Move Image/ImageChunk/PatchChunk declaration into header files

1. Move the declaration of the Image classes to the header file to make
testing easier.
2. Also move rangeset.h to bootable/recovery to allow access in imgdiff.

Test: recovery component test
Change-Id: I68a863e60a3f2e7ae46ee48f48eb15391f5f4330
This commit is contained in:
Tianjie Xu 2017-08-17 17:50:56 -07:00
parent f7ad94313d
commit 57dd961995
6 changed files with 324 additions and 277 deletions

View file

@ -151,7 +151,8 @@ LOCAL_CFLAGS := \
LOCAL_STATIC_LIBRARIES := \ LOCAL_STATIC_LIBRARIES := \
$(libimgdiff_static_libraries) $(libimgdiff_static_libraries)
LOCAL_C_INCLUDES := \ LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include $(LOCAL_PATH)/include \
bootable/recovery
LOCAL_EXPORT_C_INCLUDE_DIRS := $(LOCAL_PATH)/include LOCAL_EXPORT_C_INCLUDE_DIRS := $(LOCAL_PATH)/include
include $(BUILD_STATIC_LIBRARY) include $(BUILD_STATIC_LIBRARY)
@ -166,7 +167,8 @@ LOCAL_CFLAGS := \
LOCAL_STATIC_LIBRARIES := \ LOCAL_STATIC_LIBRARIES := \
$(libimgdiff_static_libraries) $(libimgdiff_static_libraries)
LOCAL_C_INCLUDES := \ LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include $(LOCAL_PATH)/include \
bootable/recovery
LOCAL_EXPORT_C_INCLUDE_DIRS := $(LOCAL_PATH)/include LOCAL_EXPORT_C_INCLUDE_DIRS := $(LOCAL_PATH)/include
include $(BUILD_HOST_STATIC_LIBRARY) include $(BUILD_HOST_STATIC_LIBRARY)
@ -180,4 +182,7 @@ LOCAL_STATIC_LIBRARIES := \
libimgdiff \ libimgdiff \
$(libimgdiff_static_libraries) \ $(libimgdiff_static_libraries) \
libbz libbz
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
bootable/recovery
include $(BUILD_HOST_EXECUTABLE) include $(BUILD_HOST_EXECUTABLE)

View file

@ -140,11 +140,12 @@
#include <android-base/logging.h> #include <android-base/logging.h>
#include <android-base/memory.h> #include <android-base/memory.h>
#include <android-base/unique_fd.h> #include <android-base/unique_fd.h>
#include <ziparchive/zip_archive.h>
#include <bsdiff.h> #include <bsdiff.h>
#include <ziparchive/zip_archive.h>
#include <zlib.h> #include <zlib.h>
#include "applypatch/imgdiff_image.h"
using android::base::get_unaligned; using android::base::get_unaligned;
static constexpr auto BUFFER_SIZE = 0x8000; static constexpr auto BUFFER_SIZE = 0x8000;
@ -161,15 +162,8 @@ static inline bool Write4(int fd, int32_t value) {
return android::base::WriteFully(fd, &value, sizeof(int32_t)); return android::base::WriteFully(fd, &value, sizeof(int32_t));
} }
class ImageChunk { ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
public: size_t raw_data_len, std::string entry_name)
static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream.
static constexpr auto MEMLEVEL = 8; // the default value.
static constexpr auto METHOD = Z_DEFLATED;
static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len,
std::string entry_name = {})
: type_(type), : type_(type),
start_(start), start_(start),
input_file_ptr_(file_content), input_file_ptr_(file_content),
@ -179,82 +173,6 @@ class ImageChunk {
CHECK(file_content != nullptr) << "input file container can't be nullptr"; CHECK(file_content != nullptr) << "input file container can't be nullptr";
} }
int GetType() const {
return type_;
}
size_t GetRawDataLength() const {
return raw_data_len_;
}
const std::string& GetEntryName() const {
return entry_name_;
}
size_t GetStartOffset() const {
return start_;
}
int GetCompressLevel() const {
return compress_level_;
}
// CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
// the raw data.
const uint8_t * DataForPatch() const;
size_t DataLengthForPatch() const;
void Dump() const {
printf("type: %d, start: %zu, len: %zu, name: %s\n", type_, start_, DataLengthForPatch(),
entry_name_.c_str());
}
void SetUncompressedData(std::vector<uint8_t> data);
bool SetBonusData(const std::vector<uint8_t>& bonus_data);
bool operator==(const ImageChunk& other) const;
bool operator!=(const ImageChunk& other) const {
return !(*this == other);
}
/*
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob of uninterpreted data).
* The resulting patch will likely be about as big as the target file, but it lets us handle
* the case of images where some gzip chunks are reconstructible but others aren't (by treating
* the ones that aren't as normal chunks).
*/
void ChangeDeflateChunkToNormal();
/*
* Verify that we can reproduce exactly the same compressed data that we started with. Sets the
* level, method, windowBits, memLevel, and strategy fields in the chunk to the encoding
* parameters needed to produce the right output.
*/
bool ReconstructDeflateChunk();
bool IsAdjacentNormal(const ImageChunk& other) const;
void MergeAdjacentNormal(const ImageChunk& other);
/*
* Compute a bsdiff patch between |src| and |tgt|; Store the result in the patch_data.
* |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used
* repeatedly, pass nullptr if not needed.
*/
static bool MakePatch(const ImageChunk& tgt, const ImageChunk& src,
std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache);
private:
const uint8_t* GetRawData() const;
bool TryReconstruction(int level);
int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
size_t start_; // offset of chunk in the original input file
const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file
size_t raw_data_len_;
// deflate encoder parameters
int compress_level_;
// --- for CHUNK_DEFLATE chunks only: ---
std::vector<uint8_t> uncompressed_data_;
std::string entry_name_; // used for zip entries
};
const uint8_t* ImageChunk::GetRawData() const { const uint8_t* ImageChunk::GetRawData() const {
CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size()); CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
return input_file_ptr_->data() + start_; return input_file_ptr_->data() + start_;
@ -424,11 +342,7 @@ bool ImageChunk::TryReconstruction(int level) {
return true; return true;
} }
// PatchChunk stores the patch data between a source chunk and a target chunk. It also keeps track PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
// of the metadata of src&tgt chunks (e.g. offset, raw data length, uncompressed data length).
class PatchChunk {
public:
PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
: type_(tgt.GetType()), : type_(tgt.GetType()),
source_start_(src.GetStartOffset()), source_start_(src.GetStartOffset()),
source_len_(src.GetRawDataLength()), source_len_(src.GetRawDataLength()),
@ -440,7 +354,7 @@ class PatchChunk {
data_(std::move(data)) {} data_(std::move(data)) {}
// Construct a CHUNK_RAW patch from the target data directly. // Construct a CHUNK_RAW patch from the target data directly.
explicit PatchChunk(const ImageChunk& tgt) PatchChunk::PatchChunk(const ImageChunk& tgt)
: type_(CHUNK_RAW), : type_(CHUNK_RAW),
source_start_(0), source_start_(0),
source_len_(0), source_len_(0),
@ -451,31 +365,6 @@ class PatchChunk {
target_compress_level_(tgt.GetCompressLevel()), target_compress_level_(tgt.GetCompressLevel()),
data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {} data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {}
// Return true if raw data size is smaller than the patch size.
static bool RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size);
static bool WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd);
private:
size_t GetHeaderSize() const;
size_t WriteHeaderToFd(int fd, size_t offset) const;
// The patch chunk type is the same as the target chunk type. The only exception is we change
// the |type_| to CHUNK_RAW if target length is smaller than the patch size.
int type_;
size_t source_start_;
size_t source_len_;
size_t source_uncompressed_len_;
size_t target_start_; // offset of the target chunk within the target file
size_t target_len_;
size_t target_uncompressed_len_;
size_t target_compress_level_; // the deflate compression level of the target chunk.
std::vector<uint8_t> data_; // storage for the patch data
};
// Return true if raw data is smaller than the patch size. // Return true if raw data is smaller than the patch size.
bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) { bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
size_t target_len = tgt.GetRawDataLength(); size_t target_len = tgt.GetRawDataLength();
@ -574,60 +463,16 @@ bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks,
return true; return true;
} }
// Interface for zip_mode and image_mode images. We initialize the image from an input file and ImageChunk& Image::operator[](size_t i) {
// split the file content into a list of image chunks.
class Image {
public:
explicit Image(bool is_source) : is_source_(is_source) {}
virtual ~Image() {}
// Create a list of image chunks from input file.
virtual bool Initialize(const std::string& filename) = 0;
// Look for runs of adjacent normal chunks and compress them down into a single chunk. (Such
// runs can be produced when deflate chunks are changed to normal chunks.)
void MergeAdjacentNormalChunks();
// In zip mode, find the matching deflate source chunk by entry name. Search for normal chunks
// also if |find_normal| is true.
ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false);
const ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false) const;
void DumpChunks() const;
// Non const iterators to access the stored ImageChunks.
std::vector<ImageChunk>::iterator begin() {
return chunks_.begin();
}
std::vector<ImageChunk>::iterator end() {
return chunks_.end();
}
ImageChunk& operator[](size_t i) {
CHECK_LT(i, chunks_.size()); CHECK_LT(i, chunks_.size());
return chunks_[i]; return chunks_[i];
} }
const ImageChunk& operator[](size_t i) const { const ImageChunk& Image::operator[](size_t i) const {
CHECK_LT(i, chunks_.size()); CHECK_LT(i, chunks_.size());
return chunks_[i]; return chunks_[i];
} }
size_t NumOfChunks() const {
return chunks_.size();
}
protected:
bool ReadFile(const std::string& filename, std::vector<uint8_t>* file_content);
bool is_source_; // True if it's for source chunks.
std::vector<ImageChunk> chunks_; // Internal storage of ImageChunk.
std::vector<uint8_t> file_content_; // Store the whole input file in memory.
};
void Image::MergeAdjacentNormalChunks() { void Image::MergeAdjacentNormalChunks() {
size_t merged_last = 0, cur = 0; size_t merged_last = 0, cur = 0;
while (cur < chunks_.size()) { while (cur < chunks_.size()) {
@ -650,23 +495,6 @@ void Image::MergeAdjacentNormalChunks() {
} }
} }
const ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) const {
if (name.empty()) {
return nullptr;
}
for (auto& chunk : chunks_) {
if ((chunk.GetType() == CHUNK_DEFLATE || find_normal) && chunk.GetEntryName() == name) {
return &chunk;
}
}
return nullptr;
}
ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) {
return const_cast<ImageChunk*>(
static_cast<const Image*>(this)->FindChunkByName(name, find_normal));
}
void Image::DumpChunks() const { void Image::DumpChunks() const {
std::string type = is_source_ ? "source" : "target"; std::string type = is_source_ ? "source" : "target";
printf("Dumping chunks for %s\n", type.c_str()); printf("Dumping chunks for %s\n", type.c_str());
@ -701,39 +529,6 @@ bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_con
return true; return true;
} }
class ZipModeImage : public Image {
public:
explicit ZipModeImage(bool is_source) : Image(is_source) {}
bool Initialize(const std::string& filename) override;
const ImageChunk& PseudoSource() const {
CHECK(is_source_);
CHECK(pseudo_source_ != nullptr);
return *pseudo_source_;
}
// Verify that we can reconstruct the deflate chunks; also change the type to CHUNK_NORMAL if
// src and tgt are identical.
static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image);
// Compute the patch between tgt & src images, and write the data into |patch_name|.
static bool GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name);
private:
// Initialize image chunks based on the zip entries.
bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle);
// Add the a zip entry to the list.
bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry);
// Return the real size of the zip file. (omit the trailing zeros that used for alignment)
bool GetZipFileSize(size_t* input_file_size);
// The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in
// fact the whole source file.
std::unique_ptr<ImageChunk> pseudo_source_;
};
bool ZipModeImage::Initialize(const std::string& filename) { bool ZipModeImage::Initialize(const std::string& filename) {
if (!ReadFile(filename, &file_content_)) { if (!ReadFile(filename, &file_content_)) {
return false; return false;
@ -754,9 +549,6 @@ bool ZipModeImage::Initialize(const std::string& filename) {
return false; return false;
} }
if (is_source_) {
pseudo_source_ = std::make_unique<ImageChunk>(CHUNK_NORMAL, 0, &file_content_, zipfile_size);
}
if (!InitializeChunks(filename, handle)) { if (!InitializeChunks(filename, handle)) {
CloseArchive(handle); CloseArchive(handle);
return false; return false;
@ -895,6 +687,28 @@ bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
return false; return false;
} }
ImageChunk ZipModeImage::PseudoSource() const {
CHECK(is_source_);
return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size());
}
const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const {
if (name.empty()) {
return nullptr;
}
for (auto& chunk : chunks_) {
if ((chunk.GetType() == CHUNK_DEFLATE || find_normal) && chunk.GetEntryName() == name) {
return &chunk;
}
}
return nullptr;
}
ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) {
return const_cast<ImageChunk*>(
static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal));
}
bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) { bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
for (auto& tgt_chunk : *tgt_image) { for (auto& tgt_chunk : *tgt_image) {
if (tgt_chunk.GetType() != CHUNK_DEFLATE) { if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
@ -981,25 +795,6 @@ bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeI
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
} }
class ImageModeImage : public Image {
public:
explicit ImageModeImage(bool is_source) : Image(is_source) {}
// Initialize the image chunks list by searching the magic numbers in an image file.
bool Initialize(const std::string& filename) override;
bool SetBonusData(const std::vector<uint8_t>& bonus_data);
// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
// same sequence of deflate and normal chunks).
static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image);
// In image mode, generate patches against the given source chunks and bonus_data; write the
// result to |patch_name|.
static bool GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image,
const std::string& patch_name);
};
bool ImageModeImage::Initialize(const std::string& filename) { bool ImageModeImage::Initialize(const std::string& filename) {
if (!ReadFile(filename, &file_content_)) { if (!ReadFile(filename, &file_content_)) {
return false; return false;

View file

@ -0,0 +1,247 @@
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _APPLYPATCH_IMGDIFF_IMAGE_H
#define _APPLYPATCH_IMGDIFF_IMAGE_H
#include <stddef.h>
#include <stdio.h>
#include <sys/types.h>
#include <string>
#include <vector>
#include <bsdiff.h>
#include <ziparchive/zip_archive.h>
#include <zlib.h>
#include "imgdiff.h"
#include "rangeset.h"
class ImageChunk {
public:
static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream.
static constexpr auto MEMLEVEL = 8; // the default value.
static constexpr auto METHOD = Z_DEFLATED;
static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len,
std::string entry_name = {});
int GetType() const {
return type_;
}
size_t GetRawDataLength() const {
return raw_data_len_;
}
const std::string& GetEntryName() const {
return entry_name_;
}
size_t GetStartOffset() const {
return start_;
}
int GetCompressLevel() const {
return compress_level_;
}
// CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
// the raw data.
const uint8_t* DataForPatch() const;
size_t DataLengthForPatch() const;
void Dump() const {
printf("type: %d, start: %zu, len: %zu, name: %s\n", type_, start_, DataLengthForPatch(),
entry_name_.c_str());
}
void SetUncompressedData(std::vector<uint8_t> data);
bool SetBonusData(const std::vector<uint8_t>& bonus_data);
bool operator==(const ImageChunk& other) const;
bool operator!=(const ImageChunk& other) const {
return !(*this == other);
}
/*
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob of uninterpreted data).
* The resulting patch will likely be about as big as the target file, but it lets us handle
* the case of images where some gzip chunks are reconstructible but others aren't (by treating
* the ones that aren't as normal chunks).
*/
void ChangeDeflateChunkToNormal();
/*
* Verify that we can reproduce exactly the same compressed data that we started with. Sets the
* level, method, windowBits, memLevel, and strategy fields in the chunk to the encoding
* parameters needed to produce the right output.
*/
bool ReconstructDeflateChunk();
bool IsAdjacentNormal(const ImageChunk& other) const;
void MergeAdjacentNormal(const ImageChunk& other);
/*
* Compute a bsdiff patch between |src| and |tgt|; Store the result in the patch_data.
* |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used
* repeatedly, pass nullptr if not needed.
*/
static bool MakePatch(const ImageChunk& tgt, const ImageChunk& src,
std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache);
private:
const uint8_t* GetRawData() const;
bool TryReconstruction(int level);
int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
size_t start_; // offset of chunk in the original input file
const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file
size_t raw_data_len_;
// deflate encoder parameters
int compress_level_;
// --- for CHUNK_DEFLATE chunks only: ---
std::vector<uint8_t> uncompressed_data_;
std::string entry_name_; // used for zip entries
};
// PatchChunk stores the patch data between a source chunk and a target chunk. It also keeps track
// of the metadata of src&tgt chunks (e.g. offset, raw data length, uncompressed data length).
class PatchChunk {
public:
PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data);
// Construct a CHUNK_RAW patch from the target data directly.
explicit PatchChunk(const ImageChunk& tgt);
// Return true if raw data size is smaller than the patch size.
static bool RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size);
static bool WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd);
private:
size_t GetHeaderSize() const;
size_t WriteHeaderToFd(int fd, size_t offset) const;
// The patch chunk type is the same as the target chunk type. The only exception is we change
// the |type_| to CHUNK_RAW if target length is smaller than the patch size.
int type_;
size_t source_start_;
size_t source_len_;
size_t source_uncompressed_len_;
size_t target_start_; // offset of the target chunk within the target file
size_t target_len_;
size_t target_uncompressed_len_;
size_t target_compress_level_; // the deflate compression level of the target chunk.
std::vector<uint8_t> data_; // storage for the patch data
};
// Interface for zip_mode and image_mode images. We initialize the image from an input file and
// split the file content into a list of image chunks.
class Image {
public:
explicit Image(bool is_source) : is_source_(is_source) {}
virtual ~Image() {}
// Create a list of image chunks from input file.
virtual bool Initialize(const std::string& filename) = 0;
// Look for runs of adjacent normal chunks and compress them down into a single chunk. (Such
// runs can be produced when deflate chunks are changed to normal chunks.)
void MergeAdjacentNormalChunks();
void DumpChunks() const;
// Non const iterators to access the stored ImageChunks.
std::vector<ImageChunk>::iterator begin() {
return chunks_.begin();
}
std::vector<ImageChunk>::iterator end() {
return chunks_.end();
}
ImageChunk& operator[](size_t i);
const ImageChunk& operator[](size_t i) const;
size_t NumOfChunks() const {
return chunks_.size();
}
protected:
bool ReadFile(const std::string& filename, std::vector<uint8_t>* file_content);
bool is_source_; // True if it's for source chunks.
std::vector<ImageChunk> chunks_; // Internal storage of ImageChunk.
std::vector<uint8_t> file_content_; // Store the whole input file in memory.
};
class ZipModeImage : public Image {
public:
explicit ZipModeImage(bool is_source) : Image(is_source) {}
bool Initialize(const std::string& filename) override;
// The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in
// fact the whole source file.
ImageChunk PseudoSource() const;
// Find the matching deflate source chunk by entry name. Search for normal chunks also if
// |find_normal| is true.
ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false);
const ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false) const;
// Verify that we can reconstruct the deflate chunks; also change the type to CHUNK_NORMAL if
// src and tgt are identical.
static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image);
// Compute the patch between tgt & src images, and write the data into |patch_name|.
static bool GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name);
private:
// Initialize image chunks based on the zip entries.
bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle);
// Add the a zip entry to the list.
bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry);
// Return the real size of the zip file. (omit the trailing zeros that used for alignment)
bool GetZipFileSize(size_t* input_file_size);
};
class ImageModeImage : public Image {
public:
explicit ImageModeImage(bool is_source) : Image(is_source) {}
// Initialize the image chunks list by searching the magic numbers in an image file.
bool Initialize(const std::string& filename) override;
bool SetBonusData(const std::vector<uint8_t>& bonus_data);
// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
// same sequence of deflate and normal chunks).
static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image);
// In image mode, generate patches against the given source chunks and bonus_data; write the
// result to |patch_name|.
static bool GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image,
const std::string& patch_name);
};
#endif // _APPLYPATCH_IMGDIFF_IMAGE_H

View file

@ -266,13 +266,13 @@ class SortedRangeSet : public RangeSet {
new_block_start += (old_block_start - range.first); new_block_start += (old_block_start - range.first);
return (new_block_start * kBlockSize + old_offset % kBlockSize); return (new_block_start * kBlockSize + old_offset % kBlockSize);
} else { } else {
CHECK(false) <<"block_start " << old_block_start << " is missing between two ranges: " CHECK(false) << "block_start " << old_block_start
<< this->ToString(); << " is missing between two ranges: " << this->ToString();
return 0; return 0;
} }
} }
CHECK(false) <<"block_start " << old_block_start << " exceeds the limit of current RangeSet: " CHECK(false) << "block_start " << old_block_start
<< this->ToString(); << " exceeds the limit of current RangeSet: " << this->ToString();
return 0; return 0;
} }
}; };

View file

@ -21,7 +21,7 @@
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "updater/rangeset.h" #include "rangeset.h"
TEST(RangeSetTest, Parse_smoke) { TEST(RangeSetTest, Parse_smoke) {
RangeSet rs = RangeSet::Parse("2,1,10"); RangeSet rs = RangeSet::Parse("2,1,10");

View file

@ -53,8 +53,8 @@
#include "error_code.h" #include "error_code.h"
#include "ota_io.h" #include "ota_io.h"
#include "print_sha1.h" #include "print_sha1.h"
#include "rangeset.h"
#include "updater/install.h" #include "updater/install.h"
#include "updater/rangeset.h"
#include "updater/updater.h" #include "updater/updater.h"
// Set this to 0 to interpret 'erase' transfers to mean do a // Set this to 0 to interpret 'erase' transfers to mean do a