Merge "applypatch: Clean up LoadPartitionContents()."

am: c6ee8cf8df

Change-Id: I2c20eb8b2c8f5bba40e71f6b267152f3bfab0316
This commit is contained in:
Tao Bao 2016-11-17 20:14:40 +00:00 committed by android-build-merger
commit 9e4ba70b7f

View file

@ -14,6 +14,8 @@
* limitations under the License.
*/
#include "applypatch/applypatch.h"
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
@ -27,16 +29,18 @@
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <openssl/sha.h>
#include "openssl/sha.h"
#include "applypatch/applypatch.h"
#include "edify/expr.h"
#include "ota_io.h"
#include "print_sha1.h"
static int LoadPartitionContents(const char* filename, FileContents* file);
static int LoadPartitionContents(const std::string& filename, FileContents* file);
static ssize_t FileSink(const unsigned char* data, ssize_t len, void* token);
static int GenerateTarget(FileContents* source_file,
const Value* source_patch_value,
@ -48,39 +52,34 @@ static int GenerateTarget(FileContents* source_file,
size_t target_size,
const Value* bonus_data);
// Read a file into memory; store the file contents and associated
// metadata in *file.
//
// Read a file into memory; store the file contents and associated metadata in *file.
// Return 0 on success.
int LoadFileContents(const char* filename, FileContents* file) {
// A special 'filename' beginning with "EMMC:" means to
// load the contents of a partition.
if (strncmp(filename, "EMMC:", 5) == 0) {
return LoadPartitionContents(filename, file);
}
// A special 'filename' beginning with "EMMC:" means to load the contents of a partition.
if (strncmp(filename, "EMMC:", 5) == 0) {
return LoadPartitionContents(filename, file);
}
if (stat(filename, &file->st) != 0) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
return -1;
}
if (stat(filename, &file->st) == -1) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
return -1;
}
std::vector<unsigned char> data(file->st.st_size);
FILE* f = ota_fopen(filename, "rb");
if (f == NULL) {
printf("failed to open \"%s\": %s\n", filename, strerror(errno));
return -1;
}
std::vector<unsigned char> data(file->st.st_size);
std::unique_ptr<FILE, decltype(&ota_fclose)> f(ota_fopen(filename, "rb"), ota_fclose);
if (!f) {
printf("failed to open \"%s\": %s\n", filename, strerror(errno));
return -1;
}
size_t bytes_read = ota_fread(data.data(), 1, data.size(), f);
if (bytes_read != data.size()) {
printf("short read of \"%s\" (%zu bytes of %zu)\n", filename, bytes_read, data.size());
ota_fclose(f);
return -1;
}
ota_fclose(f);
file->data = std::move(data);
SHA1(file->data.data(), file->data.size(), file->sha1);
return 0;
size_t bytes_read = ota_fread(data.data(), 1, data.size(), f.get());
if (bytes_read != data.size()) {
printf("short read of \"%s\" (%zu bytes of %zu)\n", filename, bytes_read, data.size());
return -1;
}
file->data = std::move(data);
SHA1(file->data.data(), file->data.size(), file->sha1);
return 0;
}
// Load the contents of an EMMC partition into the provided
@ -97,114 +96,98 @@ int LoadFileContents(const char* filename, FileContents* file) {
// "end-of-file" marker), so the caller must specify the possible
// lengths and the hash of the data, and we'll do the load expecting
// to find one of those hashes.
static int LoadPartitionContents(const char* filename, FileContents* file) {
std::string copy(filename);
std::vector<std::string> pieces = android::base::Split(copy, ":");
if (pieces.size() < 4 || pieces.size() % 2 != 0) {
printf("LoadPartitionContents called with bad filename (%s)\n", filename);
static int LoadPartitionContents(const std::string& filename, FileContents* file) {
std::vector<std::string> pieces = android::base::Split(filename, ":");
if (pieces.size() < 4 || pieces.size() % 2 != 0 || pieces[0] != "EMMC") {
printf("LoadPartitionContents called with bad filename \"%s\"\n", filename.c_str());
return -1;
}
size_t pair_count = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename
std::vector<std::pair<size_t, std::string>> pairs;
for (size_t i = 0; i < pair_count; ++i) {
size_t size;
if (!android::base::ParseUint(pieces[i * 2 + 2], &size) || size == 0) {
printf("LoadPartitionContents called with bad size \"%s\"\n", pieces[i * 2 + 2].c_str());
return -1;
}
pairs.push_back({ size, pieces[i * 2 + 3] });
}
// Sort the pairs array so that they are in order of increasing size.
std::sort(pairs.begin(), pairs.end());
const char* partition = pieces[1].c_str();
std::unique_ptr<FILE, decltype(&ota_fclose)> dev(ota_fopen(partition, "rb"), ota_fclose);
if (!dev) {
printf("failed to open emmc partition \"%s\": %s\n", partition, strerror(errno));
return -1;
}
SHA_CTX sha_ctx;
SHA1_Init(&sha_ctx);
// Allocate enough memory to hold the largest size.
std::vector<unsigned char> buffer(pairs[pair_count - 1].first);
unsigned char* buffer_ptr = buffer.data();
size_t buffer_size = 0; // # bytes read so far
bool found = false;
for (const auto& pair : pairs) {
size_t current_size = pair.first;
const std::string& current_sha1 = pair.second;
// Read enough additional bytes to get us up to the next size. (Again,
// we're trying the possibilities in order of increasing size).
size_t next = current_size - buffer_size;
if (next > 0) {
size_t read = ota_fread(buffer_ptr, 1, next, dev.get());
if (next != read) {
printf("short read (%zu bytes of %zu) for partition \"%s\"\n", read, next, partition);
return -1;
}
SHA1_Update(&sha_ctx, buffer_ptr, read);
buffer_size += read;
buffer_ptr += read;
}
if (pieces[0] != "EMMC") {
printf("LoadPartitionContents called with bad filename (%s)\n", filename);
return -1;
}
const char* partition = pieces[1].c_str();
// Duplicate the SHA context and finalize the duplicate so we can
// check it against this pair's expected hash.
SHA_CTX temp_ctx;
memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX));
uint8_t sha_so_far[SHA_DIGEST_LENGTH];
SHA1_Final(sha_so_far, &temp_ctx);
size_t pairs = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename
std::vector<size_t> index(pairs);
std::vector<size_t> size(pairs);
std::vector<std::string> sha1sum(pairs);
for (size_t i = 0; i < pairs; ++i) {
size[i] = strtol(pieces[i*2+2].c_str(), NULL, 10);
if (size[i] == 0) {
printf("LoadPartitionContents called with bad size (%s)\n", filename);
return -1;
}
sha1sum[i] = pieces[i*2+3].c_str();
index[i] = i;
}
// Sort the index[] array so it indexes the pairs in order of increasing size.
sort(index.begin(), index.end(),
[&](const size_t& i, const size_t& j) {
return (size[i] < size[j]);
}
);
FILE* dev = ota_fopen(partition, "rb");
if (dev == NULL) {
printf("failed to open emmc partition \"%s\": %s\n", partition, strerror(errno));
return -1;
}
SHA_CTX sha_ctx;
SHA1_Init(&sha_ctx);
uint8_t parsed_sha[SHA_DIGEST_LENGTH];
// Allocate enough memory to hold the largest size.
std::vector<unsigned char> data(size[index[pairs-1]]);
char* p = reinterpret_cast<char*>(data.data());
size_t data_size = 0; // # bytes read so far
bool found = false;
for (size_t i = 0; i < pairs; ++i) {
// Read enough additional bytes to get us up to the next size. (Again,
// we're trying the possibilities in order of increasing size).
size_t next = size[index[i]] - data_size;
if (next > 0) {
size_t read = ota_fread(p, 1, next, dev);
if (next != read) {
printf("short read (%zu bytes of %zu) for partition \"%s\"\n",
read, next, partition);
return -1;
}
SHA1_Update(&sha_ctx, p, read);
data_size += read;
p += read;
}
// Duplicate the SHA context and finalize the duplicate so we can
// check it against this pair's expected hash.
SHA_CTX temp_ctx;
memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX));
uint8_t sha_so_far[SHA_DIGEST_LENGTH];
SHA1_Final(sha_so_far, &temp_ctx);
if (ParseSha1(sha1sum[index[i]].c_str(), parsed_sha) != 0) {
printf("failed to parse sha1 %s in %s\n", sha1sum[index[i]].c_str(), filename);
return -1;
}
if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) {
// we have a match. stop reading the partition; we'll return
// the data we've read so far.
printf("partition read matched size %zu sha %s\n",
size[index[i]], sha1sum[index[i]].c_str());
found = true;
break;
}
if (ParseSha1(current_sha1.c_str(), parsed_sha) != 0) {
printf("failed to parse SHA-1 %s in %s\n", current_sha1.c_str(), filename.c_str());
return -1;
}
ota_fclose(dev);
if (!found) {
// Ran off the end of the list of (size,sha1) pairs without finding a match.
printf("contents of partition \"%s\" didn't match %s\n", partition, filename);
return -1;
if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) {
// We have a match. Stop reading the partition; we'll return the data we've read so far.
printf("partition read matched size %zu SHA-1 %s\n", current_size, current_sha1.c_str());
found = true;
break;
}
}
SHA1_Final(file->sha1, &sha_ctx);
if (!found) {
// Ran off the end of the list of (size, sha1) pairs without finding a match.
printf("contents of partition \"%s\" didn't match %s\n", partition, filename.c_str());
return -1;
}
data.resize(data_size);
file->data = std::move(data);
// Fake some stat() info.
file->st.st_mode = 0644;
file->st.st_uid = 0;
file->st.st_gid = 0;
SHA1_Final(file->sha1, &sha_ctx);
return 0;
buffer.resize(buffer_size);
file->data = std::move(buffer);
// Fake some stat() info.
file->st.st_mode = 0644;
file->st.st_uid = 0;
file->st.st_gid = 0;
return 0;
}
@ -250,132 +233,125 @@ int SaveFileContents(const char* filename, const FileContents* file) {
// might contain multiple colons, but WriteToPartition() only uses the first
// two and ignores the rest. Return 0 on success.
int WriteToPartition(const unsigned char* data, size_t len, const char* target) {
std::string copy(target);
std::vector<std::string> pieces = android::base::Split(copy, ":");
std::vector<std::string> pieces = android::base::Split(std::string(target), ":");
if (pieces.size() < 2) {
printf("WriteToPartition called with bad target (%s)\n", target);
if (pieces.size() < 2 || pieces[0] != "EMMC") {
printf("WriteToPartition called with bad target (%s)\n", target);
return -1;
}
const char* partition = pieces[1].c_str();
size_t start = 0;
bool success = false;
int fd = ota_open(partition, O_RDWR | O_SYNC);
if (fd < 0) {
printf("failed to open %s: %s\n", partition, strerror(errno));
return -1;
}
for (size_t attempt = 0; attempt < 2; ++attempt) {
if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) {
printf("failed seek on %s: %s\n", partition, strerror(errno));
return -1;
}
while (start < len) {
size_t to_write = len - start;
if (to_write > 1 << 20) to_write = 1 << 20;
ssize_t written = TEMP_FAILURE_RETRY(ota_write(fd, data + start, to_write));
if (written == -1) {
printf("failed write writing to %s: %s\n", partition, strerror(errno));
return -1;
}
start += written;
}
if (pieces[0] != "EMMC") {
printf("WriteToPartition called with bad target (%s)\n", target);
return -1;
if (ota_fsync(fd) != 0) {
printf("failed to sync to %s (%s)\n", partition, strerror(errno));
return -1;
}
const char* partition = pieces[1].c_str();
size_t start = 0;
bool success = false;
int fd = ota_open(partition, O_RDWR | O_SYNC);
if (fd < 0) {
printf("failed to open %s: %s\n", partition, strerror(errno));
return -1;
}
for (size_t attempt = 0; attempt < 2; ++attempt) {
if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) {
printf("failed seek on %s: %s\n", partition, strerror(errno));
return -1;
}
while (start < len) {
size_t to_write = len - start;
if (to_write > 1<<20) to_write = 1<<20;
ssize_t written = TEMP_FAILURE_RETRY(ota_write(fd, data+start, to_write));
if (written == -1) {
printf("failed write writing to %s: %s\n", partition, strerror(errno));
return -1;
}
start += written;
}
if (ota_fsync(fd) != 0) {
printf("failed to sync to %s (%s)\n", partition, strerror(errno));
return -1;
}
if (ota_close(fd) != 0) {
printf("failed to close %s (%s)\n", partition, strerror(errno));
return -1;
}
fd = ota_open(partition, O_RDONLY);
if (fd < 0) {
printf("failed to reopen %s for verify (%s)\n", partition, strerror(errno));
return -1;
}
// Drop caches so our subsequent verification read
// won't just be reading the cache.
sync();
int dc = ota_open("/proc/sys/vm/drop_caches", O_WRONLY);
if (TEMP_FAILURE_RETRY(ota_write(dc, "3\n", 2)) == -1) {
printf("write to /proc/sys/vm/drop_caches failed: %s\n", strerror(errno));
} else {
printf(" caches dropped\n");
}
ota_close(dc);
sleep(1);
// verify
if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) {
printf("failed to seek back to beginning of %s: %s\n",
partition, strerror(errno));
return -1;
}
unsigned char buffer[4096];
start = len;
for (size_t p = 0; p < len; p += sizeof(buffer)) {
size_t to_read = len - p;
if (to_read > sizeof(buffer)) {
to_read = sizeof(buffer);
}
size_t so_far = 0;
while (so_far < to_read) {
ssize_t read_count =
TEMP_FAILURE_RETRY(ota_read(fd, buffer+so_far, to_read-so_far));
if (read_count == -1) {
printf("verify read error %s at %zu: %s\n",
partition, p, strerror(errno));
return -1;
} else if (read_count == 0) {
printf("verify read reached unexpected EOF, %s at %zu\n", partition, p);
return -1;
}
if (static_cast<size_t>(read_count) < to_read) {
printf("short verify read %s at %zu: %zd %zu %s\n",
partition, p, read_count, to_read, strerror(errno));
}
so_far += read_count;
}
if (memcmp(buffer, data+p, to_read) != 0) {
printf("verification failed starting at %zu\n", p);
start = p;
break;
}
}
if (start == len) {
printf("verification read succeeded (attempt %zu)\n", attempt+1);
success = true;
break;
}
}
if (!success) {
printf("failed to verify after all attempts\n");
return -1;
}
if (ota_close(fd) != 0) {
printf("error closing %s (%s)\n", partition, strerror(errno));
return -1;
printf("failed to close %s (%s)\n", partition, strerror(errno));
return -1;
}
fd = ota_open(partition, O_RDONLY);
if (fd < 0) {
printf("failed to reopen %s for verify (%s)\n", partition, strerror(errno));
return -1;
}
// Drop caches so our subsequent verification read won't just be reading the cache.
sync();
int dc = ota_open("/proc/sys/vm/drop_caches", O_WRONLY);
if (TEMP_FAILURE_RETRY(ota_write(dc, "3\n", 2)) == -1) {
printf("write to /proc/sys/vm/drop_caches failed: %s\n", strerror(errno));
} else {
printf(" caches dropped\n");
}
ota_close(dc);
sleep(1);
return 0;
// verify
if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) {
printf("failed to seek back to beginning of %s: %s\n", partition, strerror(errno));
return -1;
}
unsigned char buffer[4096];
start = len;
for (size_t p = 0; p < len; p += sizeof(buffer)) {
size_t to_read = len - p;
if (to_read > sizeof(buffer)) {
to_read = sizeof(buffer);
}
size_t so_far = 0;
while (so_far < to_read) {
ssize_t read_count = TEMP_FAILURE_RETRY(ota_read(fd, buffer + so_far, to_read - so_far));
if (read_count == -1) {
printf("verify read error %s at %zu: %s\n", partition, p, strerror(errno));
return -1;
} else if (read_count == 0) {
printf("verify read reached unexpected EOF, %s at %zu\n", partition, p);
return -1;
}
if (static_cast<size_t>(read_count) < to_read) {
printf("short verify read %s at %zu: %zd %zu %s\n", partition, p, read_count, to_read,
strerror(errno));
}
so_far += read_count;
}
if (memcmp(buffer, data + p, to_read) != 0) {
printf("verification failed starting at %zu\n", p);
start = p;
break;
}
}
if (start == len) {
printf("verification read succeeded (attempt %zu)\n", attempt + 1);
success = true;
break;
}
}
if (!success) {
printf("failed to verify after all attempts\n");
return -1;
}
if (ota_close(fd) != 0) {
printf("error closing %s (%s)\n", partition, strerror(errno));
return -1;
}
sync();
return 0;
}
// Take a string 'str' of 40 hex digits and parse it into the 20
// byte array 'digest'. 'str' may contain only the digest or be of
// the form "<digest>:<anything>". Return 0 on success, -1 on any
@ -409,48 +385,46 @@ int ParseSha1(const char* str, uint8_t* digest) {
// Return the index of the match on success, or -1 if no match is
// found.
int FindMatchingPatch(uint8_t* sha1, const std::vector<std::string>& patch_sha1_str) {
for (size_t i = 0; i < patch_sha1_str.size(); ++i) {
uint8_t patch_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(patch_sha1_str[i].c_str(), patch_sha1) == 0 &&
memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) {
return i;
}
for (size_t i = 0; i < patch_sha1_str.size(); ++i) {
uint8_t patch_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(patch_sha1_str[i].c_str(), patch_sha1) == 0 &&
memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) {
return i;
}
return -1;
}
return -1;
}
// Returns 0 if the contents of the file (argv[2]) or the cached file
// match any of the sha1's on the command line (argv[3:]). Returns
// nonzero otherwise.
int applypatch_check(const char* filename, const std::vector<std::string>& patch_sha1_str) {
FileContents file;
FileContents file;
// It's okay to specify no sha1s; the check will pass if the
// LoadFileContents is successful. (Useful for reading
// partitions, where the filename encodes the sha1s; no need to
// check them twice.)
if (LoadFileContents(filename, &file) != 0 ||
(patch_sha1_str.size() > 0 && FindMatchingPatch(file.sha1, patch_sha1_str) < 0)) {
printf("file \"%s\" doesn't have any of expected "
"sha1 sums; checking cache\n", filename);
// It's okay to specify no sha1s; the check will pass if the
// LoadFileContents is successful. (Useful for reading
// partitions, where the filename encodes the sha1s; no need to
// check them twice.)
if (LoadFileContents(filename, &file) != 0 ||
(!patch_sha1_str.empty() && FindMatchingPatch(file.sha1, patch_sha1_str) < 0)) {
printf("file \"%s\" doesn't have any of expected sha1 sums; checking cache\n", filename);
// If the source file is missing or corrupted, it might be because
// we were killed in the middle of patching it. A copy of it
// should have been made in CACHE_TEMP_SOURCE. If that file
// exists and matches the sha1 we're looking for, the check still
// passes.
if (LoadFileContents(CACHE_TEMP_SOURCE, &file) != 0) {
printf("failed to load cache file\n");
return 1;
}
if (FindMatchingPatch(file.sha1, patch_sha1_str) < 0) {
printf("cache bits don't match any sha1 for \"%s\"\n", filename);
return 1;
}
// If the source file is missing or corrupted, it might be because
// we were killed in the middle of patching it. A copy of it
// should have been made in CACHE_TEMP_SOURCE. If that file
// exists and matches the sha1 we're looking for, the check still
// passes.
if (LoadFileContents(CACHE_TEMP_SOURCE, &file) != 0) {
printf("failed to load cache file\n");
return 1;
}
return 0;
if (FindMatchingPatch(file.sha1, patch_sha1_str) < 0) {
printf("cache bits don't match any sha1 for \"%s\"\n", filename);
return 1;
}
}
return 0;
}
int ShowLicenses() {
@ -544,10 +518,8 @@ int applypatch(const char* source_filename,
return 1;
}
FileContents copy_file;
FileContents source_file;
const Value* source_patch_value = nullptr;
const Value* copy_patch_value = nullptr;
// We try to load the target file into the source_file object.
if (LoadFileContents(target_filename, &source_file) == 0) {
@ -575,6 +547,8 @@ int applypatch(const char* source_filename,
}
}
FileContents copy_file;
const Value* copy_patch_value = nullptr;
if (source_patch_value == nullptr) {
source_file.data.clear();
printf("source file is bad; trying copy\n");
@ -620,7 +594,6 @@ int applypatch_flash(const char* source_filename, const char* target_filename,
return 1;
}
FileContents source_file;
std::string target_str(target_filename);
std::vector<std::string> pieces = android::base::Split(target_str, ":");
@ -633,12 +606,13 @@ int applypatch_flash(const char* source_filename, const char* target_filename,
pieces.push_back(std::to_string(target_size));
pieces.push_back(target_sha1_str);
std::string fullname = android::base::Join(pieces, ':');
if (LoadPartitionContents(fullname.c_str(), &source_file) == 0 &&
FileContents source_file;
if (LoadPartitionContents(fullname, &source_file) == 0 &&
memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the image was already applied, this partition
// has the desired hash, nothing for us to do.
printf("already %s\n", short_sha1(target_sha1).c_str());
return 0;
// The early-exit case: the image was already applied, this partition
// has the desired hash, nothing for us to do.
printf("already %s\n", short_sha1(target_sha1).c_str());
return 0;
}
if (LoadFileContents(source_filename, &source_file) == 0) {