/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // This module creates a special filesystem containing two files. // // "/sideload/package.zip" appears to be a normal file, but reading // from it causes data to be fetched from the adb host. We can use // this to sideload packages over an adb connection without having to // store the entire package in RAM on the device. // // Because we may not trust the adb host, this filesystem maintains // the following invariant: each read of a given position returns the // same data as the first read at that position. That is, once a // section of the file is read, future reads of that section return // the same data. (Otherwise, a malicious adb host process could // return one set of bits when the package is read for signature // verification, and then different bits for when the package is // accessed by the installer.) If the adb host returns something // different than it did on the first read, the reader of the file // will see their read fail with EINVAL. // // The other file, "/sideload/exit", is used to control the subprocess // that creates this filesystem. Calling stat() on the exit file // causes the filesystem to be unmounted and the adb process on the // device shut down. // // Note that only the minimal set of file operations needed for these // two files is implemented. In particular, you can't opendir() or // readdir() on the "/sideload" directory; ls on it won't work. #include "fuse_sideload.h" #include #include #include // PATH_MAX #include #include #include #include #include #include #include // MIN #include #include #include #include #include #include #include #include #include static constexpr uint64_t PACKAGE_FILE_ID = FUSE_ROOT_ID + 1; static constexpr uint64_t EXIT_FLAG_ID = FUSE_ROOT_ID + 2; static constexpr int NO_STATUS = 1; static constexpr int NO_STATUS_EXIT = 2; using SHA256Digest = std::array; #define INSTALL_REQUIRED_MEMORY (400 * 1024 * 1024) struct fuse_data { android::base::unique_fd ffd; // file descriptor for the fuse socket FuseDataProvider* provider; // Provider of the source data. uint64_t file_size; // bytes uint32_t block_size; // block size that the adb host is using to send the file to us uint32_t file_blocks; // file size in block_size blocks uid_t uid; gid_t gid; uint32_t curr_block; // cache the block most recently used uint8_t* block_data; uint8_t* extra_block; // another block of storage for reads that span two blocks std::vector hashes; // SHA-256 hash of each block (all zeros if block hasn't been read yet) // Block cache uint32_t block_cache_max_size; // Max allowed block cache size uint32_t block_cache_size; // Current block cache size uint8_t** block_cache; // Block cache data }; static uint64_t free_memory() { uint64_t mem = 0; FILE* fp = fopen("/proc/meminfo", "r"); if (fp) { char buf[256]; char* linebuf = buf; size_t buflen = sizeof(buf); while (getline(&linebuf, &buflen, fp) > 0) { char* key = buf; char* val = strchr(buf, ':'); *val = '\0'; ++val; if (strcmp(key, "MemFree") == 0) { mem += strtoul(val, nullptr, 0) * 1024; } if (strcmp(key, "Buffers") == 0) { mem += strtoul(val, nullptr, 0) * 1024; } if (strcmp(key, "Cached") == 0) { mem += strtoul(val, nullptr, 0) * 1024; } } fclose(fp); } return mem; } static int block_cache_fetch(struct fuse_data* fd, uint32_t block) { if (fd->block_cache == nullptr) { return -1; } if (fd->block_cache[block] == nullptr) { return -1; } memcpy(fd->block_data, fd->block_cache[block], fd->block_size); return 0; } static void block_cache_enter(struct fuse_data* fd, uint32_t block) { if (!fd->block_cache) return; if (fd->block_cache_size == fd->block_cache_max_size) { // Evict a block from the cache. Since the file is typically read // sequentially, start looking from the block behind the current // block and proceed backward. int n; for (n = fd->curr_block - 1; n != (int)fd->curr_block; --n) { if (n < 0) { n = fd->file_blocks - 1; } if (fd->block_cache[n]) { free(fd->block_cache[n]); fd->block_cache[n] = nullptr; fd->block_cache_size--; break; } } } fd->block_cache[block] = (uint8_t*)malloc(fd->block_size); memcpy(fd->block_cache[block], fd->block_data, fd->block_size); fd->block_cache_size++; } static void fuse_reply(const fuse_data* fd, uint64_t unique, const void* data, size_t len) { fuse_out_header hdr; hdr.len = len + sizeof(hdr); hdr.error = 0; hdr.unique = unique; struct iovec vec[2]; vec[0].iov_base = &hdr; vec[0].iov_len = sizeof(hdr); vec[1].iov_base = const_cast(data); vec[1].iov_len = len; int res = writev(fd->ffd, vec, 2); if (res == -1) { printf("*** REPLY FAILED *** %s\n", strerror(errno)); } } static int handle_init(void* data, fuse_data* fd, const fuse_in_header* hdr) { const fuse_init_in* req = static_cast(data); // Kernel 2.6.16 is the first stable kernel with struct fuse_init_out defined (fuse version 7.6). // The structure is the same from 7.6 through 7.22. Beginning with 7.23, the structure increased // in size and added new parameters. if (req->major != FUSE_KERNEL_VERSION || req->minor < 6) { printf("Fuse kernel version mismatch: Kernel version %d.%d, Expected at least %d.6", req->major, req->minor, FUSE_KERNEL_VERSION); return -1; } fuse_init_out out; out.minor = MIN(req->minor, FUSE_KERNEL_MINOR_VERSION); size_t fuse_struct_size = sizeof(out); #if defined(FUSE_COMPAT_22_INIT_OUT_SIZE) /* FUSE_KERNEL_VERSION >= 23. */ // If the kernel only works on minor revs older than or equal to 22, then use the older structure // size since this code only uses the 7.22 version of the structure. if (req->minor <= 22) { fuse_struct_size = FUSE_COMPAT_22_INIT_OUT_SIZE; } #endif out.major = FUSE_KERNEL_VERSION; out.max_readahead = req->max_readahead; out.flags = 0; out.max_background = 32; out.congestion_threshold = 32; out.max_write = 4096; fuse_reply(fd, hdr->unique, &out, fuse_struct_size); return NO_STATUS; } static void fill_attr(fuse_attr* attr, const fuse_data* fd, uint64_t nodeid, uint64_t size, uint32_t mode) { *attr = {}; attr->nlink = 1; attr->uid = fd->uid; attr->gid = fd->gid; attr->blksize = 4096; attr->ino = nodeid; attr->size = size; attr->blocks = (size == 0) ? 0 : (((size - 1) / attr->blksize) + 1); attr->mode = mode; } static int handle_getattr(void* /* data */, const fuse_data* fd, const fuse_in_header* hdr) { fuse_attr_out out = {}; out.attr_valid = 10; if (hdr->nodeid == FUSE_ROOT_ID) { fill_attr(&(out.attr), fd, hdr->nodeid, 4096, S_IFDIR | 0555); } else if (hdr->nodeid == PACKAGE_FILE_ID) { fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444); } else if (hdr->nodeid == EXIT_FLAG_ID) { fill_attr(&(out.attr), fd, EXIT_FLAG_ID, 0, S_IFREG | 0); } else { return -ENOENT; } fuse_reply(fd, hdr->unique, &out, sizeof(out)); return (hdr->nodeid == EXIT_FLAG_ID) ? NO_STATUS_EXIT : NO_STATUS; } static int handle_lookup(void* data, const fuse_data* fd, const fuse_in_header* hdr) { if (data == nullptr) return -ENOENT; fuse_entry_out out = {}; out.entry_valid = 10; out.attr_valid = 10; std::string filename(static_cast(data)); if (filename == FUSE_SIDELOAD_HOST_FILENAME) { out.nodeid = PACKAGE_FILE_ID; out.generation = PACKAGE_FILE_ID; fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444); } else if (filename == FUSE_SIDELOAD_HOST_EXIT_FLAG) { out.nodeid = EXIT_FLAG_ID; out.generation = EXIT_FLAG_ID; fill_attr(&(out.attr), fd, EXIT_FLAG_ID, 0, S_IFREG | 0); } else { return -ENOENT; } fuse_reply(fd, hdr->unique, &out, sizeof(out)); return (out.nodeid == EXIT_FLAG_ID) ? NO_STATUS_EXIT : NO_STATUS; } static int handle_open(void* /* data */, const fuse_data* fd, const fuse_in_header* hdr) { if (hdr->nodeid == EXIT_FLAG_ID) return -EPERM; if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT; fuse_open_out out = {}; out.fh = 10; // an arbitrary number; we always use the same handle fuse_reply(fd, hdr->unique, &out, sizeof(out)); return NO_STATUS; } static int handle_flush(void* /* data */, fuse_data* /* fd */, const fuse_in_header* /* hdr */) { return 0; } static int handle_release(void* /* data */, fuse_data* /* fd */, const fuse_in_header* /* hdr */) { return 0; } // Fetch a block from the host into fd->curr_block and fd->block_data. // Returns 0 on successful fetch, negative otherwise. static int fetch_block(fuse_data* fd, uint64_t block) { if (block == fd->curr_block) { return 0; } if (block >= fd->file_blocks) { memset(fd->block_data, 0, fd->block_size); fd->curr_block = block; return 0; } if (block_cache_fetch(fd, block) == 0) { fd->curr_block = block; return 0; } uint32_t fetch_size = fd->block_size; if (block * fd->block_size + fetch_size > fd->file_size) { // If we're reading the last (partial) block of the file, expect a shorter response from the // host, and pad the rest of the block with zeroes. fetch_size = fd->file_size - (block * fd->block_size); memset(fd->block_data + fetch_size, 0, fd->block_size - fetch_size); } if (!fd->provider->ReadBlockAlignedData(fd->block_data, fetch_size, block)) { return -EIO; } fd->curr_block = block; // Verify the hash of the block we just got from the host. // // - If the hash of the just-received data matches the stored hash for the block, accept it. // - If the stored hash is all zeroes, store the new hash and accept the block (this is the first // time we've read this block). // - Otherwise, return -EINVAL for the read. SHA256Digest hash; SHA256(fd->block_data, fd->block_size, hash.data()); const SHA256Digest& blockhash = fd->hashes[block]; if (hash == blockhash) { return 0; } for (uint8_t i : blockhash) { if (i != 0) { fd->curr_block = -1; return -EIO; } } fd->hashes[block] = hash; block_cache_enter(fd, block); return 0; } static int handle_read(void* data, fuse_data* fd, const fuse_in_header* hdr) { if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT; const fuse_read_in* req = static_cast(data); uint64_t offset = req->offset; uint32_t size = req->size; // The docs on the fuse kernel interface are vague about what to do when a read request extends // past the end of the file. We can return a short read -- the return structure does include a // length field -- but in testing that caused the program using the file to segfault. (I // speculate that this is due to the reading program accessing it via mmap; maybe mmap dislikes // when you return something short of a whole page?) To fix this we zero-pad reads that extend // past the end of the file so we're always returning exactly as many bytes as were requested. // (Users of the mapped file have to know its real length anyway.) fuse_out_header outhdr; outhdr.len = sizeof(outhdr) + size; outhdr.error = 0; outhdr.unique = hdr->unique; struct iovec vec[3]; vec[0].iov_base = &outhdr; vec[0].iov_len = sizeof(outhdr); uint32_t block = offset / fd->block_size; int result = fetch_block(fd, block); if (result != 0) return result; // Two cases: // // - the read request is entirely within this block. In this case we can reply immediately. // // - the read request goes over into the next block. Note that since we mount the filesystem // with max_read=block_size, a read can never span more than two blocks. In this case we copy // the block to extra_block and issue a fetch for the following block. uint32_t block_offset = offset - (block * fd->block_size); int vec_used; if (size + block_offset <= fd->block_size) { // First case: the read fits entirely in the first block. vec[1].iov_base = fd->block_data + block_offset; vec[1].iov_len = size; vec_used = 2; } else { // Second case: the read spills over into the next block. memcpy(fd->extra_block, fd->block_data + block_offset, fd->block_size - block_offset); vec[1].iov_base = fd->extra_block; vec[1].iov_len = fd->block_size - block_offset; result = fetch_block(fd, block + 1); if (result != 0) return result; vec[2].iov_base = fd->block_data; vec[2].iov_len = size - vec[1].iov_len; vec_used = 3; } if (writev(fd->ffd, vec, vec_used) == -1) { printf("*** READ REPLY FAILED: %s ***\n", strerror(errno)); } return NO_STATUS; } int run_fuse_sideload(std::unique_ptr&& provider, const char* mount_point) { // If something's already mounted on our mountpoint, try to remove it. (Mostly in case of a // previous abnormal exit.) umount2(mount_point, MNT_FORCE); uint64_t file_size = provider->file_size(); uint32_t block_size = provider->fuse_block_size(); // fs/fuse/inode.c in kernel code uses the greater of 4096 and the passed-in max_read. if (block_size < 4096) { fprintf(stderr, "block size (%u) is too small\n", block_size); return -1; } if (block_size > (1 << 22)) { // 4 MiB fprintf(stderr, "block size (%u) is too large\n", block_size); return -1; } fuse_data fd = {}; fd.provider = provider.get(); fd.file_size = file_size; fd.block_size = block_size; fd.file_blocks = (file_size == 0) ? 0 : (((file_size - 1) / block_size) + 1); uint64_t mem = free_memory(); uint64_t avail = mem - (INSTALL_REQUIRED_MEMORY + fd.file_blocks * sizeof(uint8_t*)); int result; if (fd.file_blocks > (1 << 18)) { fprintf(stderr, "file has too many blocks (%u)\n", fd.file_blocks); result = -1; goto done; } // All hashes will be zero-initialized. fd.hashes.resize(fd.file_blocks); fd.uid = getuid(); fd.gid = getgid(); fd.curr_block = -1; fd.block_data = static_cast(malloc(block_size)); if (fd.block_data == nullptr) { fprintf(stderr, "failed to allocate %d bites for block_data\n", block_size); result = -1; goto done; } fd.extra_block = static_cast(malloc(block_size)); if (fd.extra_block == nullptr) { fprintf(stderr, "failed to allocate %d bites for extra_block\n", block_size); result = -1; goto done; } fd.block_cache_max_size = 0; fd.block_cache_size = 0; fd.block_cache = nullptr; if (mem > avail) { uint32_t max_size = avail / fd.block_size; if (max_size > fd.file_blocks) { max_size = fd.file_blocks; } // The cache must be at least 1% of the file size or two blocks, // whichever is larger. if (max_size >= fd.file_blocks / 100 && max_size >= 2) { fd.block_cache_max_size = max_size; fd.block_cache = (uint8_t**)calloc(fd.file_blocks, sizeof(uint8_t*)); } } fd.ffd.reset(open("/dev/fuse", O_RDWR)); if (fd.ffd == -1) { perror("open /dev/fuse"); result = -1; goto done; } { std::string opts = android::base::StringPrintf( "fd=%d,user_id=%d,group_id=%d,max_read=%u,allow_other,rootmode=040000", fd.ffd.get(), fd.uid, fd.gid, block_size); result = mount("/dev/fuse", mount_point, "fuse", MS_NOSUID | MS_NODEV | MS_RDONLY | MS_NOEXEC, opts.c_str()); if (result == -1) { perror("mount"); goto done; } } uint8_t request_buffer[sizeof(fuse_in_header) + PATH_MAX * 8]; for (;;) { ssize_t len = TEMP_FAILURE_RETRY(read(fd.ffd, request_buffer, sizeof(request_buffer))); if (len == -1) { perror("read request"); if (errno == ENODEV) { result = -1; break; } continue; } if (static_cast(len) < sizeof(fuse_in_header)) { fprintf(stderr, "request too short: len=%zd\n", len); continue; } fuse_in_header* hdr = reinterpret_cast(request_buffer); void* data = request_buffer + sizeof(fuse_in_header); result = -ENOSYS; switch (hdr->opcode) { case FUSE_INIT: result = handle_init(data, &fd, hdr); break; case FUSE_LOOKUP: result = handle_lookup(data, &fd, hdr); break; case FUSE_GETATTR: result = handle_getattr(data, &fd, hdr); break; case FUSE_OPEN: result = handle_open(data, &fd, hdr); break; case FUSE_READ: result = handle_read(data, &fd, hdr); break; case FUSE_FLUSH: result = handle_flush(data, &fd, hdr); break; case FUSE_RELEASE: result = handle_release(data, &fd, hdr); break; default: fprintf(stderr, "unknown fuse request opcode %d\n", hdr->opcode); break; } if (result == NO_STATUS_EXIT) { result = 0; break; } if (result != NO_STATUS) { fuse_out_header outhdr; outhdr.len = sizeof(outhdr); outhdr.error = result; outhdr.unique = hdr->unique; TEMP_FAILURE_RETRY(write(fd.ffd, &outhdr, sizeof(outhdr))); } } done: provider->Close(); if (umount2(mount_point, MNT_DETACH) == -1) { fprintf(stderr, "fuse_sideload umount failed: %s\n", strerror(errno)); } if (fd.block_cache) { uint32_t n; for (n = 0; n < fd.file_blocks; ++n) { free(fd.block_cache[n]); } free(fd.block_cache); } free(fd.block_data); free(fd.extra_block); return result; }