/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "recovery_utils/roots.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "otautil/sysutil.h" using android::fs_mgr::Fstab; using android::fs_mgr::FstabEntry; using android::fs_mgr::ReadDefaultFstab; static Fstab fstab; constexpr const char* CACHE_ROOT = "/cache"; void load_volume_table() { if (!ReadDefaultFstab(&fstab)) { LOG(ERROR) << "Failed to read default fstab"; return; } fstab.emplace_back(FstabEntry{ .blk_device = "ramdisk", .mount_point = "/tmp", .fs_type = "ramdisk", .length = 0, }); std::cout << "recovery filesystem table" << std::endl << "=========================" << std::endl; for (size_t i = 0; i < fstab.size(); ++i) { const auto& entry = fstab[i]; std::cout << " " << i << " " << entry.mount_point << " " << " " << entry.fs_type << " " << entry.blk_device << " " << entry.length << std::endl; } std::cout << std::endl; } Volume* volume_for_mount_point(const std::string& mount_point) { return android::fs_mgr::GetEntryForMountPoint(&fstab, mount_point); } // Mount the volume specified by path at the given mount_point. int ensure_path_mounted_at(const std::string& path, const std::string& mount_point) { return android::fs_mgr::EnsurePathMounted(&fstab, path, mount_point) ? 0 : -1; } int ensure_path_mounted(const std::string& path) { // Mount at the default mount point. return android::fs_mgr::EnsurePathMounted(&fstab, path) ? 0 : -1; } int ensure_path_unmounted(const std::string& path) { return android::fs_mgr::EnsurePathUnmounted(&fstab, path) ? 0 : -1; } static int exec_cmd(const std::vector& args) { CHECK(!args.empty()); auto argv = StringVectorToNullTerminatedArray(args); pid_t child; if ((child = fork()) == 0) { execv(argv[0], argv.data()); _exit(EXIT_FAILURE); } int status; waitpid(child, &status, 0); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { LOG(ERROR) << args[0] << " failed with status " << WEXITSTATUS(status); } return WEXITSTATUS(status); } static int64_t get_file_size(int fd, uint64_t reserve_len) { struct stat buf; int ret = fstat(fd, &buf); if (ret) return 0; int64_t computed_size; if (S_ISREG(buf.st_mode)) { computed_size = buf.st_size - reserve_len; } else if (S_ISBLK(buf.st_mode)) { uint64_t block_device_size = get_block_device_size(fd); if (block_device_size < reserve_len || block_device_size > std::numeric_limits::max()) { computed_size = 0; } else { computed_size = block_device_size - reserve_len; } } else { computed_size = 0; } return computed_size; } int format_volume(const std::string& volume, const std::string& directory, std::string_view new_fstype) { const FstabEntry* v = android::fs_mgr::GetEntryForPath(&fstab, volume); if (v == nullptr) { LOG(ERROR) << "unknown volume \"" << volume << "\""; return -1; } if (v->fs_type == "ramdisk") { LOG(ERROR) << "can't format_volume \"" << volume << "\""; return -1; } if (v->mount_point != volume) { LOG(ERROR) << "can't give path \"" << volume << "\" to format_volume"; return -1; } if (ensure_path_unmounted(volume) != 0) { LOG(ERROR) << "format_volume: Failed to unmount \"" << v->mount_point << "\""; return -1; } if (v->fs_type != "ext4" && v->fs_type != "f2fs") { LOG(ERROR) << "format_volume: fs_type \"" << v->fs_type << "\" unsupported"; return -1; } bool needs_casefold = false; if (volume == "/data") { needs_casefold = android::base::GetBoolProperty("external_storage.casefold.enabled", false); } int64_t length = 0; if (v->length > 0) { length = v->length; } else if (v->length < 0) { android::base::unique_fd fd(open(v->blk_device.c_str(), O_RDONLY)); if (fd == -1) { PLOG(ERROR) << "format_volume: failed to open " << v->blk_device; return -1; } length = get_file_size(fd.get(), -v->length); if (length <= 0) { LOG(ERROR) << "get_file_size: invalid size " << length << " for " << v->blk_device; return -1; } } // If the raw disk will be used as a metadata encrypted device mapper target, // next boot will do encrypt_in_place the raw disk. While fs_mgr mounts /data // as RO to avoid write file operations before encrypt_inplace, this code path // is not well tested so we would like to avoid it if possible. For safety, // let vold do the formatting on boot for metadata encrypted devices, except // when user specified a new fstype. Because init formats /data according // to fstab, it's difficult to override the fstab in init. if (!v->metadata_key_dir.empty() && length == 0 && new_fstype.empty()) { android::base::unique_fd fd(open(v->blk_device.c_str(), O_RDWR)); if (fd == -1) { PLOG(ERROR) << "format_volume: failed to open " << v->blk_device; return -1; } int64_t device_size = get_file_size(fd.get(), 0); if (device_size > 0 && !wipe_block_device(fd.get(), device_size)) { LOG(INFO) << "format_volume: wipe metadata encrypted " << v->blk_device << " with size " << device_size; return 0; } } if ((v->fs_type == "ext4" && new_fstype.empty()) || new_fstype == "ext4") { LOG(INFO) << "Formatting " << v->blk_device << " as ext4"; static constexpr int kBlockSize = 4096; std::vector mke2fs_args = { "/system/bin/mke2fs", "-F", "-t", "ext4", "-b", std::to_string(kBlockSize), }; // Following is added for Project ID's quota as they require wider inodes. // The Quotas themselves are enabled by tune2fs on boot. mke2fs_args.push_back("-I"); mke2fs_args.push_back("512"); if (v->fs_mgr_flags.ext_meta_csum) { mke2fs_args.push_back("-O"); mke2fs_args.push_back("metadata_csum"); mke2fs_args.push_back("-O"); mke2fs_args.push_back("64bit"); mke2fs_args.push_back("-O"); mke2fs_args.push_back("extent"); } int raid_stride = v->logical_blk_size / kBlockSize; int raid_stripe_width = v->erase_blk_size / kBlockSize; // stride should be the max of 8KB and logical block size if (v->logical_blk_size != 0 && v->logical_blk_size < 8192) { raid_stride = 8192 / kBlockSize; } if (v->erase_blk_size != 0 && v->logical_blk_size != 0) { mke2fs_args.push_back("-E"); mke2fs_args.push_back( android::base::StringPrintf("stride=%d,stripe-width=%d", raid_stride, raid_stripe_width)); } mke2fs_args.push_back(v->blk_device); if (length != 0) { mke2fs_args.push_back(std::to_string(length / kBlockSize)); } int result = exec_cmd(mke2fs_args); if (result == 0 && !directory.empty()) { std::vector e2fsdroid_args = { "/system/bin/e2fsdroid", "-e", "-f", directory, "-a", volume, v->blk_device, }; result = exec_cmd(e2fsdroid_args); } if (result != 0) { PLOG(ERROR) << "format_volume: Failed to make ext4 on " << v->blk_device; return -1; } return 0; } // Has to be f2fs because we checked earlier. LOG(INFO) << "Formatting " << v->blk_device << " as f2fs"; static constexpr int kSectorSize = 4096; std::vector make_f2fs_cmd = { "/system/bin/make_f2fs", "-g", "android", }; make_f2fs_cmd.push_back("-O"); make_f2fs_cmd.push_back("project_quota,extra_attr"); if (needs_casefold) { make_f2fs_cmd.push_back("-O"); make_f2fs_cmd.push_back("casefold"); make_f2fs_cmd.push_back("-C"); make_f2fs_cmd.push_back("utf8"); } if (v->fs_mgr_flags.fs_compress) { make_f2fs_cmd.push_back("-O"); make_f2fs_cmd.push_back("compression"); make_f2fs_cmd.push_back("-O"); make_f2fs_cmd.push_back("extra_attr"); } make_f2fs_cmd.push_back(v->blk_device); if (length >= kSectorSize) { make_f2fs_cmd.push_back(std::to_string(length / kSectorSize)); } if (exec_cmd(make_f2fs_cmd) != 0) { PLOG(ERROR) << "format_volume: Failed to make_f2fs on " << v->blk_device; return -1; } if (!directory.empty()) { std::vector sload_f2fs_cmd = { "/system/bin/sload_f2fs", "-f", directory, "-t", volume, v->blk_device, }; if (exec_cmd(sload_f2fs_cmd) != 0) { PLOG(ERROR) << "format_volume: Failed to sload_f2fs on " << v->blk_device; return -1; } } return 0; } int format_volume(const std::string& volume) { return format_volume(volume, "", ""); } int setup_install_mounts() { if (fstab.empty()) { LOG(ERROR) << "can't set up install mounts: no fstab loaded"; return -1; } for (const FstabEntry& entry : fstab) { // We don't want to do anything with "/". if (entry.mount_point == "/") { continue; } if (entry.mount_point == "/tmp" || entry.mount_point == "/cache") { if (ensure_path_mounted(entry.mount_point) != 0) { LOG(ERROR) << "Failed to mount " << entry.mount_point; return -1; } } else { if (ensure_path_unmounted(entry.mount_point) != 0) { LOG(ERROR) << "Failed to unmount " << entry.mount_point; return -1; } } } return 0; } bool HasCache() { CHECK(!fstab.empty()); static bool has_cache = volume_for_mount_point(CACHE_ROOT) != nullptr; return has_cache; }