platform_bootable_recovery/updater/install.cpp

881 lines
32 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "updater/install.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <ftw.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
updater: introduce and set_metadata and set_metadata_recursive Introduce two new updater functions: * set_metadata * set_metadata_recursive Long term, these functions are intended to be more flexible replacements for the following methods: * set_perm * set_perm_recursive Usage: set_metadata("filename", "key1", "value1", "key2", "value2", ...) set_metadata_recursive("dirname", "key1", "value1", "key2", "value2", ...) Description: set_metadata() and set_metadata_recursive() set the attributes on a file/directory according to the key/value pairs provided. Today, the following keys are supported: * uid * gid * mode (set_perm_extd only) * fmode (set_perm_extd_recursive only) * dmode (set_perm_extd_recursive only) * selabel * capabilities Unknown keys are logged as warnings, but are not fatal errors. Examples: * set_metadata("/system/bin/netcfg", "selabel", "u:object_r:system_file:s0"); This sets the SELinux label of /system/bin/netcfg to u:object_r:system_file:s0. No other changes occur. * set_metadata("/system/bin/netcfg", "uid", 0, "gid", 3003, "mode", 02750, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0); This sets /system/bin/netcfg to uid=0, gid=3003, mode=02750, selinux label=u:object_r:system_file:s0, and clears the capabilities associated with the file. * set_metadata_recursive("/system", "uid", 0, "gid", 0, "fmode", 0644, "dmode", 0755, "selabel", "u:object_r:system_file:s0", "capabilities", 0x0); All files and directories under /system are set to uid=0, gid=0, and selinux label=u:object_r:system_file:s0. Directories are set to mode=0755. Files are set to mode=0644 and all capabilities are cleared. Bug: 10183961 Bug: 10186213 Bug: 8985290 Change-Id: Ifdcf186a7ed45265511dc493c4036e1ac5e3d0af
2013-09-07 23:41:06 +02:00
#include <sys/xattr.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <memory>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parsedouble.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <applypatch/applypatch.h>
#include <bootloader_message/bootloader_message.h>
#include <ext4_utils/wipe.h>
#include <openssl/sha.h>
#include <selinux/label.h>
#include <selinux/selinux.h>
#include <tune2fs.h>
#include <ziparchive/zip_archive.h>
#include "edify/expr.h"
#include "edify/updater_interface.h"
#include "edify/updater_runtime_interface.h"
#include "otautil/dirutil.h"
#include "otautil/error_code.h"
#include "otautil/mounts.h"
#include "otautil/print_sha1.h"
#include "otautil/sysutil.h"
static bool UpdateBlockDeviceNameForPartition(UpdaterInterface* updater, Partition* partition) {
CHECK(updater);
std::string name = updater->FindBlockDeviceName(partition->name);
if (name.empty()) {
LOG(ERROR) << "Failed to find the block device " << partition->name;
return false;
}
partition->name = std::move(name);
return true;
}
// This is the updater side handler for ui_print() in edify script. Contents will be sent over to
// the recovery side for on-screen display.
Value* UIPrintFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
std::string buffer = android::base::Join(args, "");
state->updater->UiPrint(buffer);
return StringValue(buffer);
}
// package_extract_file(package_file[, dest_file])
// Extracts a single package_file from the update package and writes it to dest_file,
// overwriting existing files if necessary. Without the dest_file argument, returns the
// contents of the package file as a binary blob.
Value* PackageExtractFileFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1 || argv.size() > 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %zu", name,
argv.size());
}
if (argv.size() == 2) {
// The two-argument version extracts to a file.
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name,
argv.size());
}
const std::string& zip_path = args[0];
const std::string& dest_path = args[1];
ZipArchiveHandle za = state->updater->GetPackageHandle();
ZipEntry entry;
if (FindEntry(za, zip_path, &entry) != 0) {
LOG(ERROR) << name << ": no " << zip_path << " in package";
return StringValue("");
}
android::base::unique_fd fd(TEMP_FAILURE_RETRY(
open(dest_path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR)));
if (fd == -1) {
PLOG(ERROR) << name << ": can't open " << dest_path << " for write";
return StringValue("");
}
bool success = true;
int32_t ret = ExtractEntryToFile(za, &entry, fd);
if (ret != 0) {
LOG(ERROR) << name << ": Failed to extract entry \"" << zip_path << "\" ("
<< entry.uncompressed_length << " bytes) to \"" << dest_path
<< "\": " << ErrorCodeString(ret);
success = false;
}
if (fsync(fd) == -1) {
PLOG(ERROR) << "fsync of \"" << dest_path << "\" failed";
success = false;
}
if (close(fd.release()) != 0) {
PLOG(ERROR) << "close of \"" << dest_path << "\" failed";
success = false;
}
return StringValue(success ? "t" : "");
} else {
// The one-argument version returns the contents of the file as the result.
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name,
argv.size());
}
const std::string& zip_path = args[0];
ZipArchiveHandle za = state->updater->GetPackageHandle();
ZipEntry entry;
if (FindEntry(za, zip_path, &entry) != 0) {
return ErrorAbort(state, kPackageExtractFileFailure, "%s(): no %s in package", name,
zip_path.c_str());
}
std::string buffer;
buffer.resize(entry.uncompressed_length);
int32_t ret =
ExtractToMemory(za, &entry, reinterpret_cast<uint8_t*>(&buffer[0]), buffer.size());
if (ret != 0) {
return ErrorAbort(state, kPackageExtractFileFailure,
"%s: Failed to extract entry \"%s\" (%zu bytes) to memory: %s", name,
zip_path.c_str(), buffer.size(), ErrorCodeString(ret));
}
return new Value(Value::Type::BLOB, buffer);
}
}
// patch_partition_check(target_partition, source_partition)
// Checks if the target and source partitions have the desired checksums to be patched. It returns
// directly, if the target partition already has the expected checksum. Otherwise it in turn
// checks the integrity of the source partition and the backup file on /cache.
//
// For example, patch_partition_check(
// "EMMC:/dev/block/boot:12342568:8aaacf187a6929d0e9c3e9e46ea7ff495b43424d",
// "EMMC:/dev/block/boot:12363048:06b0b16299dcefc94900efed01e0763ff644ffa4")
Value* PatchPartitionCheckFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure,
"%s(): Invalid number of args (expected 2, got %zu)", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 2)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
std::string err;
auto target = Partition::Parse(args[0], &err);
if (!target) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse target \"%s\": %s", name,
args[0].c_str(), err.c_str());
}
auto source = Partition::Parse(args[1], &err);
if (!source) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse source \"%s\": %s", name,
args[1].c_str(), err.c_str());
}
if (!UpdateBlockDeviceNameForPartition(state->updater, &source) ||
!UpdateBlockDeviceNameForPartition(state->updater, &target)) {
return StringValue("");
}
bool result = PatchPartitionCheck(target, source);
return StringValue(result ? "t" : "");
}
// patch_partition(target, source, patch)
// Applies the given patch to the source partition, and writes the result to the target partition.
//
// For example, patch_partition(
// "EMMC:/dev/block/boot:12342568:8aaacf187a6929d0e9c3e9e46ea7ff495b43424d",
// "EMMC:/dev/block/boot:12363048:06b0b16299dcefc94900efed01e0763ff644ffa4",
// package_extract_file("boot.img.p"))
Value* PatchPartitionFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 3) {
return ErrorAbort(state, kArgsParsingFailure,
"%s(): Invalid number of args (expected 3, got %zu)", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 2)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
std::string err;
auto target = Partition::Parse(args[0], &err);
if (!target) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse target \"%s\": %s", name,
args[0].c_str(), err.c_str());
}
auto source = Partition::Parse(args[1], &err);
if (!source) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse source \"%s\": %s", name,
args[1].c_str(), err.c_str());
}
std::vector<std::unique_ptr<Value>> values;
if (!ReadValueArgs(state, argv, &values, 2, 1) || values[0]->type != Value::Type::BLOB) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Invalid patch arg", name);
}
if (!UpdateBlockDeviceNameForPartition(state->updater, &source) ||
!UpdateBlockDeviceNameForPartition(state->updater, &target)) {
return StringValue("");
}
bool result = PatchPartition(target, source, *values[0], nullptr);
return StringValue(result ? "t" : "");
}
// mount(fs_type, partition_type, location, mount_point)
// mount(fs_type, partition_type, location, mount_point, mount_options)
// fs_type="ext4" partition_type="EMMC" location=device
Value* MountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 4 && argv.size() != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& mount_point = args[3];
std::string mount_options;
if (argv.size() == 5) {
mount_options = args[4];
}
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty",
name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty",
name);
}
auto updater = state->updater;
if (updater->GetRuntime()->Mount(location, mount_point, fs_type, mount_options) != 0) {
updater->UiPrint(android::base::StringPrintf("%s: Failed to mount %s at %s: %s", name,
location.c_str(), mount_point.c_str(),
strerror(errno)));
return StringValue("");
}
return StringValue(mount_point);
}
// is_mounted(mount_point)
Value* IsMountedFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
auto updater_runtime = state->updater->GetRuntime();
if (!updater_runtime->IsMounted(mount_point)) {
return StringValue("");
}
return StringValue(mount_point);
}
Value* UnmountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
auto updater = state->updater;
auto [mounted, result] = updater->GetRuntime()->Unmount(mount_point);
if (!mounted) {
updater->UiPrint(
android::base::StringPrintf("Failed to unmount %s: No such volume", mount_point.c_str()));
return nullptr;
} else if (result != 0) {
updater->UiPrint(android::base::StringPrintf("Failed to unmount %s: %s", mount_point.c_str(),
strerror(errno)));
}
return StringValue(mount_point);
}
// format(fs_type, partition_type, location, fs_size, mount_point)
//
// fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// if fs_size == 0, then make fs uses the entire partition.
// if fs_size > 0, that is the size to use
// if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs")
Value* FormatFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& fs_size = args[3];
const std::string& mount_point = args[4];
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty",
name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty",
name);
}
int64_t size;
if (!android::base::ParseInt(fs_size, &size)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name,
fs_size.c_str());
}
auto updater_runtime = state->updater->GetRuntime();
if (fs_type == "ext4") {
std::vector<std::string> mke2fs_args = {
"/system/bin/mke2fs", "-t", "ext4", "-b", "4096", location
};
if (size != 0) {
mke2fs_args.push_back(std::to_string(size / 4096LL));
}
if (auto status = updater_runtime->RunProgram(mke2fs_args, true); status != 0) {
LOG(ERROR) << name << ": mke2fs failed (" << status << ") on " << location;
return StringValue("");
}
if (auto status = updater_runtime->RunProgram(
{ "/system/bin/e2fsdroid", "-e", "-a", mount_point, location }, true);
status != 0) {
LOG(ERROR) << name << ": e2fsdroid failed (" << status << ") on " << location;
return StringValue("");
}
return StringValue(location);
}
if (fs_type == "f2fs") {
if (size < 0) {
LOG(ERROR) << name << ": fs_size can't be negative for f2fs: " << fs_size;
return StringValue("");
}
std::vector<std::string> f2fs_args = {
"/system/bin/make_f2fs", "-g", "android", "-w", "512", location
};
if (size >= 512) {
f2fs_args.push_back(std::to_string(size / 512));
}
if (auto status = updater_runtime->RunProgram(f2fs_args, true); status != 0) {
LOG(ERROR) << name << ": make_f2fs failed (" << status << ") on " << location;
return StringValue("");
}
if (auto status = updater_runtime->RunProgram(
{ "/system/bin/sload_f2fs", "-t", mount_point, location }, true);
status != 0) {
LOG(ERROR) << name << ": sload_f2fs failed (" << status << ") on " << location;
return StringValue("");
}
return StringValue(location);
}
LOG(ERROR) << name << ": unsupported fs_type \"" << fs_type << "\" partition_type \""
<< partition_type << "\"";
return nullptr;
}
Value* ShowProgressFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
const std::string& sec_str = args[1];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name,
frac_str.c_str());
}
int sec;
if (!android::base::ParseInt(sec_str.c_str(), &sec)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name,
sec_str.c_str());
}
state->updater->WriteToCommandPipe(android::base::StringPrintf("progress %f %d", frac, sec));
return StringValue(frac_str);
}
Value* SetProgressFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name,
frac_str.c_str());
}
state->updater->WriteToCommandPipe(android::base::StringPrintf("set_progress %f", frac));
return StringValue(frac_str);
}
Value* GetPropFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::string key;
if (!Evaluate(state, argv[0], &key)) {
return nullptr;
}
auto updater_runtime = state->updater->GetRuntime();
std::string value = updater_runtime->GetProperty(key, "");
return StringValue(value);
}
// file_getprop(file, key)
//
// interprets 'file' as a getprop-style file (key=value pairs, one
// per line. # comment lines, blank lines, lines without '=' ignored),
// and returns the value for 'key' (or "" if it isn't defined).
Value* FileGetPropFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& key = args[1];
std::string buffer;
auto updater_runtime = state->updater->GetRuntime();
if (!updater_runtime->ReadFileToString(filename, &buffer)) {
ErrorAbort(state, kFreadFailure, "%s: failed to read %s", name, filename.c_str());
return nullptr;
}
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (size_t i = 0; i < lines.size(); i++) {
std::string line = android::base::Trim(lines[i]);
// comment or blank line: skip to next line
if (line.empty() || line[0] == '#') {
continue;
}
size_t equal_pos = line.find('=');
if (equal_pos == std::string::npos) {
continue;
}
// trim whitespace between key and '='
std::string str = android::base::Trim(line.substr(0, equal_pos));
// not the key we're looking for
if (key != str) continue;
return StringValue(android::base::Trim(line.substr(equal_pos + 1)));
}
return StringValue("");
}
// apply_patch_space(bytes)
Value* ApplyPatchSpaceFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& bytes_str = args[0];
size_t bytes;
if (!android::base::ParseUint(bytes_str.c_str(), &bytes)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name,
bytes_str.c_str());
}
// Skip the cache size check if the update is a retry.
if (state->is_retry || CheckAndFreeSpaceOnCache(bytes)) {
return StringValue("t");
}
return StringValue("");
}
Value* WipeCacheFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (!argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name,
argv.size());
}
state->updater->WriteToCommandPipe("wipe_cache");
return StringValue("t");
}
Value* RunProgramFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name);
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
auto updater_runtime = state->updater->GetRuntime();
auto status = updater_runtime->RunProgram(args, false);
return StringValue(std::to_string(status));
}
// read_file(filename)
// Reads a local file 'filename' and returns its contents as a string Value.
Value* ReadFileFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
std::string contents;
auto updater_runtime = state->updater->GetRuntime();
if (updater_runtime->ReadFileToString(filename, &contents)) {
return new Value(Value::Type::STRING, std::move(contents));
}
// Leave it to caller to handle the failure.
PLOG(ERROR) << name << ": Failed to read " << filename;
return StringValue("");
}
// write_value(value, filename)
// Writes 'value' to 'filename'.
// Example: write_value("960000", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq")
Value* WriteValueFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[1];
if (filename.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Filename cannot be empty", name);
}
const std::string& value = args[0];
auto updater_runtime = state->updater->GetRuntime();
if (!updater_runtime->WriteStringToFile(value, filename)) {
PLOG(ERROR) << name << ": Failed to write to \"" << filename << "\"";
return StringValue("");
}
return StringValue("t");
}
// Immediately reboot the device. Recovery is not finished normally,
// so if you reboot into recovery it will re-start applying the
// current package (because nothing has cleared the copy of the
// arguments stored in the BCB).
//
// The argument is the partition name passed to the android reboot
// property. It can be "recovery" to boot from the recovery
// partition, or "" (empty string) to boot from the regular boot
// partition.
Value* RebootNowFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& property = args[1];
// Zero out the 'command' field of the bootloader message. Leave the rest intact.
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
memset(boot.command, 0, sizeof(boot.command));
if (!write_bootloader_message_to(boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err;
return StringValue("");
}
Reboot(property);
sleep(5);
return ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name);
}
// Store a string value somewhere that future invocations of recovery
// can access it. This value is called the "stage" and can be used to
// drive packages that need to do reboots in the middle of
// installation and keep track of where they are in the multi-stage
// install.
//
// The first argument is the block device for the misc partition
// ("/misc" in the fstab), which is where this value is stored. The
// second argument is the string to store; it should not exceed 31
// bytes.
Value* SetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& stagestr = args[1];
// Store this value in the misc partition, immediately after the
// bootloader message that the main recovery uses to save its
// arguments in case of the device restarting midway through
// package installation.
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
strlcpy(boot.stage, stagestr.c_str(), sizeof(boot.stage));
if (!write_bootloader_message_to(boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err;
return StringValue("");
}
return StringValue(filename);
}
// Return the value most recently saved with SetStageFn. The argument
// is the block device for the misc partition.
Value* GetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
return StringValue(boot.stage);
}
Value* WipeBlockDeviceFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& len_str = args[1];
size_t len;
if (!android::base::ParseUint(len_str.c_str(), &len)) {
return nullptr;
}
auto updater_runtime = state->updater->GetRuntime();
int status = updater_runtime->WipeBlockDevice(filename, len);
return StringValue(status == 0 ? "t" : "");
}
Value* EnableRebootFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (!argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name,
argv.size());
}
state->updater->WriteToCommandPipe("enable_reboot");
return StringValue("t");
}
Value* Tune2FsFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name);
}
// tune2fs expects the program name as its first arg.
args.insert(args.begin(), "tune2fs");
auto updater_runtime = state->updater->GetRuntime();
if (auto result = updater_runtime->Tune2Fs(args); result != 0) {
return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result);
}
return StringValue("t");
}
void RegisterInstallFunctions() {
RegisterFunction("mount", MountFn);
RegisterFunction("is_mounted", IsMountedFn);
RegisterFunction("unmount", UnmountFn);
RegisterFunction("format", FormatFn);
RegisterFunction("show_progress", ShowProgressFn);
RegisterFunction("set_progress", SetProgressFn);
RegisterFunction("package_extract_file", PackageExtractFileFn);
RegisterFunction("getprop", GetPropFn);
RegisterFunction("file_getprop", FileGetPropFn);
RegisterFunction("apply_patch_space", ApplyPatchSpaceFn);
RegisterFunction("patch_partition", PatchPartitionFn);
RegisterFunction("patch_partition_check", PatchPartitionCheckFn);
RegisterFunction("wipe_block_device", WipeBlockDeviceFn);
RegisterFunction("read_file", ReadFileFn);
RegisterFunction("write_value", WriteValueFn);
RegisterFunction("wipe_cache", WipeCacheFn);
RegisterFunction("ui_print", UIPrintFn);
RegisterFunction("run_program", RunProgramFn);
RegisterFunction("reboot_now", RebootNowFn);
RegisterFunction("get_stage", GetStageFn);
RegisterFunction("set_stage", SetStageFn);
RegisterFunction("enable_reboot", EnableRebootFn);
RegisterFunction("tune2fs", Tune2FsFn);
}