Merge "applypatch: Refactor applypatch()."

This commit is contained in:
Tao Bao 2018-08-31 21:24:31 +00:00 committed by Gerrit Code Review
commit af522672a2
7 changed files with 393 additions and 512 deletions

View file

@ -44,15 +44,15 @@
#include "otautil/paths.h"
#include "otautil/print_sha1.h"
static int LoadPartitionContents(const std::string& filename, FileContents* file);
static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch,
const std::string& target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data);
using namespace std::string_literals;
static bool GenerateTarget(const Partition& target, const FileContents& source_file,
const Value& patch, const Value* bonus_data);
int LoadFileContents(const std::string& filename, FileContents* file) {
// A special 'filename' beginning with "EMMC:" means to load the contents of a partition.
// No longer allow loading contents from eMMC partitions.
if (android::base::StartsWith(filename, "EMMC:")) {
return LoadPartitionContents(filename, file);
return -1;
}
std::string data;
@ -66,101 +66,44 @@ int LoadFileContents(const std::string& filename, FileContents* file) {
return 0;
}
// Loads the contents of an EMMC partition into the provided FileContents. filename should be a
// string of the form "EMMC:<partition_device>:...". The smallest size_n bytes for which that prefix
// of the partition contents has the corresponding sha1 hash will be loaded. It is acceptable for a
// size value to be repeated with different sha1s. Returns 0 on success.
//
// This complexity is needed because if an OTA installation is interrupted, the partition might
// contain either the source or the target data, which might be of different lengths. We need to
// know the length in order to read from a partition (there is no "end-of-file" marker), so the
// caller must specify the possible lengths and the hash of the data, and we'll do the load
// expecting to find one of those hashes.
static int LoadPartitionContents(const std::string& filename, FileContents* file) {
std::vector<std::string> pieces = android::base::Split(filename, ":");
if (pieces.size() < 4 || pieces.size() % 2 != 0 || pieces[0] != "EMMC") {
LOG(ERROR) << "LoadPartitionContents called with bad filename \"" << filename << "\"";
return -1;
// Reads the contents of a Partition to the given FileContents buffer.
static bool ReadPartitionToBuffer(const Partition& partition, FileContents* out,
bool check_backup) {
uint8_t expected_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(partition.hash, expected_sha1) != 0) {
LOG(ERROR) << "Failed to parse target hash \"" << partition.hash << "\"";
return false;
}
size_t pair_count = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename
std::vector<std::pair<size_t, std::string>> pairs;
for (size_t i = 0; i < pair_count; ++i) {
size_t size;
if (!android::base::ParseUint(pieces[i * 2 + 2], &size) || size == 0) {
LOG(ERROR) << "LoadPartitionContents called with bad size \"" << pieces[i * 2 + 2] << "\"";
return -1;
}
pairs.push_back({ size, pieces[i * 2 + 3] });
}
// Sort the pairs array so that they are in order of increasing size.
std::sort(pairs.begin(), pairs.end());
const char* partition = pieces[1].c_str();
android::base::unique_fd dev(open(partition, O_RDONLY));
if (dev == -1) {
android::base::unique_fd dev(open(partition.name.c_str(), O_RDONLY));
if (!dev) {
PLOG(ERROR) << "Failed to open eMMC partition \"" << partition << "\"";
return -1;
}
SHA_CTX sha_ctx;
SHA1_Init(&sha_ctx);
// Allocate enough memory to hold the largest size.
std::vector<unsigned char> buffer(pairs[pair_count - 1].first);
size_t offset = 0; // # bytes read so far
bool found = false;
for (const auto& pair : pairs) {
size_t current_size = pair.first;
const std::string& current_sha1 = pair.second;
// Read enough additional bytes to get us up to the next size. (Again,
// we're trying the possibilities in order of increasing size).
if (current_size - offset > 0) {
if (!android::base::ReadFully(dev, buffer.data() + offset, current_size - offset)) {
PLOG(ERROR) << "Failed to read " << current_size - offset << " bytes of data at offset "
<< offset << " for partition " << partition;
return -1;
} else {
std::vector<unsigned char> buffer(partition.size);
if (!android::base::ReadFully(dev, buffer.data(), buffer.size())) {
PLOG(ERROR) << "Failed to read " << buffer.size() << " bytes of data for partition "
<< partition;
} else {
SHA1(buffer.data(), buffer.size(), out->sha1);
if (memcmp(out->sha1, expected_sha1, SHA_DIGEST_LENGTH) == 0) {
out->data = std::move(buffer);
return true;
}
SHA1_Update(&sha_ctx, buffer.data() + offset, current_size - offset);
offset = current_size;
}
// Duplicate the SHA context and finalize the duplicate so we can
// check it against this pair's expected hash.
SHA_CTX temp_ctx;
memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX));
uint8_t sha_so_far[SHA_DIGEST_LENGTH];
SHA1_Final(sha_so_far, &temp_ctx);
uint8_t parsed_sha[SHA_DIGEST_LENGTH];
if (ParseSha1(current_sha1, parsed_sha) != 0) {
LOG(ERROR) << "Failed to parse SHA-1 \"" << current_sha1 << "\" in " << filename;
return -1;
}
if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) {
// We have a match. Stop reading the partition; we'll return the data we've read so far.
LOG(INFO) << "Partition read matched size " << current_size << " SHA-1 " << current_sha1;
found = true;
break;
}
}
if (!found) {
// Ran off the end of the list of (size, sha1) pairs without finding a match.
LOG(ERROR) << "Contents of partition \"" << partition << "\" didn't match " << filename;
return -1;
if (!check_backup) {
LOG(ERROR) << "Partition contents don't have the expected checksum";
return false;
}
SHA1_Final(file->sha1, &sha_ctx);
if (LoadFileContents(Paths::Get().cache_temp_source(), out) == 0 &&
memcmp(out->sha1, expected_sha1, SHA_DIGEST_LENGTH) == 0) {
return true;
}
buffer.resize(offset);
file->data = std::move(buffer);
return 0;
LOG(ERROR) << "Both of partition contents and backup don't have the expected checksum";
return false;
}
int SaveFileContents(const std::string& filename, const FileContents* file) {
@ -189,49 +132,42 @@ int SaveFileContents(const std::string& filename, const FileContents* file) {
return 0;
}
// Writes a memory buffer to 'target' partition, a string of the form
// "EMMC:<partition_device>[:...]". The target name might contain multiple colons, but
// WriteToPartition() only uses the first two and ignores the rest. Returns 0 on success.
static int WriteToPartition(const unsigned char* data, size_t len, const std::string& target) {
std::vector<std::string> pieces = android::base::Split(target, ":");
if (pieces.size() < 2 || pieces[0] != "EMMC") {
LOG(ERROR) << "WriteToPartition called with bad target \"" << target << "\"";
return -1;
}
// Writes a memory buffer to 'target' Partition.
static bool WriteBufferToPartition(const FileContents& file_contents, const Partition& partition) {
const unsigned char* data = file_contents.data.data();
size_t len = file_contents.data.size();
size_t start = 0;
bool success = false;
for (size_t attempt = 0; attempt < 2; ++attempt) {
std::string partition = pieces[1];
android::base::unique_fd fd(open(partition.c_str(), O_RDWR));
android::base::unique_fd fd(open(partition.name.c_str(), O_RDWR));
if (fd == -1) {
PLOG(ERROR) << "Failed to open \"" << partition << "\"";
return -1;
return false;
}
if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) {
PLOG(ERROR) << "Failed to seek to " << start << " on \"" << partition << "\"";
return -1;
return false;
}
if (!android::base::WriteFully(fd, data + start, len - start)) {
PLOG(ERROR) << "Failed to write " << len - start << " bytes to \"" << partition << "\"";
return -1;
return false;
}
if (fsync(fd) != 0) {
PLOG(ERROR) << "Failed to sync \"" << partition << "\"";
return -1;
return false;
}
if (close(fd.release()) != 0) {
PLOG(ERROR) << "Failed to close \"" << partition << "\"";
return -1;
return false;
}
fd.reset(open(partition.c_str(), O_RDONLY));
fd.reset(open(partition.name.c_str(), O_RDONLY));
if (fd == -1) {
PLOG(ERROR) << "Failed to reopen \"" << partition << "\" for verification";
return -1;
return false;
}
// Drop caches so our subsequent verification read won't just be reading the cache.
@ -247,7 +183,7 @@ static int WriteToPartition(const unsigned char* data, size_t len, const std::st
// Verify.
if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) {
PLOG(ERROR) << "Failed to seek to 0 on " << partition;
return -1;
return false;
}
unsigned char buffer[4096];
@ -260,7 +196,7 @@ static int WriteToPartition(const unsigned char* data, size_t len, const std::st
if (!android::base::ReadFully(fd, buffer, to_read)) {
PLOG(ERROR) << "Failed to verify-read " << partition << " at " << p;
return -1;
return false;
}
if (memcmp(buffer, data + p, to_read) != 0) {
@ -278,18 +214,18 @@ static int WriteToPartition(const unsigned char* data, size_t len, const std::st
if (close(fd.release()) != 0) {
PLOG(ERROR) << "Failed to close " << partition;
return -1;
return false;
}
}
if (!success) {
LOG(ERROR) << "Failed to verify after all attempts";
return -1;
return false;
}
sync();
return 0;
return true;
}
int ParseSha1(const std::string& str, uint8_t* digest) {
@ -317,44 +253,11 @@ int ParseSha1(const std::string& str, uint8_t* digest) {
return 0;
}
// Searches a vector of SHA-1 strings for one matching the given SHA-1. Returns the index of the
// match on success, or -1 if no match is found.
static int FindMatchingPatch(const uint8_t* sha1, const std::vector<std::string>& patch_sha1s) {
for (size_t i = 0; i < patch_sha1s.size(); ++i) {
uint8_t patch_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(patch_sha1s[i], patch_sha1) == 0 &&
memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) {
return i;
}
}
return -1;
}
int applypatch_check(const std::string& filename, const std::vector<std::string>& sha1s) {
if (!android::base::StartsWith(filename, "EMMC:")) {
return 1;
}
// The check will pass if LoadPartitionContents is successful, because the filename already
// encodes the desired SHA-1s.
FileContents file;
if (LoadPartitionContents(filename, &file) != 0) {
LOG(INFO) << "\"" << filename << "\" doesn't have any of expected SHA-1 sums; checking cache";
// If the partition is corrupted, it might be because we were killed in the middle of patching
// it. A copy should have been made in cache_temp_source. If that file exists and matches the
// SHA-1 we're looking for, the check still passes.
if (LoadFileContents(Paths::Get().cache_temp_source(), &file) != 0) {
LOG(ERROR) << "Failed to load cache file";
return 1;
}
if (FindMatchingPatch(file.sha1, sha1s) < 0) {
LOG(ERROR) << "The cache bits don't match any SHA-1 for \"" << filename << "\"";
return 1;
}
}
return 0;
bool PatchPartitionCheck(const Partition& target, const Partition& source) {
FileContents target_file;
FileContents source_file;
return (ReadPartitionToBuffer(target, &target_file, false) ||
ReadPartitionToBuffer(source, &source_file, true));
}
int ShowLicenses() {
@ -362,124 +265,81 @@ int ShowLicenses() {
return 0;
}
int applypatch(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t /* target_size */,
const std::vector<std::string>& patch_sha1s,
const std::vector<std::unique_ptr<Value>>& patch_data, const Value* bonus_data) {
LOG(INFO) << "Patching " << source_filename;
bool PatchPartition(const Partition& target, const Partition& source, const Value& patch,
const Value* bonus) {
LOG(INFO) << "Patching " << target.name;
if (target_filename[0] == '-' && target_filename[1] == '\0') {
target_filename = source_filename;
// We try to load and check against the target hash first.
FileContents target_file;
if (ReadPartitionToBuffer(target, &target_file, false)) {
// The early-exit case: the patch was already applied, this file has the desired hash, nothing
// for us to do.
LOG(INFO) << " already " << target.hash.substr(0, 8);
return true;
}
if (strncmp(target_filename, "EMMC:", 5) != 0) {
LOG(ERROR) << "Supporting patching EMMC targets only";
return 1;
}
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
LOG(ERROR) << "Failed to parse target SHA-1 \"" << target_sha1_str << "\"";
return 1;
}
// We try to load the target file into the source_file object.
FileContents source_file;
if (LoadFileContents(target_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the patch was already applied, this file has the desired hash, nothing
// for us to do.
LOG(INFO) << " already " << short_sha1(target_sha1);
return 0;
}
if (ReadPartitionToBuffer(source, &source_file, true)) {
return GenerateTarget(target, source_file, patch, bonus);
}
if (source_file.data.empty() ||
(target_filename != source_filename && strcmp(target_filename, source_filename) != 0)) {
// Need to load the source file: either we failed to load the target file, or we did but it's
// different from the expected.
source_file.data.clear();
LoadFileContents(source_filename, &source_file);
}
if (!source_file.data.empty()) {
int to_use = FindMatchingPatch(source_file.sha1, patch_sha1s);
if (to_use != -1) {
return GenerateTarget(source_file, patch_data[to_use], target_filename, target_sha1,
bonus_data);
}
}
LOG(INFO) << "Source file is bad; trying copy";
FileContents copy_file;
if (LoadFileContents(Paths::Get().cache_temp_source(), &copy_file) < 0) {
LOG(ERROR) << "Failed to read copy file";
return 1;
}
int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1s);
if (to_use == -1) {
LOG(ERROR) << "The copy on /cache doesn't match source SHA-1s either";
return 1;
}
return GenerateTarget(copy_file, patch_data[to_use], target_filename, target_sha1, bonus_data);
LOG(ERROR) << "Failed to find any match";
return false;
}
int applypatch_flash(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t target_size) {
LOG(INFO) << "Flashing " << target_filename;
bool FlashPartition(const Partition& partition, const std::string& source_filename) {
LOG(INFO) << "Flashing " << partition;
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
LOG(ERROR) << "Failed to parse target SHA-1 \"" << target_sha1_str << "\"";
return 1;
// We try to load and check against the target hash first.
FileContents target_file;
if (ReadPartitionToBuffer(partition, &target_file, false)) {
// The early-exit case: the patch was already applied, this file has the desired hash, nothing
// for us to do.
LOG(INFO) << " already " << partition.hash.substr(0, 8);
return true;
}
std::vector<std::string> pieces = android::base::Split(target_filename, ":");
if (pieces.size() != 4 || pieces[0] != "EMMC") {
LOG(ERROR) << "Invalid target name \"" << target_filename << "\"";
return 1;
}
// Load the target into the source_file object to see if already applied.
FileContents source_file;
if (LoadPartitionContents(target_filename, &source_file) == 0 &&
memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the image was already applied, this partition has the desired hash,
// nothing for us to do.
LOG(INFO) << " already " << short_sha1(target_sha1);
return 0;
if (LoadFileContents(source_filename, &source_file) != 0) {
LOG(ERROR) << "Failed to load source file";
return false;
}
if (LoadFileContents(source_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
// The source doesn't have desired checksum.
LOG(ERROR) << "source \"" << source_filename << "\" doesn't have expected SHA-1 sum";
LOG(ERROR) << "expected: " << short_sha1(target_sha1)
<< ", found: " << short_sha1(source_file.sha1);
return 1;
}
uint8_t expected_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(partition.hash, expected_sha1) != 0) {
LOG(ERROR) << "Failed to parse source hash \"" << partition.hash << "\"";
return false;
}
if (WriteToPartition(source_file.data.data(), target_size, target_filename) != 0) {
LOG(ERROR) << "Failed to write copied data to " << target_filename;
return 1;
if (memcmp(source_file.sha1, expected_sha1, SHA_DIGEST_LENGTH) != 0) {
// The source doesn't have desired checksum.
LOG(ERROR) << "source \"" << source_filename << "\" doesn't have expected SHA-1 sum";
LOG(ERROR) << "expected: " << partition.hash.substr(0, 8)
<< ", found: " << short_sha1(source_file.sha1);
return false;
}
return 0;
if (!WriteBufferToPartition(source_file, partition)) {
LOG(ERROR) << "Failed to write to " << partition;
return false;
}
return true;
}
static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch,
const std::string& target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data) {
if (patch->type != Value::Type::BLOB) {
static bool GenerateTarget(const Partition& target, const FileContents& source_file,
const Value& patch, const Value* bonus_data) {
uint8_t expected_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target.hash, expected_sha1) != 0) {
LOG(ERROR) << "Failed to parse target hash \"" << target.hash << "\"";
return false;
}
if (patch.type != Value::Type::BLOB) {
LOG(ERROR) << "patch is not a blob";
return 1;
return false;
}
const char* header = &patch->data[0];
size_t header_bytes_read = patch->data.size();
const char* header = patch.data.data();
size_t header_bytes_read = patch.data.size();
bool use_bsdiff = false;
if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) {
use_bsdiff = true;
@ -487,57 +347,53 @@ static int GenerateTarget(const FileContents& source_file, const std::unique_ptr
use_bsdiff = false;
} else {
LOG(ERROR) << "Unknown patch file format";
return 1;
return false;
}
CHECK(android::base::StartsWith(target_filename, "EMMC:"));
// We write the original source to cache, in case the partition write is interrupted.
if (!CheckAndFreeSpaceOnCache(source_file.data.size())) {
LOG(ERROR) << "Not enough free space on /cache";
return 1;
return false;
}
if (SaveFileContents(Paths::Get().cache_temp_source(), &source_file) < 0) {
LOG(ERROR) << "Failed to back up source file";
return 1;
return false;
}
// We store the decoded output in memory.
std::string memory_sink_str; // Don't need to reserve space.
FileContents patched;
SHA_CTX ctx;
SHA1_Init(&ctx);
SinkFn sink = [&memory_sink_str, &ctx](const unsigned char* data, size_t len) {
SinkFn sink = [&patched, &ctx](const unsigned char* data, size_t len) {
SHA1_Update(&ctx, data, len);
memory_sink_str.append(reinterpret_cast<const char*>(data), len);
patched.data.insert(patched.data.end(), data, data + len);
return len;
};
int result;
if (use_bsdiff) {
result = ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), *patch, 0, sink);
result = ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), patch, 0, sink);
} else {
result =
ApplyImagePatch(source_file.data.data(), source_file.data.size(), *patch, sink, bonus_data);
ApplyImagePatch(source_file.data.data(), source_file.data.size(), patch, sink, bonus_data);
}
if (result != 0) {
LOG(ERROR) << "Failed to apply the patch: " << result;
return 1;
return false;
}
uint8_t current_target_sha1[SHA_DIGEST_LENGTH];
SHA1_Final(current_target_sha1, &ctx);
if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
LOG(ERROR) << "Patching did not produce the expected SHA-1 of " << short_sha1(target_sha1);
SHA1_Final(patched.sha1, &ctx);
if (memcmp(patched.sha1, expected_sha1, SHA_DIGEST_LENGTH) != 0) {
LOG(ERROR) << "Patching did not produce the expected SHA-1 of " << short_sha1(expected_sha1);
LOG(ERROR) << "target size " << memory_sink_str.size() << " SHA-1 "
<< short_sha1(current_target_sha1);
LOG(ERROR) << "target size " << patched.data.size() << " SHA-1 " << short_sha1(patched.sha1);
LOG(ERROR) << "source size " << source_file.data.size() << " SHA-1 "
<< short_sha1(source_file.sha1);
uint8_t patch_digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(patch->data.data()), patch->data.size(), patch_digest);
LOG(ERROR) << "patch size " << patch->data.size() << " SHA-1 " << short_sha1(patch_digest);
SHA1(reinterpret_cast<const uint8_t*>(patch.data.data()), patch.data.size(), patch_digest);
LOG(ERROR) << "patch size " << patch.data.size() << " SHA-1 " << short_sha1(patch_digest);
if (bonus_data != nullptr) {
uint8_t bonus_digest[SHA_DIGEST_LENGTH];
@ -547,21 +403,53 @@ static int GenerateTarget(const FileContents& source_file, const std::unique_ptr
<< short_sha1(bonus_digest);
}
return 1;
} else {
LOG(INFO) << " now " << short_sha1(target_sha1);
return false;
}
LOG(INFO) << " now " << short_sha1(expected_sha1);
// Write back the temp file to the partition.
if (WriteToPartition(reinterpret_cast<const unsigned char*>(memory_sink_str.c_str()),
memory_sink_str.size(), target_filename) != 0) {
LOG(ERROR) << "Failed to write patched data to " << target_filename;
return 1;
if (!WriteBufferToPartition(patched, target)) {
LOG(ERROR) << "Failed to write patched data to " << target.name;
return false;
}
// Delete the backup copy of the source.
unlink(Paths::Get().cache_temp_source().c_str());
// Success!
return 0;
return true;
}
bool CheckPartition(const Partition& partition) {
FileContents target_file;
return ReadPartitionToBuffer(partition, &target_file, false);
}
Partition Partition::Parse(const std::string& input_str, std::string* err) {
std::vector<std::string> pieces = android::base::Split(input_str, ":");
if (pieces.size() != 4 || pieces[0] != "EMMC") {
*err = "Invalid number of tokens or non-eMMC target";
return {};
}
size_t size;
if (!android::base::ParseUint(pieces[2], &size) || size == 0) {
*err = "Failed to parse \"" + pieces[2] + "\" as byte count";
return {};
}
return Partition(pieces[1], size, pieces[3]);
}
std::string Partition::ToString() const {
if (*this) {
return "EMMC:"s + name + ":" + std::to_string(size) + ":" + hash;
}
return "<invalid-partition>";
}
std::ostream& operator<<(std::ostream& os, const Partition& partition) {
os << partition.ToString();
return os;
}

View file

@ -16,7 +16,10 @@
#include "applypatch_modes.h"
#include <android-base/logging.h>
// See the comments for applypatch() function.
int main(int argc, char** argv) {
android::base::InitLogging(argv);
return applypatch_modes(argc, argv);
}

View file

@ -35,56 +35,48 @@
#include "applypatch/applypatch.h"
#include "edify/expr.h"
static int CheckMode(const std::string& target) {
return applypatch_check(target, {});
static int CheckMode(const std::string& target_emmc) {
std::string err;
auto target = Partition::Parse(target_emmc, &err);
if (!target) {
LOG(ERROR) << "Failed to parse target \"" << target_emmc << "\": " << err;
return 2;
}
return CheckPartition(target) ? 0 : 1;
}
static int FlashMode(const std::string& target_emmc, const std::string& source_file) {
std::vector<std::string> pieces = android::base::Split(target_emmc, ":");
if (pieces.size() != 4 || pieces[0] != "EMMC") {
std::string err;
auto target = Partition::Parse(target_emmc, &err);
if (!target) {
LOG(ERROR) << "Failed to parse target \"" << target_emmc << "\": " << err;
return 2;
}
size_t target_size;
if (!android::base::ParseUint(pieces[2], &target_size) || target_size == 0) {
LOG(ERROR) << "Failed to parse \"" << pieces[2] << "\" as byte count";
return 1;
}
return applypatch_flash(source_file.c_str(), target_emmc.c_str(), pieces[3].c_str(), target_size);
return FlashPartition(target, source_file) ? 0 : 1;
}
static int PatchMode(const std::string& target_emmc, const std::string& source_emmc,
const std::string& patch_file, const std::string& bonus_file) {
std::vector<std::string> target_pieces = android::base::Split(target_emmc, ":");
if (target_pieces.size() != 4 || target_pieces[0] != "EMMC") {
std::string err;
auto target = Partition::Parse(target_emmc, &err);
if (!target) {
LOG(ERROR) << "Failed to parse target \"" << target_emmc << "\": " << err;
return 2;
}
size_t target_size;
if (!android::base::ParseUint(target_pieces[2], &target_size) || target_size == 0) {
LOG(ERROR) << "Failed to parse \"" << target_pieces[2] << "\" as byte count";
return 1;
}
std::vector<std::string> source_pieces = android::base::Split(source_emmc, ":");
if (source_pieces.size() != 4 || source_pieces[0] != "EMMC") {
auto source = Partition::Parse(source_emmc, &err);
if (!source) {
LOG(ERROR) << "Failed to parse source \"" << source_emmc << "\": " << err;
return 2;
}
size_t source_size;
if (!android::base::ParseUint(source_pieces[2], &source_size) || source_size == 0) {
LOG(ERROR) << "Failed to parse \"" << source_pieces[2] << "\" as byte count";
return 1;
}
std::string contents;
if (!android::base::ReadFileToString(patch_file, &contents)) {
std::string patch_contents;
if (!android::base::ReadFileToString(patch_file, &patch_contents)) {
PLOG(ERROR) << "Failed to read patch file \"" << patch_file << "\"";
return 1;
}
std::vector<std::unique_ptr<Value>> patches;
patches.push_back(std::make_unique<Value>(Value::Type::BLOB, std::move(contents)));
std::vector<std::string> sha1s{ source_pieces[3] };
Value patch(Value::Type::BLOB, std::move(patch_contents));
std::unique_ptr<Value> bonus;
if (!bonus_file.empty()) {
std::string bonus_contents;
@ -95,8 +87,7 @@ static int PatchMode(const std::string& target_emmc, const std::string& source_e
bonus = std::make_unique<Value>(Value::Type::BLOB, std::move(bonus_contents));
}
return applypatch(source_emmc.c_str(), target_emmc.c_str(), target_pieces[3].c_str(), target_size,
sha1s, patches, bonus.get());
return PatchPartition(target, source, patch, bonus.get()) ? 0 : 1;
}
static void Usage() {

View file

@ -21,6 +21,7 @@
#include <functional>
#include <memory>
#include <ostream>
#include <string>
#include <vector>
@ -44,44 +45,52 @@ int ShowLicenses();
// digest or be of the form "<digest>:<anything>". Returns 0 on success, or -1 on any error.
int ParseSha1(const std::string& str, uint8_t* digest);
// Applies binary patches to eMMC target files in a way that is safe (the original file is not
// touched until we have the desired replacement for it) and idempotent (it's okay to run this
// program multiple times).
//
// - If the SHA-1 hash of 'target_filename' is 'target_sha1_string', does nothing and returns
// successfully.
//
// - Otherwise, if the SHA-1 hash of 'source_filename' is one of the entries in 'patch_sha1s', the
// corresponding patch from 'patch_data' (which must be a VAL_BLOB) is applied to produce a new
// file (the type of patch is automatically detected from the blob data). If that new file has
// SHA-1 hash 'target_sha1_str', moves it to replace 'target_filename', and exits successfully.
// Note that if 'source_filename' and 'target_filename' are not the same, 'source_filename' is
// NOT deleted on success. 'target_filename' may be the string "-" to mean
// "the same as 'source_filename'".
//
// - Otherwise, or if any error is encountered, exits with non-zero status.
//
// 'source_filename' must refer to an eMMC partition to read the source data. See the comments for
// the LoadPartitionContents() function for the format of such a filename. 'target_size' has become
// obsolete since we have dropped the support for patching non-eMMC targets (eMMC targets have the
// size embedded in the filename).
int applypatch(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t target_size,
const std::vector<std::string>& patch_sha1s,
const std::vector<std::unique_ptr<Value>>& patch_data, const Value* bonus_data);
struct Partition {
Partition() = default;
// Returns 0 if the contents of the eMMC target or the cached file match any of the given SHA-1's.
// Returns nonzero otherwise. 'filename' must refer to an eMMC partition target. It would only use
// 'sha1s' to find a match on /cache if the hashes embedded in the filename fail to match.
int applypatch_check(const std::string& filename, const std::vector<std::string>& sha1s);
Partition(const std::string& name, size_t size, const std::string& hash)
: name(name), size(size), hash(hash) {}
// Flashes a given image to the eMMC target partition. It verifies the target cheksum first, and
// will return if target already has the desired hash. Otherwise it checks the checksum of the
// given source image before flashing, and verifies the target partition afterwards.
// 'target_filename' must refer to an eMMC partition, of the form "EMMC:<device>:<size>:<hash>".
// The function is idempotent. Returns zero on success.
int applypatch_flash(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t target_size);
// Parses and returns the given string into a Partition object. The input string is of the form
// "EMMC:<device>:<size>:<hash>". Returns the parsed Partition, or an empty object on error.
static Partition Parse(const std::string& partition, std::string* err);
std::string ToString() const;
// Returns whether the current Partition object is valid.
explicit operator bool() const {
return !name.empty();
}
std::string name;
size_t size;
std::string hash;
};
std::ostream& operator<<(std::ostream& os, const Partition& partition);
// Applies the given 'patch' to the 'source' Partition, verifies then writes the patching result to
// the 'target' Partition. While patching, it will backup the data on the source partition to
// /cache, so that the patching could be resumed on interruption even if both of the source and
// target partitions refer to the same device. The function is idempotent if called multiple times.
// An optional arg 'bonus' can be provided, if the patch was generated with a bonus output.
// Returns the patching result.
bool PatchPartition(const Partition& target, const Partition& source, const Value& patch,
const Value* bonus);
// Returns whether the contents of the eMMC target or the cached file match the embedded hash.
// It will look for the backup on /cache if the given partition doesn't match the checksum.
bool PatchPartitionCheck(const Partition& target, const Partition& source);
// Checks whether the contents of the given partition has the desired hash. It will NOT look for
// the backup on /cache if the given partition doesn't have the expected checksum.
bool CheckPartition(const Partition& target);
// Flashes a given image in 'source_filename' to the eMMC target partition. It verifies the target
// checksum first, and will return if target already has the desired hash. Otherwise it checks the
// checksum of the given source image, flashes, and verifies the target partition afterwards. The
// function is idempotent. Returns the flashing result.
bool FlashPartition(const Partition& target, const std::string& source_filename);
// Reads a file into memory; stores the file contents and associated metadata in *file. Returns 0
// on success, or -1 on error.

View file

@ -41,6 +41,7 @@
#include <ziparchive/zip_archive.h>
#include <ziparchive/zip_writer.h>
#include "applypatch/applypatch.h"
#include "common/test_constants.h"
#include "edify/expr.h"
#include "otautil/error_code.h"
@ -214,55 +215,47 @@ TEST_F(UpdaterTest, getprop) {
expect(nullptr, "getprop(\"arg1\", \"arg2\")", kArgsParsingFailure);
}
TEST_F(UpdaterTest, apply_patch_check) {
// Zero-argument is not valid.
expect(nullptr, "apply_patch_check()", kArgsParsingFailure);
TEST_F(UpdaterTest, patch_partition_check) {
// Zero argument is not valid.
expect(nullptr, "patch_partition_check()", kArgsParsingFailure);
// File not found.
expect("", "apply_patch_check(\"/doesntexist\")", kNoCause);
std::string source_file = from_testdata_base("boot.img");
std::string source_content;
ASSERT_TRUE(android::base::ReadFileToString(source_file, &source_content));
size_t source_size = source_content.size();
std::string source_hash = get_sha1(source_content);
Partition source(source_file, source_size, source_hash);
std::string src_file = from_testdata_base("boot.img");
std::string src_content;
ASSERT_TRUE(android::base::ReadFileToString(src_file, &src_content));
size_t src_size = src_content.size();
std::string src_hash = get_sha1(src_content);
std::string target_file = from_testdata_base("recovery.img");
std::string target_content;
ASSERT_TRUE(android::base::ReadFileToString(target_file, &target_content));
size_t target_size = target_content.size();
std::string target_hash = get_sha1(target_content);
Partition target(target_file, target_size, target_hash);
// One-argument with EMMC:file:size:sha1 should pass the check.
std::string filename = android::base::Join(
std::vector<std::string>{ "EMMC", src_file, std::to_string(src_size), src_hash }, ":");
std::string cmd = "apply_patch_check(\"" + filename + "\")";
// One argument is not valid.
expect(nullptr, "patch_partition_check(\"" + source.ToString() + "\")", kArgsParsingFailure);
expect(nullptr, "patch_partition_check(\"" + target.ToString() + "\")", kArgsParsingFailure);
// Both of the source and target have the desired checksum.
std::string cmd =
"patch_partition_check(\"" + source.ToString() + "\", \"" + target.ToString() + "\")";
expect("t", cmd, kNoCause);
// EMMC:file:(size-1):sha1:(size+1):sha1 should fail the check.
std::string filename_bad = android::base::Join(
std::vector<std::string>{ "EMMC", src_file, std::to_string(src_size - 1), src_hash,
std::to_string(src_size + 1), src_hash },
":");
cmd = "apply_patch_check(\"" + filename_bad + "\")";
// Only source partition has the desired checksum.
Partition bad_target(target_file, target_size - 1, target_hash);
cmd = "patch_partition_check(\"" + source.ToString() + "\", \"" + bad_target.ToString() + "\")";
expect("t", cmd, kNoCause);
// Only target partition has the desired checksum.
Partition bad_source(source_file, source_size + 1, source_hash);
cmd = "patch_partition_check(\"" + bad_source.ToString() + "\", \"" + target.ToString() + "\")";
expect("t", cmd, kNoCause);
// Neither of the source or target has the desired checksum.
cmd =
"patch_partition_check(\"" + bad_source.ToString() + "\", \"" + bad_target.ToString() + "\")";
expect("", cmd, kNoCause);
// EMMC:file:(size-1):sha1:size:sha1:(size+1):sha1 should pass the check.
filename_bad =
android::base::Join(std::vector<std::string>{ "EMMC", src_file, std::to_string(src_size - 1),
src_hash, std::to_string(src_size), src_hash,
std::to_string(src_size + 1), src_hash },
":");
cmd = "apply_patch_check(\"" + filename_bad + "\")";
expect("t", cmd, kNoCause);
// Multiple arguments.
// As long as it successfully loads the partition specified in filename, it won't check against
// any given SHAs.
cmd = "apply_patch_check(\"" + filename + "\", \"wrong_sha1\", \"wrong_sha2\")";
expect("t", cmd, kNoCause);
cmd = "apply_patch_check(\"" + filename + "\", \"wrong_sha1\", \"" + src_hash +
"\", \"wrong_sha2\")";
expect("t", cmd, kNoCause);
cmd = "apply_patch_check(\"" + filename_bad + "\", \"wrong_sha1\", \"" + src_hash +
"\", \"wrong_sha2\")";
expect("t", cmd, kNoCause);
}
TEST_F(UpdaterTest, file_getprop) {

View file

@ -38,6 +38,7 @@
#include "applypatch/applypatch.h"
#include "common/test_constants.h"
#include "edify/expr.h"
#include "otautil/paths.h"
#include "otautil/print_sha1.h"
@ -58,12 +59,19 @@ class ApplyPatchTest : public ::testing::Test {
target_size = recovery_fc.data.size();
target_sha1 = print_sha1(recovery_fc.sha1);
source_partition = Partition(source_file, source_size, source_sha1);
target_partition = Partition(partition_file.path, target_size, target_sha1);
srand(time(nullptr));
bad_sha1_a = android::base::StringPrintf("%040x", rand());
bad_sha1_b = android::base::StringPrintf("%040x", rand());
// Reset the cache backup file.
Paths::Get().set_cache_temp_source("/cache/saved.file");
Paths::Get().set_cache_temp_source(cache_temp_source.path);
}
void TearDown() override {
ASSERT_TRUE(android::base::RemoveFileIfExists(cache_temp_source.path));
}
std::string source_file;
@ -76,74 +84,75 @@ class ApplyPatchTest : public ::testing::Test {
std::string bad_sha1_a;
std::string bad_sha1_b;
Partition source_partition;
Partition target_partition;
private:
TemporaryFile partition_file;
TemporaryFile cache_temp_source;
};
TEST_F(ApplyPatchTest, CheckMode) {
std::string partition =
"EMMC:" + source_file + ":" + std::to_string(source_size) + ":" + source_sha1;
ASSERT_EQ(0, applypatch_check(partition, {}));
ASSERT_EQ(0, applypatch_check(partition, { source_sha1 }));
ASSERT_EQ(0, applypatch_check(partition, { bad_sha1_a, bad_sha1_b }));
ASSERT_EQ(0, applypatch_check(partition, { bad_sha1_a, source_sha1, bad_sha1_b }));
TEST_F(ApplyPatchTest, CheckPartition) {
ASSERT_TRUE(CheckPartition(source_partition));
}
TEST_F(ApplyPatchTest, CheckMode_NonEmmcTarget) {
ASSERT_NE(0, applypatch_check(source_file, {}));
ASSERT_NE(0, applypatch_check(source_file, { source_sha1 }));
ASSERT_NE(0, applypatch_check(source_file, { bad_sha1_a, bad_sha1_b }));
ASSERT_NE(0, applypatch_check(source_file, { bad_sha1_a, source_sha1, bad_sha1_b }));
TEST_F(ApplyPatchTest, CheckPartition_Mismatching) {
ASSERT_FALSE(CheckPartition(Partition(source_file, target_size, target_sha1)));
ASSERT_FALSE(CheckPartition(Partition(source_file, source_size, bad_sha1_a)));
ASSERT_FALSE(CheckPartition(Partition(source_file, source_size - 1, source_sha1)));
ASSERT_FALSE(CheckPartition(Partition(source_file, source_size + 1, source_sha1)));
}
TEST_F(ApplyPatchTest, CheckMode_EmmcTarget) {
// EMMC:source_file:size:sha1 should pass the check.
std::string src_file =
"EMMC:" + source_file + ":" + std::to_string(source_size) + ":" + source_sha1;
ASSERT_EQ(0, applypatch_check(src_file, {}));
TEST_F(ApplyPatchTest, PatchPartitionCheck) {
ASSERT_TRUE(PatchPartitionCheck(target_partition, source_partition));
// EMMC:source_file:(size-1):sha1:(size+1):sha1 should fail the check.
src_file = "EMMC:" + source_file + ":" + std::to_string(source_size - 1) + ":" + source_sha1 +
":" + std::to_string(source_size + 1) + ":" + source_sha1;
ASSERT_NE(0, applypatch_check(src_file, {}));
ASSERT_TRUE(
PatchPartitionCheck(Partition(source_file, source_size - 1, source_sha1), source_partition));
// EMMC:source_file:(size-1):sha1:size:sha1:(size+1):sha1 should pass the check.
src_file = "EMMC:" + source_file + ":" + std::to_string(source_size - 1) + ":" + source_sha1 +
":" + std::to_string(source_size) + ":" + source_sha1 + ":" +
std::to_string(source_size + 1) + ":" + source_sha1;
ASSERT_EQ(0, applypatch_check(src_file, {}));
// EMMC:source_file:(size+1):sha1:(size-1):sha1:size:sha1 should pass the check.
src_file = "EMMC:" + source_file + ":" + std::to_string(source_size + 1) + ":" + source_sha1 +
":" + std::to_string(source_size - 1) + ":" + source_sha1 + ":" +
std::to_string(source_size) + ":" + source_sha1;
ASSERT_EQ(0, applypatch_check(src_file, {}));
// EMMC:target_file:(size+1):source_sha1:(size-1):source_sha1:size:source_sha1:size:target_sha1
// should pass the check.
src_file = "EMMC:" + target_file + ":" + std::to_string(source_size + 1) + ":" + source_sha1 +
":" + std::to_string(source_size - 1) + ":" + source_sha1 + ":" +
std::to_string(source_size) + ":" + source_sha1 + ":" + std::to_string(target_size) +
":" + target_sha1;
ASSERT_EQ(0, applypatch_check(src_file, {}));
ASSERT_TRUE(
PatchPartitionCheck(Partition(source_file, source_size + 1, source_sha1), source_partition));
}
TEST_F(ApplyPatchTest, CheckMode_UseBackup) {
std::string corrupted =
"EMMC:" + source_file + ":" + std::to_string(source_size) + ":" + bad_sha1_a;
ASSERT_NE(0, applypatch_check(corrupted, { source_sha1 }));
TEST_F(ApplyPatchTest, PatchPartitionCheck_UseBackup) {
ASSERT_FALSE(
PatchPartitionCheck(target_partition, Partition(target_file, source_size, source_sha1)));
Paths::Get().set_cache_temp_source(source_file);
ASSERT_EQ(0, applypatch_check(corrupted, { source_sha1 }));
ASSERT_EQ(0, applypatch_check(corrupted, { bad_sha1_a, source_sha1, bad_sha1_b }));
ASSERT_TRUE(
PatchPartitionCheck(target_partition, Partition(target_file, source_size, source_sha1)));
}
TEST_F(ApplyPatchTest, CheckMode_UseBackup_BothCorrupted) {
std::string corrupted =
"EMMC:" + source_file + ":" + std::to_string(source_size) + ":" + bad_sha1_a;
ASSERT_NE(0, applypatch_check(corrupted, {}));
ASSERT_NE(0, applypatch_check(corrupted, { source_sha1 }));
TEST_F(ApplyPatchTest, PatchPartitionCheck_UseBackup_BothCorrupted) {
ASSERT_FALSE(
PatchPartitionCheck(target_partition, Partition(target_file, source_size, source_sha1)));
Paths::Get().set_cache_temp_source(source_file);
ASSERT_NE(0, applypatch_check(corrupted, { bad_sha1_a, bad_sha1_b }));
Paths::Get().set_cache_temp_source(target_file);
ASSERT_FALSE(
PatchPartitionCheck(target_partition, Partition(target_file, source_size, source_sha1)));
}
TEST_F(ApplyPatchTest, PatchPartition) {
FileContents patch_fc;
ASSERT_EQ(0, LoadFileContents(from_testdata_base("recovery-from-boot.p"), &patch_fc));
Value patch(Value::Type::BLOB, std::string(patch_fc.data.cbegin(), patch_fc.data.cend()));
FileContents bonus_fc;
ASSERT_EQ(0, LoadFileContents(from_testdata_base("bonus.file"), &bonus_fc));
Value bonus(Value::Type::BLOB, std::string(bonus_fc.data.cbegin(), bonus_fc.data.cend()));
ASSERT_TRUE(PatchPartition(target_partition, source_partition, patch, &bonus));
}
// Tests patching an eMMC target without a separate bonus file (i.e. recovery-from-boot patch has
// everything).
TEST_F(ApplyPatchTest, PatchPartitionWithoutBonusFile) {
FileContents patch_fc;
ASSERT_EQ(0, LoadFileContents(from_testdata_base("recovery-from-boot-with-bonus.p"), &patch_fc));
Value patch(Value::Type::BLOB, std::string(patch_fc.data.cbegin(), patch_fc.data.cend()));
ASSERT_TRUE(PatchPartition(target_partition, source_partition, patch, nullptr));
}
class FreeCacheTest : public ::testing::Test {

View file

@ -196,94 +196,82 @@ Value* PackageExtractFileFn(const char* name, State* state,
}
}
// apply_patch(src_file, tgt_file, tgt_sha1, tgt_size, patch1_sha1, patch1_blob, [...])
// Applies a binary patch to the src_file to produce the tgt_file. If the desired target is the
// same as the source, pass "-" for tgt_file. tgt_sha1 and tgt_size are the expected final SHA1
// hash and size of the target file. The remaining arguments must come in pairs: a SHA1 hash (a
// 40-character hex string) and a blob. The blob is the patch to be applied when the source
// file's current contents have the given SHA1.
// patch_partition_check(target_partition, source_partition)
// Checks if the target and source partitions have the desired checksums to be patched. It returns
// directly, if the target partition already has the expected checksum. Otherwise it in turn
// checks the integrity of the source partition and the backup file on /cache.
//
// The patching is done in a safe manner that guarantees the target file either has the desired
// SHA1 hash and size, or it is untouched -- it will not be left in an unrecoverable intermediate
// state. If the process is interrupted during patching, the target file may be in an intermediate
// state; a copy exists in the cache partition so restarting the update can successfully update
// the file.
Value* ApplyPatchFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 6 || (argv.size() % 2) == 1) {
// For example, patch_partition_check(
// "EMMC:/dev/block/boot:12342568:8aaacf187a6929d0e9c3e9e46ea7ff495b43424d",
// "EMMC:/dev/block/boot:12363048:06b0b16299dcefc94900efed01e0763ff644ffa4")
Value* PatchPartitionCheckFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure,
"%s(): expected at least 6 args and an "
"even number, got %zu",
name, argv.size());
"%s(): Invalid number of args (expected 2, got %zu)", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 4)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& source_filename = args[0];
const std::string& target_filename = args[1];
const std::string& target_sha1 = args[2];
const std::string& target_size_str = args[3];
size_t target_size;
if (!android::base::ParseUint(target_size_str.c_str(), &target_size)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name,
target_size_str.c_str());
if (!ReadArgs(state, argv, &args, 0, 2)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
int patchcount = (argv.size() - 4) / 2;
std::vector<std::unique_ptr<Value>> arg_values;
if (!ReadValueArgs(state, argv, &arg_values, 4, argv.size() - 4)) {
return nullptr;
std::string err;
auto target = Partition::Parse(args[0], &err);
if (!target) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse target \"%s\": %s", name,
args[0].c_str(), err.c_str());
}
for (int i = 0; i < patchcount; ++i) {
if (arg_values[i * 2]->type != Value::Type::STRING) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): sha-1 #%d is not string", name, i * 2);
}
if (arg_values[i * 2 + 1]->type != Value::Type::BLOB) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): patch #%d is not blob", name, i * 2 + 1);
}
auto source = Partition::Parse(args[1], &err);
if (!source) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse source \"%s\": %s", name,
args[1].c_str(), err.c_str());
}
std::vector<std::string> patch_sha_str;
std::vector<std::unique_ptr<Value>> patches;
for (int i = 0; i < patchcount; ++i) {
patch_sha_str.push_back(arg_values[i * 2]->data);
patches.push_back(std::move(arg_values[i * 2 + 1]));
}
int result = applypatch(source_filename.c_str(), target_filename.c_str(), target_sha1.c_str(),
target_size, patch_sha_str, patches, nullptr);
return StringValue(result == 0 ? "t" : "");
bool result = PatchPartitionCheck(target, source);
return StringValue(result ? "t" : "");
}
// apply_patch_check(filename, [sha1, ...])
// Returns true if the contents of filename or the temporary copy in the cache partition (if
// present) have a SHA-1 checksum equal to one of the given sha1 values. sha1 values are
// specified as 40 hex digits.
Value* ApplyPatchCheckFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 1 arg, got %zu", name,
argv.size());
// patch_partition(target, source, patch)
// Applies the given patch to the source partition, and writes the result to the target partition.
//
// For example, patch_partition(
// "EMMC:/dev/block/boot:12342568:8aaacf187a6929d0e9c3e9e46ea7ff495b43424d",
// "EMMC:/dev/block/boot:12363048:06b0b16299dcefc94900efed01e0763ff644ffa4",
// package_extract_file("boot.img.p"))
Value* PatchPartitionFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 3) {
return ErrorAbort(state, kArgsParsingFailure,
"%s(): Invalid number of args (expected 3, got %zu)", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 1)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
if (!ReadArgs(state, argv, &args, 0, 2)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
std::vector<std::string> sha1s;
if (argv.size() > 1 && !ReadArgs(state, argv, &sha1s, 1, argv.size() - 1)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
std::string err;
auto target = Partition::Parse(args[0], &err);
if (!target) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse target \"%s\": %s", name,
args[0].c_str(), err.c_str());
}
int result = applypatch_check(filename.c_str(), sha1s);
return StringValue(result == 0 ? "t" : "");
auto source = Partition::Parse(args[1], &err);
if (!source) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse source \"%s\": %s", name,
args[1].c_str(), err.c_str());
}
std::vector<std::unique_ptr<Value>> values;
if (!ReadValueArgs(state, argv, &values, 2, 1) || values[0]->type != Value::Type::BLOB) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Invalid patch arg", name);
}
bool result = PatchPartition(target, source, *values[0], nullptr);
return StringValue(result ? "t" : "");
}
// mount(fs_type, partition_type, location, mount_point)
@ -956,9 +944,9 @@ void RegisterInstallFunctions() {
RegisterFunction("getprop", GetPropFn);
RegisterFunction("file_getprop", FileGetPropFn);
RegisterFunction("apply_patch", ApplyPatchFn);
RegisterFunction("apply_patch_check", ApplyPatchCheckFn);
RegisterFunction("apply_patch_space", ApplyPatchSpaceFn);
RegisterFunction("patch_partition", PatchPartitionFn);
RegisterFunction("patch_partition_check", PatchPartitionCheckFn);
RegisterFunction("wipe_block_device", WipeBlockDeviceFn);