applypatch: Add testcases for applypatch executable.

Refactor applypatch/main.cpp into libapplypatch_modes so that we can add
testcases.

Some changes to applypatch/main.cpp:
 - Replace char** argv with const char**;
 - Use android::base::Split() to split ":";
 - Use android::base::ParseUInt().

Bug: 32383590
Test: Unit tests pass, install-recovery.sh works.

Change-Id: I44e7bfa5ab717d439ea1d0ee9ddb7b2c40bb95a4
This commit is contained in:
Tao Bao 2016-10-25 14:17:26 -07:00
parent 3f4030e0ef
commit 36c3511952
11 changed files with 413 additions and 274 deletions

View file

@ -68,21 +68,41 @@ LOCAL_STATIC_LIBRARIES += libcrypto libbz libz
LOCAL_CFLAGS := -Werror
include $(BUILD_HOST_STATIC_LIBRARY)
# applypatch (executable)
# libapplypatch_modes (static library)
# ===============================
include $(CLEAR_VARS)
LOCAL_CLANG := true
LOCAL_SRC_FILES := main.cpp
LOCAL_SRC_FILES := \
applypatch_modes.cpp
LOCAL_MODULE := libapplypatch_modes
LOCAL_C_INCLUDES := bootable/recovery
LOCAL_STATIC_LIBRARIES := \
libapplypatch \
libbase \
libedify \
libcrypto
LOCAL_CFLAGS := -Werror
include $(BUILD_STATIC_LIBRARY)
# applypatch (target executable)
# ===============================
include $(CLEAR_VARS)
LOCAL_CLANG := true
LOCAL_SRC_FILES := applypatch_main.cpp
LOCAL_MODULE := applypatch
LOCAL_C_INCLUDES += bootable/recovery
LOCAL_STATIC_LIBRARIES += \
LOCAL_C_INCLUDES := bootable/recovery
LOCAL_STATIC_LIBRARIES := \
libapplypatch_modes \
libapplypatch \
libbase \
libedify \
libotafault \
libcrypto \
libbz
LOCAL_SHARED_LIBRARIES += libbase libz libcutils libc
LOCAL_SHARED_LIBRARIES := \
libbase \
libz \
libcutils
LOCAL_CFLAGS := -Werror
include $(BUILD_EXECUTABLE)

View file

@ -0,0 +1,28 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "applypatch_modes.h"
// This program (applypatch) applies binary patches to files in a way that
// is safe (the original file is not touched until we have the desired
// replacement for it) and idempotent (it's okay to run this program
// multiple times).
//
// See the comments to applypatch_modes() function.
int main(int argc, char** argv) {
return applypatch_modes(argc, const_cast<const char**>(argv));
}

View file

@ -14,6 +14,8 @@
* limitations under the License.
*/
#include "applypatch_modes.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -23,12 +25,14 @@
#include <string>
#include <vector>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <openssl/sha.h>
#include "applypatch/applypatch.h"
#include "edify/expr.h"
static int CheckMode(int argc, char** argv) {
static int CheckMode(int argc, const char** argv) {
if (argc < 3) {
return 2;
}
@ -40,44 +44,42 @@ static int CheckMode(int argc, char** argv) {
return applypatch_check(argv[2], sha1);
}
static int SpaceMode(int argc, char** argv) {
static int SpaceMode(int argc, const char** argv) {
if (argc != 3) {
return 2;
}
char* endptr;
size_t bytes = strtol(argv[2], &endptr, 10);
if (bytes == 0 && endptr == argv[2]) {
size_t bytes;
if (!android::base::ParseUint(argv[2], &bytes) || bytes == 0) {
printf("can't parse \"%s\" as byte count\n\n", argv[2]);
return 1;
}
return CacheSizeCheck(bytes);
}
// Parse arguments (which should be of the form "<sha1>:<filename>"
// into the new parallel arrays *sha1s and *files.Returns true on
// success.
static bool ParsePatchArgs(int argc, char** argv, std::vector<std::string>* sha1s,
// Parse arguments (which should be of the form "<sha1>:<filename>" into the
// new parallel arrays *sha1s and *files. Returns true on success.
static bool ParsePatchArgs(int argc, const char** argv, std::vector<std::string>* sha1s,
std::vector<FileContents>* files) {
if (sha1s == nullptr) {
return false;
}
for (int i = 0; i < argc; ++i) {
uint8_t digest[SHA_DIGEST_LENGTH];
char* colon = strchr(argv[i], ':');
if (colon == nullptr) {
printf("no ':' in patch argument \"%s\"\n", argv[i]);
std::vector<std::string> pieces = android::base::Split(argv[i], ":");
if (pieces.size() != 2) {
printf("failed to parse patch argument \"%s\"\n", argv[i]);
return false;
}
*colon = '\0';
++colon;
if (ParseSha1(argv[i], digest) != 0) {
uint8_t digest[SHA_DIGEST_LENGTH];
if (ParseSha1(pieces[0].c_str(), digest) != 0) {
printf("failed to parse sha1 \"%s\"\n", argv[i]);
return false;
}
sha1s->push_back(argv[i]);
sha1s->push_back(pieces[0]);
FileContents fc;
if (LoadFileContents(colon, &fc) != 0) {
if (LoadFileContents(pieces[1].c_str(), &fc) != 0) {
return false;
}
files->push_back(std::move(fc));
@ -90,7 +92,7 @@ static int FlashMode(const char* src_filename, const char* tgt_filename,
return applypatch_flash(src_filename, tgt_filename, tgt_sha1, tgt_size);
}
static int PatchMode(int argc, char** argv) {
static int PatchMode(int argc, const char** argv) {
FileContents bonusFc;
Value bonus(VAL_INVALID, "");
@ -109,9 +111,8 @@ static int PatchMode(int argc, char** argv) {
return 2;
}
char* endptr;
size_t target_size = strtol(argv[4], &endptr, 10);
if (target_size == 0 && endptr == argv[4]) {
size_t target_size;
if (!android::base::ParseUint(argv[4], &target_size) || target_size == 0) {
printf("can't parse \"%s\" as byte count\n\n", argv[4]);
return 1;
}
@ -124,6 +125,7 @@ static int PatchMode(int argc, char** argv) {
}
return FlashMode(argv[1], argv[2], argv[3], target_size);
}
std::vector<std::string> sha1s;
std::vector<FileContents> files;
if (!ParsePatchArgs(argc-5, argv+5, &sha1s, &files)) {
@ -139,8 +141,8 @@ static int PatchMode(int argc, char** argv) {
return applypatch(argv[1], argv[2], argv[3], target_size, sha1s, patches, &bonus);
}
// This program applies binary patches to files in a way that is safe
// (the original file is not touched until we have the desired
// This program (applypatch) applies binary patches to files in a way that
// is safe (the original file is not touched until we have the desired
// replacement for it) and idempotent (it's okay to run this program
// multiple times).
//
@ -166,7 +168,7 @@ static int PatchMode(int argc, char** argv) {
// to read the source data. See the comments for the
// LoadPartitionContents() function for the format of such a filename.
int main(int argc, char** argv) {
int applypatch_modes(int argc, const char** argv) {
if (argc < 2) {
usage:
printf(

View file

@ -0,0 +1,22 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _APPLYPATCH_MODES_H
#define _APPLYPATCH_MODES_H
int applypatch_modes(int argc, const char** argv);
#endif // _APPLYPATCH_MODES_H

View file

@ -43,7 +43,7 @@ include $(BUILD_NATIVE_TEST)
# Component tests
include $(CLEAR_VARS)
LOCAL_CLANG := true
LOCAL_CFLAGS += -Wno-unused-parameter -Werror
LOCAL_CFLAGS := -Werror
LOCAL_ADDITIONAL_DEPENDENCIES := $(LOCAL_PATH)/Android.mk
LOCAL_MODULE := recovery_component_test
LOCAL_C_INCLUDES := bootable/recovery
@ -63,6 +63,7 @@ tune2fs_static_libraries := \
libext2fs
LOCAL_STATIC_LIBRARIES := \
libapplypatch_modes \
libapplypatch \
libedify \
libotafault \

View file

@ -33,149 +33,155 @@
#include <openssl/sha.h>
#include "applypatch/applypatch.h"
#include "applypatch/applypatch_modes.h"
#include "common/test_constants.h"
#include "print_sha1.h"
static const std::string DATA_PATH = getenv("ANDROID_DATA");
static const std::string TESTDATA_PATH = "/recovery/testdata";
static void sha1sum(const std::string& fname, std::string* sha1) {
ASSERT_NE(nullptr, sha1);
static void sha1sum(const std::string& fname, std::string* sha1, size_t* fsize = nullptr) {
ASSERT_NE(nullptr, sha1);
std::string data;
ASSERT_TRUE(android::base::ReadFileToString(fname, &data));
std::string data;
ASSERT_TRUE(android::base::ReadFileToString(fname, &data));
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(data.c_str()), data.size(), digest);
*sha1 = print_sha1(digest);
if (fsize != nullptr) {
*fsize = data.size();
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(data.c_str()), data.size(), digest);
*sha1 = print_sha1(digest);
}
static void mangle_file(const std::string& fname) {
std::string content;
content.reserve(1024);
for (size_t i = 0; i < 1024; i++) {
content[i] = rand() % 256;
}
ASSERT_TRUE(android::base::WriteStringToFile(content, fname));
std::string content;
content.reserve(1024);
for (size_t i = 0; i < 1024; i++) {
content[i] = rand() % 256;
}
ASSERT_TRUE(android::base::WriteStringToFile(content, fname));
}
static bool file_cmp(const std::string& f1, const std::string& f2) {
std::string c1;
android::base::ReadFileToString(f1, &c1);
std::string c2;
android::base::ReadFileToString(f2, &c2);
return c1 == c2;
std::string c1;
android::base::ReadFileToString(f1, &c1);
std::string c2;
android::base::ReadFileToString(f2, &c2);
return c1 == c2;
}
static std::string from_testdata_base(const std::string& fname) {
return DATA_PATH + NATIVE_TEST_PATH + TESTDATA_PATH + "/" + fname;
return DATA_PATH + NATIVE_TEST_PATH + TESTDATA_PATH + "/" + fname;
}
class ApplyPatchTest : public ::testing::Test {
public:
static void SetUpTestCase() {
// set up files
old_file = from_testdata_base("old.file");
new_file = from_testdata_base("new.file");
patch_file = from_testdata_base("patch.bsdiff");
rand_file = "/cache/applypatch_test_rand.file";
cache_file = "/cache/saved.file";
public:
static void SetUpTestCase() {
// set up files
old_file = from_testdata_base("old.file");
new_file = from_testdata_base("new.file");
patch_file = from_testdata_base("patch.bsdiff");
rand_file = "/cache/applypatch_test_rand.file";
cache_file = "/cache/saved.file";
// write stuff to rand_file
ASSERT_TRUE(android::base::WriteStringToFile("hello", rand_file));
// write stuff to rand_file
ASSERT_TRUE(android::base::WriteStringToFile("hello", rand_file));
// set up SHA constants
sha1sum(old_file, &old_sha1);
sha1sum(new_file, &new_sha1);
srand(time(NULL));
bad_sha1_a = android::base::StringPrintf("%040x", rand());
bad_sha1_b = android::base::StringPrintf("%040x", rand());
// set up SHA constants
sha1sum(old_file, &old_sha1);
sha1sum(new_file, &new_sha1);
srand(time(nullptr));
bad_sha1_a = android::base::StringPrintf("%040x", rand());
bad_sha1_b = android::base::StringPrintf("%040x", rand());
struct stat st;
stat(&new_file[0], &st);
new_size = st.st_size;
}
struct stat st;
stat(&new_file[0], &st);
new_size = st.st_size;
}
static std::string old_file;
static std::string new_file;
static std::string rand_file;
static std::string cache_file;
static std::string patch_file;
static std::string old_file;
static std::string new_file;
static std::string rand_file;
static std::string cache_file;
static std::string patch_file;
static std::string old_sha1;
static std::string new_sha1;
static std::string bad_sha1_a;
static std::string bad_sha1_b;
static std::string old_sha1;
static std::string new_sha1;
static std::string bad_sha1_a;
static std::string bad_sha1_b;
static size_t new_size;
static size_t new_size;
};
std::string ApplyPatchTest::old_file;
std::string ApplyPatchTest::new_file;
static void cp(const std::string& src, const std::string& tgt) {
std::string cmd = "cp " + src + " " + tgt;
system(&cmd[0]);
std::string cmd = "cp " + src + " " + tgt;
system(cmd.c_str());
}
static void backup_old() {
cp(ApplyPatchTest::old_file, ApplyPatchTest::cache_file);
cp(ApplyPatchTest::old_file, ApplyPatchTest::cache_file);
}
static void restore_old() {
cp(ApplyPatchTest::cache_file, ApplyPatchTest::old_file);
cp(ApplyPatchTest::cache_file, ApplyPatchTest::old_file);
}
class ApplyPatchCacheTest : public ApplyPatchTest {
public:
virtual void SetUp() {
backup_old();
}
public:
virtual void SetUp() {
backup_old();
}
virtual void TearDown() {
restore_old();
}
virtual void TearDown() {
restore_old();
}
};
class ApplyPatchFullTest : public ApplyPatchCacheTest {
public:
static void SetUpTestCase() {
ApplyPatchTest::SetUpTestCase();
public:
static void SetUpTestCase() {
ApplyPatchTest::SetUpTestCase();
output_f = new TemporaryFile();
output_loc = std::string(output_f->path);
output_f = new TemporaryFile();
output_loc = std::string(output_f->path);
struct FileContents fc;
struct FileContents fc;
ASSERT_EQ(0, LoadFileContents(&rand_file[0], &fc));
patches.push_back(
std::make_unique<Value>(VAL_BLOB, std::string(fc.data.begin(), fc.data.end())));
ASSERT_EQ(0, LoadFileContents(&rand_file[0], &fc));
patches.push_back(
std::make_unique<Value>(VAL_BLOB, std::string(fc.data.begin(), fc.data.end())));
ASSERT_EQ(0, LoadFileContents(&patch_file[0], &fc));
patches.push_back(
std::make_unique<Value>(VAL_BLOB, std::string(fc.data.begin(), fc.data.end())));
}
ASSERT_EQ(0, LoadFileContents(&patch_file[0], &fc));
patches.push_back(
std::make_unique<Value>(VAL_BLOB, std::string(fc.data.begin(), fc.data.end())));
}
static void TearDownTestCase() {
delete output_f;
}
static void TearDownTestCase() {
delete output_f;
patches.clear();
}
static std::vector<std::unique_ptr<Value>> patches;
static TemporaryFile* output_f;
static std::string output_loc;
static std::vector<std::unique_ptr<Value>> patches;
static TemporaryFile* output_f;
static std::string output_loc;
};
class ApplyPatchDoubleCacheTest : public ApplyPatchFullTest {
public:
virtual void SetUp() {
ApplyPatchCacheTest::SetUp();
cp(cache_file, "/cache/reallysaved.file");
}
public:
virtual void SetUp() {
ApplyPatchCacheTest::SetUp();
cp(cache_file, "/cache/reallysaved.file");
}
virtual void TearDown() {
cp("/cache/reallysaved.file", cache_file);
ApplyPatchCacheTest::TearDown();
}
virtual void TearDown() {
cp("/cache/reallysaved.file", cache_file);
ApplyPatchCacheTest::TearDown();
}
};
std::string ApplyPatchTest::rand_file;
@ -193,203 +199,263 @@ TemporaryFile* ApplyPatchFullTest::output_f;
std::string ApplyPatchFullTest::output_loc;
TEST_F(ApplyPatchTest, CheckModeSkip) {
std::vector<std::string> sha1s;
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
std::vector<std::string> sha1s;
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeSingle) {
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeMultiple) {
std::vector<std::string> sha1s = {
bad_sha1_a,
old_sha1,
bad_sha1_b
};
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeFailure) {
std::vector<std::string> sha1s = {
bad_sha1_a,
bad_sha1_b
};
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
std::vector<std::string> sha1s = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedSingle) {
mangle_file(old_file);
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
mangle_file(old_file);
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedMultiple) {
mangle_file(old_file);
std::vector<std::string> sha1s = {
bad_sha1_a,
old_sha1,
bad_sha1_b
};
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
mangle_file(old_file);
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedFailure) {
mangle_file(old_file);
std::vector<std::string> sha1s = {
bad_sha1_a,
bad_sha1_b
};
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
mangle_file(old_file);
std::vector<std::string> sha1s = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheMissingSingle) {
unlink(&old_file[0]);
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
unlink(&old_file[0]);
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheMissingMultiple) {
unlink(&old_file[0]);
std::vector<std::string> sha1s = {
bad_sha1_a,
old_sha1,
bad_sha1_b
};
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
unlink(&old_file[0]);
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheMissingFailure) {
unlink(&old_file[0]);
std::vector<std::string> sha1s = {
bad_sha1_a,
bad_sha1_b
};
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
unlink(&old_file[0]);
std::vector<std::string> sha1s = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchFullTest, ApplyInPlace) {
std::vector<std::string> sha1s = {
bad_sha1_a,
old_sha1
};
int ap_result = applypatch(&old_file[0],
"-",
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr);
ASSERT_EQ(0, ap_result);
ASSERT_TRUE(file_cmp(old_file, new_file));
// reapply, applypatch is idempotent so it should succeed
ap_result = applypatch(&old_file[0],
"-",
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr);
ASSERT_EQ(0, ap_result);
ASSERT_TRUE(file_cmp(old_file, new_file));
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
ASSERT_EQ(0, applypatch(&old_file[0], "-", &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(old_file, new_file));
// reapply, applypatch is idempotent so it should succeed
ASSERT_EQ(0, applypatch(&old_file[0], "-", &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(old_file, new_file));
}
TEST_F(ApplyPatchFullTest, ApplyInNewLocation) {
std::vector<std::string> sha1s = {
bad_sha1_a,
old_sha1
};
// Apply bsdiff patch to new location.
ASSERT_EQ(0, applypatch(&old_file[0],
&output_loc[0],
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
// Apply bsdiff patch to new location.
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
// Reapply to the same location.
ASSERT_EQ(0, applypatch(&old_file[0],
&output_loc[0],
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
// Reapply to the same location.
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
}
TEST_F(ApplyPatchFullTest, ApplyCorruptedInNewLocation) {
std::vector<std::string> sha1s = {
bad_sha1_a,
old_sha1
};
// Apply bsdiff patch to new location with corrupted source.
mangle_file(old_file);
int ap_result = applypatch(&old_file[0],
&output_loc[0],
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr);
ASSERT_EQ(0, ap_result);
ASSERT_TRUE(file_cmp(output_loc, new_file));
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
// Apply bsdiff patch to new location with corrupted source.
mangle_file(old_file);
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
// Reapply bsdiff patch to new location with corrupted source.
ap_result = applypatch(&old_file[0],
&output_loc[0],
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr);
ASSERT_EQ(0, ap_result);
ASSERT_TRUE(file_cmp(output_loc, new_file));
// Reapply bsdiff patch to new location with corrupted source.
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
}
TEST_F(ApplyPatchDoubleCacheTest, ApplyDoubleCorruptedInNewLocation) {
std::vector<std::string> sha1s = {
bad_sha1_a,
old_sha1
};
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
// Apply bsdiff patch to new location with corrupted source and copy (no new file).
// Expected to fail.
mangle_file(old_file);
mangle_file(cache_file);
int ap_result = applypatch(&old_file[0],
&output_loc[0],
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr);
ASSERT_NE(0, ap_result);
ASSERT_FALSE(file_cmp(output_loc, new_file));
// Apply bsdiff patch to new location with corrupted source and copy (no new file).
// Expected to fail.
mangle_file(old_file);
mangle_file(cache_file);
ASSERT_NE(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_FALSE(file_cmp(output_loc, new_file));
// Expected to fail again on retry.
ap_result = applypatch(&old_file[0],
&output_loc[0],
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr);
ASSERT_NE(0, ap_result);
ASSERT_FALSE(file_cmp(output_loc, new_file));
// Expected to fail again on retry.
ASSERT_NE(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_FALSE(file_cmp(output_loc, new_file));
// Expected to fail with incorrect new file.
mangle_file(output_loc);
ap_result = applypatch(&old_file[0],
&output_loc[0],
&new_sha1[0],
new_size,
sha1s,
patches,
nullptr);
ASSERT_NE(0, ap_result);
ASSERT_FALSE(file_cmp(output_loc, new_file));
// Expected to fail with incorrect new file.
mangle_file(output_loc);
ASSERT_NE(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_FALSE(file_cmp(output_loc, new_file));
}
TEST(ApplyPatchModes, InvalidArgs) {
// At least two args (including the filename).
ASSERT_EQ(2, applypatch_modes(1, (const char* []){ "applypatch" }));
// Unrecognized args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-x" }));
}
TEST(ApplyPatchModes, PatchMode) {
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t recovery_img_size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &recovery_img_size);
std::string bonus_file = from_testdata_base("bonus.file");
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size> <src-sha1>:<patch>
TemporaryFile tmp1;
std::vector<const char*> args = {
"applypatch",
"-b",
bonus_file.c_str(),
boot_img.c_str(),
tmp1.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot.p")).c_str()
};
ASSERT_EQ(0, applypatch_modes(args.size(), args.data()));
// applypatch <src-file> <tgt-file> <tgt-sha1> <tgt-size> <src-sha1>:<patch>
TemporaryFile tmp2;
std::vector<const char*> args2 = {
"applypatch",
boot_img.c_str(),
tmp2.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot-with-bonus.p")).c_str()
};
ASSERT_EQ(0, applypatch_modes(args2.size(), args2.data()));
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size> \
// <src-sha1-fake>:<patch1> <src-sha1>:<patch2>
TemporaryFile tmp3;
std::string bad_sha1_a = android::base::StringPrintf("%040x", rand());
std::string bad_sha1_b = android::base::StringPrintf("%040x", rand());
std::vector<const char*> args3 = {
"applypatch",
"-b",
bonus_file.c_str(),
boot_img.c_str(),
tmp3.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
(bad_sha1_a + ":" + from_testdata_base("recovery-from-boot.p")).c_str(),
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot.p")).c_str(),
(bad_sha1_b + ":" + from_testdata_base("recovery-from-boot.p")).c_str(),
};
ASSERT_EQ(0, applypatch_modes(args3.size(), args3.data()));
}
TEST(ApplyPatchModes, PatchModeInvalidArgs) {
// Invalid bonus file.
ASSERT_NE(0, applypatch_modes(3, (const char* []){ "applypatch", "-b", "/doesntexist" }));
std::string bonus_file = from_testdata_base("bonus.file");
// With bonus file, but missing args.
ASSERT_EQ(2, applypatch_modes(3, (const char* []){ "applypatch", "-b", bonus_file.c_str() }));
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t recovery_img_size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &recovery_img_size);
// Bonus file is not supported in flash mode.
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size>
TemporaryFile tmp4;
std::vector<const char*> args4 = {
"applypatch",
"-b",
bonus_file.c_str(),
boot_img.c_str(),
tmp4.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str() };
ASSERT_NE(0, applypatch_modes(args4.size(), args4.data()));
// Failed to parse patch args.
TemporaryFile tmp5;
std::vector<const char*> args5 = {
"applypatch",
boot_img.c_str(),
tmp5.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
("invalid-sha1:filename" + from_testdata_base("recovery-from-boot-with-bonus.p")).c_str(),
};
ASSERT_NE(0, applypatch_modes(args5.size(), args5.data()));
// Target size cannot be zero.
TemporaryFile tmp6;
std::vector<const char*> args6 = {
"applypatch",
boot_img.c_str(),
tmp6.path,
recovery_img_sha1.c_str(),
"0", // target size
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot-with-bonus.p")).c_str()
};
ASSERT_NE(0, applypatch_modes(args6.size(), args6.data()));
}
TEST(ApplyPatchModes, CheckModeInvalidArgs) {
// Insufficient args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-c" }));
}
TEST(ApplyPatchModes, SpaceModeInvalidArgs) {
// Insufficient args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-s" }));
// Invalid bytes arg.
ASSERT_EQ(1, applypatch_modes(3, (const char* []){ "applypatch", "-s", "x" }));
// 0 is invalid.
ASSERT_EQ(1, applypatch_modes(3, (const char* []){ "applypatch", "-s", "0" }));
// 0x10 is fine.
ASSERT_EQ(0, applypatch_modes(3, (const char* []){ "applypatch", "-s", "0x10" }));
}
TEST(ApplyPatchModes, ShowLicenses) {
ASSERT_EQ(0, applypatch_modes(2, (const char* []){ "applypatch", "-l" }));
}

BIN
tests/testdata/bonus.file vendored Normal file

Binary file not shown.

BIN
tests/testdata/boot.img vendored Normal file

Binary file not shown.

Binary file not shown.

BIN
tests/testdata/recovery-from-boot.p vendored Normal file

Binary file not shown.

BIN
tests/testdata/recovery.img vendored Normal file

Binary file not shown.