you can't rewrite this function to use a ScopedPthreadMutexLocker.
thread->startup_handshake_lock.unlock();
if (thread->mmap_size != 0) {
munmap(thread->mmap_base, thread->mmap_size);
}
async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: clone failed: %s",
strerror(clone_errno));
return clone_errno;
}
int init_errno = __init_thread(thread);
if (init_errno != 0) {
// Mark the thread detached and replace its start_routine with a no-op.
// Letting the thread run is the easiest way to clean up its resources.
atomic_store(&thread->join_state, THREAD_DETACHED);
__pthread_internal_add(thread);
thread->start_routine = __do_nothing;
thread->startup_handshake_lock.unlock();
return init_errno;
}
// Publish the pthread_t and unlock the mutex to let the new thread start running.
*thread_out = __pthread_internal_add(thread);
thread->startup_handshake_lock.unlock();
return 0;
}