Merge "Improve imgdiff for large zip files"

am: 9f48641784

Change-Id: I999525af80c5423da275025d977de10399140479
This commit is contained in:
Tianjie Xu 2017-09-08 20:46:47 +00:00 committed by android-build-merger
commit e24e90f403
3 changed files with 815 additions and 25 deletions

View file

@ -125,6 +125,7 @@
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -139,16 +140,19 @@
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/memory.h>
#include <android-base/parseint.h>
#include <android-base/unique_fd.h>
#include <bsdiff.h>
#include <ziparchive/zip_archive.h>
#include <zlib.h>
#include "applypatch/imgdiff_image.h"
#include "rangeset.h"
using android::base::get_unaligned;
static constexpr auto BUFFER_SIZE = 0x8000;
static constexpr size_t BLOCK_SIZE = 4096;
static constexpr size_t BUFFER_SIZE = 0x8000;
// If we use this function to write the offset and length (type size_t), their values should not
// exceed 2^63; because the signed bit will be casted away.
@ -162,6 +166,67 @@ static inline bool Write4(int fd, int32_t value) {
return android::base::WriteFully(fd, &value, sizeof(int32_t));
}
// Trim the head or tail to align with the block size. Return false if the chunk has nothing left
// after alignment.
static bool AlignHead(size_t* start, size_t* length) {
size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE;
if (*length <= residual) {
*length = 0;
return false;
}
// Trim the data in the beginning.
*start += residual;
*length -= residual;
return true;
}
static bool AlignTail(size_t* start, size_t* length) {
size_t residual = (*start + *length) % BLOCK_SIZE;
if (*length <= residual) {
*length = 0;
return false;
}
// Trim the data in the end.
*length -= residual;
return true;
}
// Remove the used blocks from the source chunk to make sure the source ranges are mutually
// exclusive after split. Return false if we fail to get the non-overlapped ranges. In such
// a case, we'll skip the entire source chunk.
static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) {
if (!used_ranges.Overlaps(*start, *length)) {
return true;
}
// TODO find the largest non-overlap chunk.
printf("Removing block %s from %zu - %zu\n", used_ranges.ToString().c_str(), *start,
*start + *length - 1);
// If there's no duplicate entry name, we should only overlap in the head or tail block. Try to
// trim both blocks. Skip this source chunk in case it still overlaps with the used ranges.
if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) {
return true;
}
if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) {
return true;
}
printf("Failed to remove the overlapped block ranges; skip the source\n");
return false;
}
static const struct option OPTIONS[] = {
{ "zip-mode", no_argument, nullptr, 'z' },
{ "bonus-file", required_argument, nullptr, 'b' },
{ "block-limit", required_argument, nullptr, 0 },
{ "debug-dir", required_argument, nullptr, 0 },
{ nullptr, 0, nullptr, 0 },
};
ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
size_t raw_data_len, std::string entry_name)
: type_(type),
@ -371,6 +436,12 @@ bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size));
}
void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) {
if (type_ == CHUNK_DEFLATE) {
source_start_ = src_range.GetOffsetInRangeSet(source_start_);
}
}
// Header size:
// header_type 4 bytes
// CHUNK_NORMAL 8*3 = 24 bytes
@ -572,7 +643,7 @@ bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandl
ZipString name;
ZipEntry entry;
while ((ret = Next(cookie, &entry, &name)) == 0) {
if (entry.method == kCompressDeflated) {
if (entry.method == kCompressDeflated || limit_ > 0) {
std::string entry_name(name.name, name.name + name.name_length);
temp_entries.emplace_back(entry_name, entry);
}
@ -595,6 +666,17 @@ bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandl
return false;
}
}
// Add the end of zip file (mainly central directory) as a normal chunk.
size_t entries_end = 0;
if (!temp_entries.empty()) {
entries_end = static_cast<size_t>(temp_entries.back().second.offset +
temp_entries.back().second.compressed_length);
}
CHECK_LT(entries_end, file_content_.size());
chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_,
file_content_.size() - entries_end);
return true;
}
@ -635,7 +717,21 @@ bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandl
bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
ZipEntry* entry) {
size_t compressed_len = entry->compressed_length;
if (entry->method == kCompressDeflated) {
if (compressed_len == 0) return true;
// Split the entry into several normal chunks if it's too large.
if (limit_ > 0 && compressed_len > limit_) {
int count = 0;
while (compressed_len > 0) {
size_t length = std::min(limit_, compressed_len);
std::string name = entry_name + "-" + std::to_string(count);
chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length,
name);
count++;
compressed_len -= length;
}
} else if (entry->method == kCompressDeflated) {
size_t uncompressed_len = entry->uncompressed_length;
std::vector<uint8_t> uncompressed_data(uncompressed_len);
int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
@ -697,10 +793,23 @@ const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool fi
return nullptr;
}
for (auto& chunk : chunks_) {
if ((chunk.GetType() == CHUNK_DEFLATE || find_normal) && chunk.GetEntryName() == name) {
if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) {
continue;
}
if (chunk.GetEntryName() == name) {
return &chunk;
}
// Edge case when target chunk is split due to size limit but source chunk isn't.
if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) {
return &chunk;
}
// TODO handle the .so files with incremental version number.
// (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so)
}
return nullptr;
}
@ -738,24 +847,214 @@ bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage*
// For zips, we only need merge normal chunks for the target: deflated chunks are matched via
// filename, and normal chunks are patched using the entire source file as the source.
tgt_image->MergeAdjacentNormalChunks();
tgt_image->DumpChunks();
if (tgt_image->limit_ == 0) {
tgt_image->MergeAdjacentNormalChunks();
tgt_image->DumpChunks();
}
return true;
}
bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name) {
// For each target chunk, look for the corresponding source chunk by the zip_entry name. If
// found, add the range of this chunk in the original source file to the block aligned source
// ranges. Construct the split src & tgt image once the size of source range reaches limit.
bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images,
std::vector<SortedRangeSet>* split_src_ranges) {
CHECK_EQ(tgt_image.limit_, src_image.limit_);
size_t limit = tgt_image.limit_;
src_image.DumpChunks();
printf("Splitting %zu tgt chunks...\n", tgt_image.NumOfChunks());
SortedRangeSet used_src_ranges; // ranges used for previous split source images.
// Reserve the central directory in advance for the last split image.
const auto& central_directory = src_image.cend() - 1;
CHECK_EQ(CHUNK_NORMAL, central_directory->GetType());
used_src_ranges.Insert(central_directory->GetStartOffset(),
central_directory->DataLengthForPatch());
SortedRangeSet src_ranges;
std::vector<ImageChunk> split_src_chunks;
std::vector<ImageChunk> split_tgt_chunks;
for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) {
const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true);
if (src == nullptr) {
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
continue;
}
size_t src_offset = src->GetStartOffset();
size_t src_length = src->GetRawDataLength();
CHECK(src_length > 0);
CHECK_LE(src_length, limit);
// Make sure this source range hasn't been used before so that the src_range pieces don't
// overlap with each other.
if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) {
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
} else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) {
src_ranges.Insert(src_offset, src_length);
// Add the deflate source chunk if it hasn't been aligned.
if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) {
split_src_chunks.push_back(*src);
split_tgt_chunks.push_back(*tgt);
} else {
// TODO split smarter to avoid alignment of large deflate chunks
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
}
} else {
ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks,
split_src_chunks, split_tgt_images,
split_src_images);
split_tgt_chunks.clear();
split_src_chunks.clear();
used_src_ranges.Insert(src_ranges);
split_src_ranges->push_back(std::move(src_ranges));
src_ranges.Clear();
// We don't have enough space for the current chunk; start a new split image and handle
// this chunk there.
tgt--;
}
}
// TODO Trim it in case the CD exceeds limit too much.
src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch());
ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks,
split_src_chunks, split_tgt_images, split_src_images);
split_src_ranges->push_back(std::move(src_ranges));
ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges,
tgt_image.file_content_.size());
return true;
}
void ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
const SortedRangeSet& split_src_ranges,
const std::vector<ImageChunk>& split_tgt_chunks,
const std::vector<ImageChunk>& split_src_chunks,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images) {
CHECK(!split_tgt_chunks.empty());
// Target chunks should occupy at least one block.
// TODO put a warning and change the type to raw if it happens in extremely rare cases.
size_t tgt_size = split_tgt_chunks.back().GetStartOffset() +
split_tgt_chunks.back().DataLengthForPatch() -
split_tgt_chunks.front().GetStartOffset();
CHECK_GE(tgt_size, BLOCK_SIZE);
std::vector<ImageChunk> aligned_tgt_chunks;
// Align the target chunks in the beginning with BLOCK_SIZE.
size_t i = 0;
while (i < split_tgt_chunks.size()) {
size_t tgt_start = split_tgt_chunks[i].GetStartOffset();
size_t tgt_length = split_tgt_chunks[i].GetRawDataLength();
// Current ImageChunk is long enough to align.
if (AlignHead(&tgt_start, &tgt_length)) {
aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_,
tgt_length);
break;
}
i++;
}
CHECK_LT(i, split_tgt_chunks.size());
aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1,
split_tgt_chunks.end());
CHECK(!aligned_tgt_chunks.empty());
// Add a normal chunk to align the contents in the end.
size_t end_offset =
aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength();
if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) {
aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_,
BLOCK_SIZE - (end_offset % BLOCK_SIZE));
}
ZipModeImage split_tgt_image(false);
split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {});
split_tgt_image.MergeAdjacentNormalChunks();
// Construct the dummy source file based on the src_ranges.
std::vector<uint8_t> src_content;
for (const auto& r : split_src_ranges) {
size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE);
src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE,
src_image.file_content_.begin() + end);
}
// We should not have an empty src in our design; otherwise we will encounter an error in
// bsdiff since src_content.data() == nullptr.
CHECK(!src_content.empty());
ZipModeImage split_src_image(true);
split_src_image.Initialize(split_src_chunks, std::move(src_content));
split_tgt_images->push_back(std::move(split_tgt_image));
split_src_images->push_back(std::move(split_src_image));
}
void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
std::vector<SortedRangeSet>& split_src_ranges,
size_t total_tgt_size) {
CHECK_EQ(split_tgt_images.size(), split_src_images.size());
printf("Validating %zu images\n", split_tgt_images.size());
// Verify that the target image pieces is continuous and can add up to the total size.
size_t last_offset = 0;
for (const auto& tgt_image : split_tgt_images) {
CHECK(!tgt_image.chunks_.empty());
CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset());
CHECK(last_offset % BLOCK_SIZE == 0);
// Check the target chunks within the split image are continuous.
for (const auto& chunk : tgt_image.chunks_) {
CHECK_EQ(last_offset, chunk.GetStartOffset());
last_offset += chunk.GetRawDataLength();
}
}
CHECK_EQ(total_tgt_size, last_offset);
// Verify that the source ranges are mutually exclusive.
CHECK_EQ(split_src_images.size(), split_src_ranges.size());
SortedRangeSet used_src_ranges;
for (size_t i = 0; i < split_src_ranges.size(); i++) {
CHECK(!used_src_ranges.Overlaps(split_src_ranges[i]))
<< "src range " << split_src_ranges[i].ToString() << " overlaps "
<< used_src_ranges.ToString();
used_src_ranges.Insert(split_src_ranges[i]);
}
}
bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
std::vector<PatchChunk>* patch_chunks) {
printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks());
std::vector<PatchChunk> patch_chunks;
patch_chunks.reserve(tgt_image.NumOfChunks());
patch_chunks->clear();
saidx_t* bsdiff_cache = nullptr;
for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
const auto& tgt_chunk = tgt_image[i];
if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
patch_chunks.emplace_back(tgt_chunk);
patch_chunks->emplace_back(tgt_chunk);
continue;
}
@ -776,13 +1075,23 @@ bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeI
tgt_chunk.GetRawDataLength());
if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
patch_chunks.emplace_back(tgt_chunk);
patch_chunks->emplace_back(tgt_chunk);
} else {
patch_chunks.emplace_back(tgt_chunk, src_ref, std::move(patch_data));
patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data));
}
}
free(bsdiff_cache);
CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks());
return true;
}
bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name) {
std::vector<PatchChunk> patch_chunks;
ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks);
CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
android::base::unique_fd patch_fd(
@ -795,6 +1104,66 @@ bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeI
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
const std::vector<SortedRangeSet>& split_src_ranges,
const std::string& patch_name, const std::string& debug_dir) {
printf("Construct patches for %zu split images...\n", split_tgt_images.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
return false;
}
for (size_t i = 0; i < split_tgt_images.size(); i++) {
std::vector<PatchChunk> patch_chunks;
if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i],
&patch_chunks)) {
printf("failed to generate split patch\n");
return false;
}
for (auto& p : patch_chunks) {
p.UpdateSourceOffset(split_src_ranges[i]);
}
if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) {
return false;
}
// Write the split source & patch into the debug directory.
if (!debug_dir.empty()) {
std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
android::base::unique_fd fd(
open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
printf("Failed to open %s\n", src_name.c_str());
return false;
}
if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(),
split_src_images[i].PseudoSource().DataLengthForPatch())) {
printf("Failed to write split source data into %s\n", src_name.c_str());
return false;
}
std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
printf("Failed to open %s\n", patch_name.c_str());
return false;
}
if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) {
return false;
}
}
}
return true;
}
bool ImageModeImage::Initialize(const std::string& filename) {
if (!ReadFile(filename, &file_content_)) {
return false;
@ -1026,11 +1395,14 @@ bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
int imgdiff(int argc, const char** argv) {
bool zip_mode = false;
std::vector<uint8_t> bonus_data;
size_t blocks_limit = 0;
std::string debug_dir;
int opt;
int option_index;
optind = 1; // Reset the getopt state so that we can call it multiple times for test.
while ((opt = getopt(argc, const_cast<char**>(argv), "zb:")) != -1) {
while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:", OPTIONS, &option_index)) != -1) {
switch (opt) {
case 'z':
zip_mode = true;
@ -1055,6 +1427,16 @@ int imgdiff(int argc, const char** argv) {
}
break;
}
case 0: {
std::string name = OPTIONS[option_index].name;
if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) {
printf("failed to parse size blocks_limit: %s\n", optarg);
return 1;
} else if (name == "debug-dir") {
debug_dir = optarg;
}
break;
}
default:
printf("unexpected opt: %s\n", optarg);
return 2;
@ -1062,13 +1444,20 @@ int imgdiff(int argc, const char** argv) {
}
if (argc - optind != 3) {
printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n", argv[0]);
printf("usage: %s [options] <src-img> <tgt-img> <patch-file>\n", argv[0]);
printf(
" -z <zip-mode>, Generate patches in zip mode, src and tgt should be zip files.\n"
" -b <bonus-file>, Bonus file in addition to src, image mode only.\n"
" --block-limit, For large zips, split the src and tgt based on the block limit;\n"
" and generate patches between each pair of pieces. Concatenate these\n"
" patches together and output them into <patch-file>.\n"
" --debug_dir, Debug directory to put the split srcs and patches, zip mode only.\n");
return 2;
}
if (zip_mode) {
ZipModeImage src_image(true);
ZipModeImage tgt_image(false);
ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE);
ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE);
if (!src_image.Initialize(argv[optind])) {
return 1;
@ -1080,9 +1469,25 @@ int imgdiff(int argc, const char** argv) {
if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
// TODO save and output the split information so that caller can create split transfer lists
// accordingly.
// Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
// deflate chunks).
if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
if (blocks_limit > 0) {
std::vector<ZipModeImage> split_tgt_images;
std::vector<ZipModeImage> split_src_images;
std::vector<SortedRangeSet> split_src_ranges;
ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
&split_src_images, &split_src_ranges);
if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
argv[optind + 2], debug_dir)) {
return 1;
}
} else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
return 1;
}
} else {

View file

@ -129,6 +129,9 @@ class PatchChunk {
// Return true if raw data size is smaller than the patch size.
static bool RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size);
// Update the source start with the new offset within the source range.
void UpdateSourceOffset(const SortedRangeSet& src_range);
static bool WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd);
private:
@ -177,6 +180,14 @@ class Image {
return chunks_.end();
}
std::vector<ImageChunk>::const_iterator cbegin() const {
return chunks_.cbegin();
}
std::vector<ImageChunk>::const_iterator cend() const {
return chunks_.cend();
}
ImageChunk& operator[](size_t i);
const ImageChunk& operator[](size_t i) const;
@ -194,10 +205,18 @@ class Image {
class ZipModeImage : public Image {
public:
explicit ZipModeImage(bool is_source) : Image(is_source) {}
explicit ZipModeImage(bool is_source, size_t limit = 0) : Image(is_source), limit_(limit) {}
bool Initialize(const std::string& filename) override;
// Initialize a dummy ZipModeImage from an existing ImageChunk vector. For src img pieces, we
// reconstruct a new file_content based on the source ranges; but it's not needed for the tgt img
// pieces; because for each chunk both the data and their offset within the file are unchanged.
void Initialize(const std::vector<ImageChunk>& chunks, const std::vector<uint8_t>& file_content) {
chunks_ = chunks;
file_content_ = file_content;
}
// The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in
// fact the whole source file.
ImageChunk PseudoSource() const;
@ -216,6 +235,21 @@ class ZipModeImage : public Image {
static bool GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name);
// Compute the patch based on the lists of split src and tgt images. Generate patches for each
// pair of split pieces and write the data to |patch_name|. If |debug_dir| is specified, write
// each split src data and patch data into that directory.
static bool GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
const std::vector<SortedRangeSet>& split_src_ranges,
const std::string& patch_name, const std::string& debug_dir);
// Split the tgt chunks and src chunks based on the size limit.
static bool SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images,
std::vector<SortedRangeSet>* split_src_ranges);
private:
// Initialize image chunks based on the zip entries.
bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle);
@ -223,6 +257,28 @@ class ZipModeImage : public Image {
bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry);
// Return the real size of the zip file. (omit the trailing zeros that used for alignment)
bool GetZipFileSize(size_t* input_file_size);
static void ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
std::vector<SortedRangeSet>& split_src_ranges,
size_t total_tgt_size);
// Construct the dummy split images based on the chunks info and source ranges; and move them into
// the given vectors.
static void AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
const SortedRangeSet& split_src_ranges,
const std::vector<ImageChunk>& split_tgt_chunks,
const std::vector<ImageChunk>& split_src_chunks,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images);
// Function that actually iterates the tgt_chunks and makes patches.
static bool GeneratePatchesInternal(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
std::vector<PatchChunk>* patch_chunks);
// size limit in bytes of each chunk. Also, if the length of one zip_entry exceeds the limit,
// we'll split that entry into several smaller chunks in advance.
size_t limit_;
};
class ImageModeImage : public Image {

View file

@ -16,13 +16,17 @@
#include <stdio.h>
#include <algorithm>
#include <string>
#include <tuple>
#include <vector>
#include <android-base/file.h>
#include <android-base/memory.h>
#include <android-base/stringprintf.h>
#include <android-base/test_utils.h>
#include <applypatch/imgdiff.h>
#include <applypatch/imgdiff_image.h>
#include <applypatch/imgpatch.h>
#include <gtest/gtest.h>
#include <ziparchive/zip_writer.h>
@ -75,15 +79,20 @@ static void verify_patch_header(const std::string& patch, size_t* num_normal, si
if (num_deflate != nullptr) *num_deflate = deflate;
}
static void GenerateTarget(const std::string& src, const std::string& patch, std::string* patched) {
patched->clear();
ASSERT_EQ(0, ApplyImagePatch(reinterpret_cast<const unsigned char*>(src.data()), src.size(),
reinterpret_cast<const unsigned char*>(patch.data()), patch.size(),
[&](const unsigned char* data, size_t len) {
patched->append(reinterpret_cast<const char*>(data), len);
return len;
}));
}
static void verify_patched_image(const std::string& src, const std::string& patch,
const std::string& tgt) {
std::string patched;
ASSERT_EQ(0, ApplyImagePatch(reinterpret_cast<const unsigned char*>(src.data()), src.size(),
reinterpret_cast<const unsigned char*>(patch.data()), patch.size(),
[&patched](const unsigned char* data, size_t len) {
patched.append(reinterpret_cast<const char*>(data), len);
return len;
}));
GenerateTarget(src, patch, &patched);
ASSERT_EQ(tgt, patched);
}
@ -623,3 +632,323 @@ TEST(ImgpatchTest, image_mode_patch_corruption) {
reinterpret_cast<const unsigned char*>(patch.data()), patch.size(),
[](const unsigned char* /*data*/, size_t len) { return len; }));
}
static void construct_store_entry(const std::vector<std::tuple<std::string, size_t, char>>& info,
ZipWriter* writer) {
for (auto& t : info) {
// Create t(1) blocks of t(2), and write the data to t(0)
ASSERT_EQ(0, writer->StartEntry(std::get<0>(t).c_str(), 0));
const std::string content(std::get<1>(t) * 4096, std::get<2>(t));
ASSERT_EQ(0, writer->WriteBytes(content.data(), content.size()));
ASSERT_EQ(0, writer->FinishEntry());
}
}
static void construct_deflate_entry(const std::vector<std::tuple<std::string, size_t, size_t>>& info,
ZipWriter* writer, const std::string& data) {
for (auto& t : info) {
// t(0): entry_name; t(1): block offset; t(2) length in blocks.
ASSERT_EQ(0, writer->StartEntry(std::get<0>(t).c_str(), ZipWriter::kCompress));
ASSERT_EQ(0, writer->WriteBytes(data.data() + std::get<1>(t) * 4096, std::get<2>(t) * 4096));
ASSERT_EQ(0, writer->FinishEntry());
}
}
// Look for the generated source and patch pieces in the debug_dir and generate the target on
// each pair. Concatenate the split target and match against the orignal one.
static void GenerateAndCheckSplitTarget(const std::string& debug_dir, size_t count,
const std::string& tgt) {
std::string patched;
for (size_t i = 0; i < count; i++) {
std::string split_src_path = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
std::string split_patch_path = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
std::string split_src;
std::string split_patch;
ASSERT_TRUE(android::base::ReadFileToString(split_src_path, &split_src));
ASSERT_TRUE(android::base::ReadFileToString(split_patch_path, &split_patch));
std::string split_tgt;
GenerateTarget(split_src, split_patch, &split_tgt);
patched += split_tgt;
}
// Verify we can get back the original target image.
ASSERT_EQ(tgt, patched);
}
std::vector<ImageChunk> ConstructImageChunks(
const std::vector<uint8_t>& content, const std::vector<std::tuple<std::string, size_t>>& info) {
std::vector<ImageChunk> chunks;
size_t start = 0;
for (const auto& t : info) {
size_t length = std::get<1>(t);
chunks.emplace_back(CHUNK_NORMAL, start, &content, length, std::get<0>(t));
start += length;
}
return chunks;
}
TEST(ImgdiffTest, zip_mode_split_image_smoke) {
std::vector<uint8_t> content;
content.reserve(4096 * 50);
uint8_t n = 0;
generate_n(back_inserter(content), 4096 * 50, [&n]() { return n++ / 4096; });
ZipModeImage tgt_image(false, 4096 * 10);
std::vector<ImageChunk> tgt_chunks = ConstructImageChunks(content, { { "a", 100 },
{ "b", 4096 * 2 },
{ "c", 4096 * 3 },
{ "d", 300 },
{ "e-0", 4096 * 10 },
{ "e-1", 4096 * 5 },
{ "CD", 200 } });
tgt_image.Initialize(std::move(tgt_chunks),
std::vector<uint8_t>(content.begin(), content.begin() + 82520));
tgt_image.DumpChunks();
ZipModeImage src_image(true, 4096 * 10);
std::vector<ImageChunk> src_chunks = ConstructImageChunks(content, { { "b", 4096 * 3 },
{ "c-0", 4096 * 10 },
{ "c-1", 4096 * 2 },
{ "a", 4096 * 5 },
{ "e-0", 4096 * 10 },
{ "e-1", 10000 },
{ "CD", 5000 } });
src_image.Initialize(std::move(src_chunks),
std::vector<uint8_t>(content.begin(), content.begin() + 137880));
std::vector<ZipModeImage> split_tgt_images;
std::vector<ZipModeImage> split_src_images;
std::vector<SortedRangeSet> split_src_ranges;
ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
&split_src_images, &split_src_ranges);
// src_piece 1: a 5 blocks, b 3 blocks
// src_piece 2: c-0 10 blocks
// src_piece 3: d 0 block, e-0 10 blocks
// src_piece 4: e-1 2 blocks; CD 2 blocks
ASSERT_EQ(split_tgt_images.size(), split_src_images.size());
ASSERT_EQ(static_cast<size_t>(4), split_tgt_images.size());
ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[0].NumOfChunks());
ASSERT_EQ(static_cast<size_t>(12288), split_tgt_images[0][0].DataLengthForPatch());
ASSERT_EQ("4,0,3,15,20", split_src_ranges[0].ToString());
ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[1].NumOfChunks());
ASSERT_EQ(static_cast<size_t>(12288), split_tgt_images[1][0].DataLengthForPatch());
ASSERT_EQ("2,3,13", split_src_ranges[1].ToString());
ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[2].NumOfChunks());
ASSERT_EQ(static_cast<size_t>(40960), split_tgt_images[2][0].DataLengthForPatch());
ASSERT_EQ("2,20,30", split_src_ranges[2].ToString());
ASSERT_EQ(static_cast<size_t>(1), split_tgt_images[3].NumOfChunks());
ASSERT_EQ(static_cast<size_t>(16984), split_tgt_images[3][0].DataLengthForPatch());
ASSERT_EQ("2,30,34", split_src_ranges[3].ToString());
}
TEST(ImgdiffTest, zip_mode_store_large_apk) {
// Construct src and tgt zip files with limit = 10 blocks.
// src tgt
// 12 blocks 'd' 3 blocks 'a'
// 8 blocks 'c' 3 blocks 'b'
// 3 blocks 'b' 8 blocks 'c' (exceeds limit)
// 3 blocks 'a' 12 blocks 'd' (exceeds limit)
// 3 blocks 'e'
TemporaryFile tgt_file;
FILE* tgt_file_ptr = fdopen(tgt_file.fd, "wb");
ZipWriter tgt_writer(tgt_file_ptr);
construct_store_entry(
{ { "a", 3, 'a' }, { "b", 3, 'b' }, { "c", 8, 'c' }, { "d", 12, 'd' }, { "e", 3, 'e' } },
&tgt_writer);
ASSERT_EQ(0, tgt_writer.Finish());
ASSERT_EQ(0, fclose(tgt_file_ptr));
TemporaryFile src_file;
FILE* src_file_ptr = fdopen(src_file.fd, "wb");
ZipWriter src_writer(src_file_ptr);
construct_store_entry({ { "d", 12, 'd' }, { "c", 8, 'c' }, { "b", 3, 'b' }, { "a", 3, 'a' } },
&src_writer);
ASSERT_EQ(0, src_writer.Finish());
ASSERT_EQ(0, fclose(src_file_ptr));
// Compute patch.
TemporaryFile patch_file;
TemporaryDir debug_dir;
std::vector<const char*> args = {
"imgdiff", "-z", "--block-limit=10", android::base::StringPrintf(
"--debug-dir=%s", debug_dir.path).c_str(), src_file.path, tgt_file.path, patch_file.path,
};
ASSERT_EQ(0, imgdiff(args.size(), args.data()));
std::string tgt;
ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt));
// Expect 4 pieces of patch.(Rougly 3'a',3'b'; 8'c'; 10'd'; 2'd'3'e')
GenerateAndCheckSplitTarget(debug_dir.path, 4, tgt);
}
TEST(ImgdiffTest, zip_mode_deflate_large_apk) {
// Generate 50 blocks of random data.
std::string random_data;
random_data.reserve(4096 * 50);
generate_n(back_inserter(random_data), 4096 * 50, []() { return rand() % 256; });
// Construct src and tgt zip files with limit = 10 blocks.
// src tgt
// 22 blocks, "d" 4 blocks, "a"
// 5 blocks, "b" 4 blocks, "b"
// 3 blocks, "a" 7 blocks, "c" (exceeds limit)
// 8 blocks, "c" 20 blocks, "d" (exceeds limit)
// 1 block, "f" 2 blocks, "e"
TemporaryFile tgt_file;
FILE* tgt_file_ptr = fdopen(tgt_file.fd, "wb");
ZipWriter tgt_writer(tgt_file_ptr);
construct_deflate_entry(
{ { "a", 0, 4 }, { "b", 5, 4 }, { "c", 12, 8 }, { "d", 21, 20 }, { "e", 45, 2 },
{ "f", 48, 1 } }, &tgt_writer, random_data);
ASSERT_EQ(0, tgt_writer.Finish());
ASSERT_EQ(0, fclose(tgt_file_ptr));
TemporaryFile src_file;
FILE* src_file_ptr = fdopen(src_file.fd, "wb");
ZipWriter src_writer(src_file_ptr);
construct_deflate_entry(
{ { "d", 21, 22 }, { "b", 5, 5 }, { "a", 0, 3 }, { "g", 9, 1 }, { "c", 11, 8 },
{ "f", 45, 1 } }, &src_writer, random_data);
ASSERT_EQ(0, src_writer.Finish());
ASSERT_EQ(0, fclose(src_file_ptr));
ZipModeImage src_image(true, 10 * 4096);
ZipModeImage tgt_image(false, 10 * 4096);
ASSERT_TRUE(src_image.Initialize(src_file.path));
ASSERT_TRUE(tgt_image.Initialize(tgt_file.path));
ASSERT_TRUE(ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image));
src_image.DumpChunks();
tgt_image.DumpChunks();
std::vector<ZipModeImage> split_tgt_images;
std::vector<ZipModeImage> split_src_images;
std::vector<SortedRangeSet> split_src_ranges;
ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
&split_src_images, &split_src_ranges);
// src_piece 1: a 3 blocks, b 5 blocks
// src_piece 2: c 8 blocks
// src_piece 3: d-0 10 block
// src_piece 4: d-1 10 blocks
// src_piece 5: e 1 block, CD
ASSERT_EQ(split_tgt_images.size(), split_src_images.size());
ASSERT_EQ(static_cast<size_t>(5), split_tgt_images.size());
ASSERT_EQ(static_cast<size_t>(2), split_src_images[0].NumOfChunks());
ASSERT_EQ("a", split_src_images[0][0].GetEntryName());
ASSERT_EQ("b", split_src_images[0][1].GetEntryName());
ASSERT_EQ(static_cast<size_t>(1), split_src_images[1].NumOfChunks());
ASSERT_EQ("c", split_src_images[1][0].GetEntryName());
ASSERT_EQ(static_cast<size_t>(0), split_src_images[2].NumOfChunks());
ASSERT_EQ(static_cast<size_t>(0), split_src_images[3].NumOfChunks());
ASSERT_EQ(static_cast<size_t>(0), split_src_images[4].NumOfChunks());
// Compute patch.
TemporaryFile patch_file;
TemporaryDir debug_dir;
ASSERT_TRUE(ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
patch_file.path, debug_dir.path));
std::string tgt;
ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt));
// Expect 5 pieces of patch. ["a","b"; "c"; "d-0"; "d-1"; "e"]
GenerateAndCheckSplitTarget(debug_dir.path, 5, tgt);
}
TEST(ImgdiffTest, zip_mode_no_match_source) {
// Generate 20 blocks of random data.
std::string random_data;
random_data.reserve(4096 * 20);
generate_n(back_inserter(random_data), 4096 * 20, []() { return rand() % 256; });
TemporaryFile tgt_file;
FILE* tgt_file_ptr = fdopen(tgt_file.fd, "wb");
ZipWriter tgt_writer(tgt_file_ptr);
construct_deflate_entry({ { "a", 0, 4 }, { "b", 5, 5 }, { "c", 11, 5 } }, &tgt_writer,
random_data);
ASSERT_EQ(0, tgt_writer.Finish());
ASSERT_EQ(0, fclose(tgt_file_ptr));
// We don't have a matching source entry.
TemporaryFile src_file;
FILE* src_file_ptr = fdopen(src_file.fd, "wb");
ZipWriter src_writer(src_file_ptr);
construct_store_entry({ { "d", 1, 'd' } }, &src_writer);
ASSERT_EQ(0, src_writer.Finish());
ASSERT_EQ(0, fclose(src_file_ptr));
// Compute patch.
TemporaryFile patch_file;
TemporaryDir debug_dir;
std::vector<const char*> args = {
"imgdiff", "-z", "--block-limit=10", android::base::StringPrintf(
"--debug-dir=%s", debug_dir.path).c_str(), src_file.path, tgt_file.path, patch_file.path,
};
ASSERT_EQ(0, imgdiff(args.size(), args.data()));
std::string tgt;
ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt));
// Expect 1 pieces of patch due to no matching source entry.
GenerateAndCheckSplitTarget(debug_dir.path, 1, tgt);
}
TEST(ImgdiffTest, zip_mode_large_enough_limit) {
// Generate 20 blocks of random data.
std::string random_data;
random_data.reserve(4096 * 20);
generate_n(back_inserter(random_data), 4096 * 20, []() { return rand() % 256; });
TemporaryFile tgt_file;
FILE* tgt_file_ptr = fdopen(tgt_file.fd, "wb");
ZipWriter tgt_writer(tgt_file_ptr);
construct_deflate_entry({ { "a", 0, 10 }, { "b", 10, 5 } }, &tgt_writer, random_data);
ASSERT_EQ(0, tgt_writer.Finish());
ASSERT_EQ(0, fclose(tgt_file_ptr));
// Construct 10 blocks of source.
TemporaryFile src_file;
FILE* src_file_ptr = fdopen(src_file.fd, "wb");
ZipWriter src_writer(src_file_ptr);
construct_deflate_entry({ { "a", 1, 10 } }, &src_writer, random_data);
ASSERT_EQ(0, src_writer.Finish());
ASSERT_EQ(0, fclose(src_file_ptr));
// Compute patch with a limit of 20 blocks.
TemporaryFile patch_file;
TemporaryDir debug_dir;
std::vector<const char*> args = {
"imgdiff", "-z", "--block-limit=20", android::base::StringPrintf(
"--debug-dir=%s", debug_dir.path).c_str(), src_file.path, tgt_file.path, patch_file.path,
};
ASSERT_EQ(0, imgdiff(args.size(), args.data()));
std::string tgt;
ASSERT_TRUE(android::base::ReadFileToString(tgt_file.path, &tgt));
// Expect 1 pieces of patch since limit is larger than the zip file size.
GenerateAndCheckSplitTarget(debug_dir.path, 1, tgt);
}