Merge "Add a new PatchChunk class in imgdiff"

This commit is contained in:
Tianjie Xu 2017-08-14 17:21:16 +00:00 committed by Gerrit Code Review
commit 11214d9062

View file

@ -168,15 +168,14 @@ class ImageChunk {
static constexpr auto METHOD = Z_DEFLATED;
static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len)
ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len,
std::string entry_name = {})
: type_(type),
start_(start),
input_file_ptr_(file_content),
raw_data_len_(raw_data_len),
compress_level_(6),
source_start_(0),
source_len_(0),
source_uncompressed_len_(0) {
entry_name_(std::move(entry_name)) {
CHECK(file_content != nullptr) << "input file container can't be nullptr";
}
@ -189,6 +188,12 @@ class ImageChunk {
const std::string& GetEntryName() const {
return entry_name_;
}
size_t GetStartOffset() const {
return start_;
}
int GetCompressLevel() const {
return compress_level_;
}
// CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
// the raw data.
@ -200,8 +205,6 @@ class ImageChunk {
entry_name_.c_str());
}
void SetSourceInfo(const ImageChunk& other);
void SetEntryName(std::string entryname);
void SetUncompressedData(std::vector<uint8_t> data);
bool SetBonusData(const std::vector<uint8_t>& bonus_data);
@ -210,57 +213,46 @@ class ImageChunk {
return !(*this == other);
}
size_t GetHeaderSize(size_t patch_size) const;
// Return the offset of the next patch into the patch data.
size_t WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) const;
/*
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
* of uninterpreted data). The resulting patch will likely be about
* as big as the target file, but it lets us handle the case of images
* where some gzip chunks are reconstructible but others aren't (by
* treating the ones that aren't as normal chunks).
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob of uninterpreted data).
* The resulting patch will likely be about as big as the target file, but it lets us handle
* the case of images where some gzip chunks are reconstructible but others aren't (by treating
* the ones that aren't as normal chunks).
*/
void ChangeDeflateChunkToNormal();
bool ChangeChunkToRaw(size_t patch_size);
/*
* Verify that we can reproduce exactly the same compressed data that
* we started with. Sets the level, method, windowBits, memLevel, and
* strategy fields in the chunk to the encoding parameters needed to
* produce the right output.
* Verify that we can reproduce exactly the same compressed data that we started with. Sets the
* level, method, windowBits, memLevel, and strategy fields in the chunk to the encoding
* parameters needed to produce the right output.
*/
bool ReconstructDeflateChunk();
bool IsAdjacentNormal(const ImageChunk& other) const;
void MergeAdjacentNormal(const ImageChunk& other);
/*
* Compute a bsdiff patch between |this| and the input source chunks.
* Store the result in the patch_data.
* Compute a bsdiff patch between |src| and |tgt|; Store the result in the patch_data.
* |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used
* repeatedly, pass nullptr if not needed.
*/
bool MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache);
static bool MakePatch(const ImageChunk& tgt, const ImageChunk& src,
std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache);
private:
const uint8_t* GetRawData() const;
bool TryReconstruction(int level);
int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
size_t start_; // offset of chunk in the original input file
const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file
size_t raw_data_len_;
// --- for CHUNK_DEFLATE chunks only: ---
std::vector<uint8_t> uncompressed_data_;
std::string entry_name_; // used for zip entries
// deflate encoder parameters
int compress_level_;
size_t source_start_;
size_t source_len_;
size_t source_uncompressed_len_;
const uint8_t* GetRawData() const;
bool TryReconstruction(int level);
// --- for CHUNK_DEFLATE chunks only: ---
std::vector<uint8_t> uncompressed_data_;
std::string entry_name_; // used for zip entries
};
const uint8_t* ImageChunk::GetRawData() const {
@ -290,20 +282,6 @@ bool ImageChunk::operator==(const ImageChunk& other) const {
memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
}
void ImageChunk::SetSourceInfo(const ImageChunk& src) {
source_start_ = src.start_;
if (type_ == CHUNK_NORMAL) {
source_len_ = src.raw_data_len_;
} else if (type_ == CHUNK_DEFLATE) {
source_len_ = src.raw_data_len_;
source_uncompressed_len_ = src.uncompressed_data_.size();
}
}
void ImageChunk::SetEntryName(std::string entryname) {
entry_name_ = std::move(entryname);
}
void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
uncompressed_data_ = std::move(data);
}
@ -316,18 +294,6 @@ bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
return true;
}
// Convert CHUNK_NORMAL & CHUNK_DEFLATE to CHUNK_RAW if the target size is
// smaller. Also take the header size into account during size comparison.
bool ImageChunk::ChangeChunkToRaw(size_t patch_size) {
if (type_ == CHUNK_RAW) {
return true;
} else if (type_ == CHUNK_NORMAL && (raw_data_len_ <= 160 || raw_data_len_ < patch_size)) {
type_ = CHUNK_RAW;
return true;
}
return false;
}
void ImageChunk::ChangeDeflateChunkToNormal() {
if (type_ != CHUNK_DEFLATE) return;
type_ = CHUNK_NORMAL;
@ -335,61 +301,6 @@ void ImageChunk::ChangeDeflateChunkToNormal() {
uncompressed_data_.clear();
}
// Header size:
// header_type 4 bytes
// CHUNK_NORMAL 8*3 = 24 bytes
// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
// CHUNK_RAW 4 bytes + patch_size
size_t ImageChunk::GetHeaderSize(size_t patch_size) const {
switch (type_) {
case CHUNK_NORMAL:
return 4 + 8 * 3;
case CHUNK_DEFLATE:
return 4 + 8 * 5 + 4 * 5;
case CHUNK_RAW:
return 4 + 4 + patch_size;
default:
CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
return 0;
}
}
size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) const {
Write4(fd, type_);
switch (type_) {
case CHUNK_NORMAL:
printf("normal (%10zu, %10zu) %10zu\n", start_, raw_data_len_, patch.size());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
return offset + patch.size();
case CHUNK_DEFLATE:
printf("deflate (%10zu, %10zu) %10zu %s\n", start_, raw_data_len_, patch.size(),
entry_name_.c_str());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
Write8(fd, static_cast<int64_t>(uncompressed_data_.size()));
Write4(fd, compress_level_);
Write4(fd, METHOD);
Write4(fd, WINDOWBITS);
Write4(fd, MEMLEVEL);
Write4(fd, STRATEGY);
return offset + patch.size();
case CHUNK_RAW:
printf("raw (%10zu, %10zu)\n", start_, raw_data_len_);
Write4(fd, static_cast<int32_t>(patch.size()));
if (!android::base::WriteFully(fd, patch.data(), patch.size())) {
CHECK(false) << "failed to write " << patch.size() <<" bytes patch";
}
return offset;
default:
CHECK(false) << "unexpected chunk type: " << type_;
return offset;
}
}
bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
return false;
@ -402,15 +313,8 @@ void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
raw_data_len_ = raw_data_len_ + other.raw_data_len_;
}
bool ImageChunk::MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_data,
saidx_t** bsdiff_cache) {
if (ChangeChunkToRaw(0)) {
size_t patch_size = DataLengthForPatch();
patch_data->resize(patch_size);
std::copy(DataForPatch(), DataForPatch() + patch_size, patch_data->begin());
return true;
}
bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src,
std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache) {
#if defined(__ANDROID__)
char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
#else
@ -424,8 +328,8 @@ bool ImageChunk::MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_da
}
close(fd);
int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), DataForPatch(),
DataLengthForPatch(), ptemp, bsdiff_cache);
int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(),
tgt.DataLengthForPatch(), ptemp, bsdiff_cache);
if (r != 0) {
printf("bsdiff() failed: %d\n", r);
return false;
@ -443,14 +347,7 @@ bool ImageChunk::MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_da
}
size_t sz = static_cast<size_t>(st.st_size);
// Change the chunk type to raw if the patch takes less space that way.
if (ChangeChunkToRaw(sz)) {
unlink(ptemp);
size_t patch_size = DataLengthForPatch();
patch_data->resize(patch_size);
std::copy(DataForPatch(), DataForPatch() + patch_size, patch_data->begin());
return true;
}
patch_data->resize(sz);
if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
@ -459,7 +356,6 @@ bool ImageChunk::MakePatch(const ImageChunk& src, std::vector<uint8_t>* patch_da
}
unlink(ptemp);
SetSourceInfo(src);
return true;
}
@ -470,8 +366,8 @@ bool ImageChunk::ReconstructDeflateChunk() {
return false;
}
// We only check two combinations of encoder parameters: level 6
// (the default) and level 9 (the maximum).
// We only check two combinations of encoder parameters: level 6 (the default) and level 9
// (the maximum).
for (int level = 6; level <= 9; level += 3) {
if (TryReconstruction(level)) {
compress_level_ = level;
@ -483,10 +379,9 @@ bool ImageChunk::ReconstructDeflateChunk() {
}
/*
* Takes the uncompressed data stored in the chunk, compresses it
* using the zlib parameters stored in the chunk, and checks that it
* matches exactly the compressed data we started with (also stored in
* the chunk).
* Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored
* in the chunk, and checks that it matches exactly the compressed data we started with (also
* stored in the chunk).
*/
bool ImageChunk::TryReconstruction(int level) {
z_stream strm;
@ -529,6 +424,156 @@ bool ImageChunk::TryReconstruction(int level) {
return true;
}
// PatchChunk stores the patch data between a source chunk and a target chunk. It also keeps track
// of the metadata of src&tgt chunks (e.g. offset, raw data length, uncompressed data length).
class PatchChunk {
public:
PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
: type_(tgt.GetType()),
source_start_(src.GetStartOffset()),
source_len_(src.GetRawDataLength()),
source_uncompressed_len_(src.DataLengthForPatch()),
target_start_(tgt.GetStartOffset()),
target_len_(tgt.GetRawDataLength()),
target_uncompressed_len_(tgt.DataLengthForPatch()),
target_compress_level_(tgt.GetCompressLevel()),
data_(std::move(data)) {}
// Construct a CHUNK_RAW patch from the target data directly.
explicit PatchChunk(const ImageChunk& tgt)
: type_(CHUNK_RAW),
source_start_(0),
source_len_(0),
source_uncompressed_len_(0),
target_start_(tgt.GetStartOffset()),
target_len_(tgt.GetRawDataLength()),
target_uncompressed_len_(tgt.DataLengthForPatch()),
target_compress_level_(tgt.GetCompressLevel()),
data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {}
// Return true if raw data size is smaller than the patch size.
static bool RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size);
static bool WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd);
private:
size_t GetHeaderSize() const;
size_t WriteHeaderToFd(int fd, size_t offset) const;
// The patch chunk type is the same as the target chunk type. The only exception is we change
// the |type_| to CHUNK_RAW if target length is smaller than the patch size.
int type_;
size_t source_start_;
size_t source_len_;
size_t source_uncompressed_len_;
size_t target_start_; // offset of the target chunk within the target file
size_t target_len_;
size_t target_uncompressed_len_;
size_t target_compress_level_; // the deflate compression level of the target chunk.
std::vector<uint8_t> data_; // storage for the patch data
};
// Return true if raw data is smaller than the patch size.
bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
size_t target_len = tgt.GetRawDataLength();
return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size));
}
// Header size:
// header_type 4 bytes
// CHUNK_NORMAL 8*3 = 24 bytes
// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
// CHUNK_RAW 4 bytes + patch_size
size_t PatchChunk::GetHeaderSize() const {
switch (type_) {
case CHUNK_NORMAL:
return 4 + 8 * 3;
case CHUNK_DEFLATE:
return 4 + 8 * 5 + 4 * 5;
case CHUNK_RAW:
return 4 + 4 + data_.size();
default:
CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
return 0;
}
}
// Return the offset of the next patch into the patch data.
size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset) const {
Write4(fd, type_);
switch (type_) {
case CHUNK_NORMAL:
printf("normal (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
return offset + data_.size();
case CHUNK_DEFLATE:
printf("deflate (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
Write8(fd, static_cast<int64_t>(target_uncompressed_len_));
Write4(fd, target_compress_level_);
Write4(fd, ImageChunk::METHOD);
Write4(fd, ImageChunk::WINDOWBITS);
Write4(fd, ImageChunk::MEMLEVEL);
Write4(fd, ImageChunk::STRATEGY);
return offset + data_.size();
case CHUNK_RAW:
printf("raw (%10zu, %10zu)\n", target_start_, target_len_);
Write4(fd, static_cast<int32_t>(data_.size()));
if (!android::base::WriteFully(fd, data_.data(), data_.size())) {
CHECK(false) << "failed to write " << data_.size() << " bytes patch";
}
return offset;
default:
CHECK(false) << "unexpected chunk type: " << type_;
return offset;
}
}
// Write the contents of |patch_chunks| to |patch_fd|.
bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) {
// Figure out how big the imgdiff file header is going to be, so that we can correctly compute
// the offset of each bsdiff patch within the file.
size_t total_header_size = 12;
for (const auto& patch : patch_chunks) {
total_header_size += patch.GetHeaderSize();
}
size_t offset = total_header_size;
// Write out the headers.
if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno));
return false;
}
Write4(patch_fd, static_cast<int32_t>(patch_chunks.size()));
for (size_t i = 0; i < patch_chunks.size(); ++i) {
printf("chunk %zu: ", i);
offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset);
}
// Append each chunk's bsdiff patch, in order.
for (const auto& patch : patch_chunks) {
if (patch.type_ == CHUNK_RAW) {
continue;
}
if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) {
printf("failed to write %zu bytes patch to patch_fd\n", patch.data_.size());
return false;
}
}
return true;
}
// Interface for zip_mode and image_mode images. We initialize the image from an input file and
// split the file content into a list of image chunks.
class Image {
@ -548,8 +593,7 @@ class Image {
// also if |find_normal| is true.
ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false);
// Write the contents of |patch_data| to |patch_fd|.
bool WritePatchDataToFd(const std::vector<std::vector<uint8_t>>& patch_data, int patch_fd) const;
const ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false) const;
void DumpChunks() const;
@ -561,10 +605,15 @@ class Image {
std::vector<ImageChunk>::iterator end() {
return chunks_.end();
}
// Return a pointer to the ith ImageChunk.
ImageChunk* Get(size_t i) {
ImageChunk& operator[](size_t i) {
CHECK_LT(i, chunks_.size());
return &chunks_[i];
return chunks_[i];
}
const ImageChunk& operator[](size_t i) const {
CHECK_LT(i, chunks_.size());
return chunks_[i];
}
size_t NumOfChunks() const {
@ -601,7 +650,7 @@ void Image::MergeAdjacentNormalChunks() {
}
}
ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) {
const ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) const {
if (name.empty()) {
return nullptr;
}
@ -613,40 +662,9 @@ ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) {
return nullptr;
}
bool Image::WritePatchDataToFd(const std::vector<std::vector<uint8_t>>& patch_data,
int patch_fd) const {
// Figure out how big the imgdiff file header is going to be, so that we can correctly compute
// the offset of each bsdiff patch within the file.
CHECK_EQ(chunks_.size(), patch_data.size());
size_t total_header_size = 12;
for (size_t i = 0; i < chunks_.size(); ++i) {
total_header_size += chunks_[i].GetHeaderSize(patch_data[i].size());
}
size_t offset = total_header_size;
// Write out the headers.
if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno));
return false;
}
Write4(patch_fd, static_cast<int32_t>(chunks_.size()));
for (size_t i = 0; i < chunks_.size(); ++i) {
printf("chunk %zu: ", i);
offset = chunks_[i].WriteHeaderToFd(patch_fd, patch_data[i], offset);
}
// Append each chunk's bsdiff patch, in order.
for (size_t i = 0; i < chunks_.size(); ++i) {
if (chunks_[i].GetType() != CHUNK_RAW) {
if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) {
printf("failed to write %zu bytes patch for chunk %zu\n", patch_data[i].size(), i);
return false;
}
}
}
return true;
ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) {
return const_cast<ImageChunk*>(
static_cast<const Image*>(this)->FindChunkByName(name, find_normal));
}
void Image::DumpChunks() const {
@ -699,8 +717,8 @@ class ZipModeImage : public Image {
// src and tgt are identical.
static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image);
// Compute the patches against the input image, and write the data into |patch_name|.
static bool GeneratePatches(ZipModeImage* tgt_image, ZipModeImage* src_image,
// Compute the patch between tgt & src images, and write the data into |patch_name|.
static bool GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name);
private:
@ -834,14 +852,11 @@ bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::strin
ErrorCodeString(ret));
return false;
}
ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len);
curr.SetEntryName(entry_name);
ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name);
curr.SetUncompressedData(std::move(uncompressed_data));
chunks_.push_back(curr);
chunks_.push_back(std::move(curr));
} else {
ImageChunk curr(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len);
curr.SetEntryName(entry_name);
chunks_.push_back(curr);
chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name);
}
return true;
@ -907,40 +922,55 @@ bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage*
}
}
return true;
}
bool ZipModeImage::GeneratePatches(ZipModeImage* tgt_image, ZipModeImage* src_image,
const std::string& patch_name) {
// For zips, we only need merge normal chunks for the target: deflated chunks are matched via
// filename, and normal chunks are patched using the entire source file as the source.
tgt_image->MergeAdjacentNormalChunks();
tgt_image->DumpChunks();
printf("Construct patches for %zu chunks...\n", tgt_image->NumOfChunks());
std::vector<std::vector<uint8_t>> patch_data(tgt_image->NumOfChunks());
return true;
}
bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name) {
printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks());
std::vector<PatchChunk> patch_chunks;
patch_chunks.reserve(tgt_image.NumOfChunks());
saidx_t* bsdiff_cache = nullptr;
size_t i = 0;
for (auto& tgt_chunk : *tgt_image) {
ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
? nullptr
: src_image->FindChunkByName(tgt_chunk.GetEntryName());
for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
const auto& tgt_chunk = tgt_image[i];
const auto& src_ref = (src_chunk == nullptr) ? src_image->PseudoSource() : *src_chunk;
if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
patch_chunks.emplace_back(tgt_chunk);
continue;
}
const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
? nullptr
: src_image.FindChunkByName(tgt_chunk.GetEntryName());
const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk;
saidx_t** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr;
if (!tgt_chunk.MakePatch(src_ref, &patch_data[i], bsdiff_cache_ptr)) {
std::vector<uint8_t> patch_data;
if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) {
printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str());
return false;
}
printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(),
tgt_chunk.GetRawDataLength());
i++;
if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
patch_chunks.emplace_back(tgt_chunk);
} else {
patch_chunks.emplace_back(tgt_chunk, src_ref, std::move(patch_data));
}
}
free(bsdiff_cache);
CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
@ -948,7 +978,7 @@ bool ZipModeImage::GeneratePatches(ZipModeImage* tgt_image, ZipModeImage* src_im
return false;
}
return tgt_image->WritePatchDataToFd(patch_data, patch_fd);
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
class ImageModeImage : public Image {
@ -958,14 +988,16 @@ class ImageModeImage : public Image {
// Initialize the image chunks list by searching the magic numbers in an image file.
bool Initialize(const std::string& filename) override;
bool SetBonusData(const std::vector<uint8_t>& bonus_data);
// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
// same sequence of deflate and normal chunks).
static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image);
// In image mode, generate patches against the given source chunks and bonus_data; write the
// result to |patch_name|.
static bool GeneratePatches(ImageModeImage* tgt_image, ImageModeImage* src_image,
const std::vector<uint8_t>& bonus_data, const std::string& patch_name);
static bool GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image,
const std::string& patch_name);
};
bool ImageModeImage::Initialize(const std::string& filename) {
@ -1053,7 +1085,7 @@ bool ImageModeImage::Initialize(const std::string& filename) {
ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
uncompressed_data.resize(uncompressed_len);
body.SetUncompressedData(std::move(uncompressed_data));
chunks_.push_back(body);
chunks_.push_back(std::move(body));
pos += raw_data_len;
@ -1083,6 +1115,18 @@ bool ImageModeImage::Initialize(const std::string& filename) {
return true;
}
bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) {
CHECK(is_source_);
if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) {
printf("Failed to set bonus data\n");
DumpChunks();
return false;
}
printf(" using %zu bytes of bonus data\n", bonus_data.size());
return true;
}
// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
// same sequence of deflate and normal chunks).
bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
@ -1097,7 +1141,7 @@ bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeI
return false;
}
for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
if (tgt_image->Get(i)->GetType() != src_image->Get(i)->GetType()) {
if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) {
printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
tgt_image->DumpChunks();
src_image->DumpChunks();
@ -1106,26 +1150,23 @@ bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeI
}
for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
auto& tgt_chunk = *tgt_image->Get(i);
auto& src_chunk = *src_image->Get(i);
auto& tgt_chunk = (*tgt_image)[i];
auto& src_chunk = (*src_image)[i];
if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
continue;
}
// Confirm that we can recompress the data and get exactly the same bits as are in the
// input target image.
if (!tgt_chunk.ReconstructDeflateChunk()) {
printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
tgt_chunk.GetEntryName().c_str());
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk.ChangeDeflateChunkToNormal();
continue;
}
// If two deflate chunks are identical treat them as normal chunks.
if (tgt_chunk == src_chunk) {
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk.ChangeDeflateChunkToNormal();
} else if (!tgt_chunk.ReconstructDeflateChunk()) {
// We cannot recompress the data and get exactly the same bits as are in the input target
// image, fall back to normal
printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
tgt_chunk.GetEntryName().c_str());
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk.ChangeDeflateChunkToNormal();
}
}
@ -1144,29 +1185,39 @@ bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeI
// In image mode, generate patches against the given source chunks and bonus_data; write the
// result to |patch_name|.
bool ImageModeImage::GeneratePatches(ImageModeImage* tgt_image, ImageModeImage* src_image,
const std::vector<uint8_t>& bonus_data,
bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
const ImageModeImage& src_image,
const std::string& patch_name) {
printf("Construct patches for %zu chunks...\n", tgt_image->NumOfChunks());
std::vector<std::vector<uint8_t>> patch_data(tgt_image->NumOfChunks());
printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks());
std::vector<PatchChunk> patch_chunks;
patch_chunks.reserve(tgt_image.NumOfChunks());
for (size_t i = 0; i < tgt_image->NumOfChunks(); i++) {
auto& tgt_chunk = *tgt_image->Get(i);
auto& src_chunk = *src_image->Get(i);
for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
const auto& tgt_chunk = tgt_image[i];
const auto& src_chunk = src_image[i];
if (i == 1 && !bonus_data.empty()) {
printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i);
src_chunk.SetBonusData(bonus_data);
if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
patch_chunks.emplace_back(tgt_chunk);
continue;
}
if (!tgt_chunk.MakePatch(src_chunk, &patch_data[i], nullptr)) {
std::vector<uint8_t> patch_data;
if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) {
printf("Failed to generate patch for target chunk %zu: ", i);
return false;
}
printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(),
tgt_chunk.GetRawDataLength());
if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
patch_chunks.emplace_back(tgt_chunk);
} else {
patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data));
}
}
CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
@ -1174,7 +1225,7 @@ bool ImageModeImage::GeneratePatches(ImageModeImage* tgt_image, ImageModeImage*
return false;
}
return tgt_image->WritePatchDataToFd(patch_data, patch_fd);
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
int imgdiff(int argc, const char** argv) {
@ -1236,7 +1287,7 @@ int imgdiff(int argc, const char** argv) {
}
// Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
// deflate chunks).
if (!ZipModeImage::GeneratePatches(&tgt_image, &src_image, argv[optind + 2])) {
if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
return 1;
}
} else {
@ -1253,7 +1304,12 @@ int imgdiff(int argc, const char** argv) {
if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
if (!ImageModeImage::GeneratePatches(&tgt_image, &src_image, bonus_data, argv[optind + 2])) {
if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) {
return 1;
}
if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
return 1;
}
}