platform_bootable_recovery/tests/component/applypatch_test.cpp
Tao Bao 4102b28132 tests: Set up testdata path for continuous native tests.
continuous_native_tests expects the testdata under DATA/ in
continuous_native_tests.zip. This CL packs a copy of the testdata into
continuous_native_tests.zip as DATA/nativetest/recovery/testdata (via
LOCAL_PICKUP_FILES).

This CL also removes the extra copy for nativetest64. Testdata will
always stay at /data/nativetest/recovery/testdata, even for 64-bit
version. Otherwise we will unnecessarily get four copies (two for data/
and another two for DATA/).

Bug: 32123241
Test: mmma bootable/recovery && adb sync data. On bullhead,
    /data/nativetest/recovery_component_test/recovery_component_test works;
    /data/nativetest64/recovery_component_test/recovery_component_test works.
Test: m continuous_native_test; DATA/nativetest/recovery/testdata exists.

Change-Id: Ifefa0309de7af23c77654e8e450848ca2da218c2
2016-11-02 23:18:01 -07:00

454 lines
14 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agree to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <gtest/gtest.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/types.h>
#include <time.h>
#include <memory>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/test_utils.h>
#include <openssl/sha.h>
#include "applypatch/applypatch.h"
#include "applypatch/applypatch_modes.h"
#include "common/test_constants.h"
#include "print_sha1.h"
static void sha1sum(const std::string& fname, std::string* sha1, size_t* fsize = nullptr) {
ASSERT_NE(nullptr, sha1);
std::string data;
ASSERT_TRUE(android::base::ReadFileToString(fname, &data));
if (fsize != nullptr) {
*fsize = data.size();
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(data.c_str()), data.size(), digest);
*sha1 = print_sha1(digest);
}
static void mangle_file(const std::string& fname) {
std::string content;
content.reserve(1024);
for (size_t i = 0; i < 1024; i++) {
content[i] = rand() % 256;
}
ASSERT_TRUE(android::base::WriteStringToFile(content, fname));
}
static bool file_cmp(const std::string& f1, const std::string& f2) {
std::string c1;
android::base::ReadFileToString(f1, &c1);
std::string c2;
android::base::ReadFileToString(f2, &c2);
return c1 == c2;
}
class ApplyPatchTest : public ::testing::Test {
public:
static void SetUpTestCase() {
// set up files
old_file = from_testdata_base("old.file");
new_file = from_testdata_base("new.file");
patch_file = from_testdata_base("patch.bsdiff");
rand_file = "/cache/applypatch_test_rand.file";
cache_file = "/cache/saved.file";
// write stuff to rand_file
ASSERT_TRUE(android::base::WriteStringToFile("hello", rand_file));
// set up SHA constants
sha1sum(old_file, &old_sha1);
sha1sum(new_file, &new_sha1);
srand(time(nullptr));
bad_sha1_a = android::base::StringPrintf("%040x", rand());
bad_sha1_b = android::base::StringPrintf("%040x", rand());
struct stat st;
stat(&new_file[0], &st);
new_size = st.st_size;
}
static std::string old_file;
static std::string new_file;
static std::string rand_file;
static std::string cache_file;
static std::string patch_file;
static std::string old_sha1;
static std::string new_sha1;
static std::string bad_sha1_a;
static std::string bad_sha1_b;
static size_t new_size;
};
std::string ApplyPatchTest::old_file;
std::string ApplyPatchTest::new_file;
static void cp(const std::string& src, const std::string& tgt) {
std::string cmd = "cp " + src + " " + tgt;
system(cmd.c_str());
}
static void backup_old() {
cp(ApplyPatchTest::old_file, ApplyPatchTest::cache_file);
}
static void restore_old() {
cp(ApplyPatchTest::cache_file, ApplyPatchTest::old_file);
}
class ApplyPatchCacheTest : public ApplyPatchTest {
public:
virtual void SetUp() {
backup_old();
}
virtual void TearDown() {
restore_old();
}
};
class ApplyPatchFullTest : public ApplyPatchCacheTest {
public:
static void SetUpTestCase() {
ApplyPatchTest::SetUpTestCase();
output_f = new TemporaryFile();
output_loc = std::string(output_f->path);
struct FileContents fc;
ASSERT_EQ(0, LoadFileContents(&rand_file[0], &fc));
patches.push_back(
std::make_unique<Value>(VAL_BLOB, std::string(fc.data.begin(), fc.data.end())));
ASSERT_EQ(0, LoadFileContents(&patch_file[0], &fc));
patches.push_back(
std::make_unique<Value>(VAL_BLOB, std::string(fc.data.begin(), fc.data.end())));
}
static void TearDownTestCase() {
delete output_f;
patches.clear();
}
static std::vector<std::unique_ptr<Value>> patches;
static TemporaryFile* output_f;
static std::string output_loc;
};
class ApplyPatchDoubleCacheTest : public ApplyPatchFullTest {
public:
virtual void SetUp() {
ApplyPatchCacheTest::SetUp();
cp(cache_file, "/cache/reallysaved.file");
}
virtual void TearDown() {
cp("/cache/reallysaved.file", cache_file);
ApplyPatchCacheTest::TearDown();
}
};
std::string ApplyPatchTest::rand_file;
std::string ApplyPatchTest::patch_file;
std::string ApplyPatchTest::cache_file;
std::string ApplyPatchTest::old_sha1;
std::string ApplyPatchTest::new_sha1;
std::string ApplyPatchTest::bad_sha1_a;
std::string ApplyPatchTest::bad_sha1_b;
size_t ApplyPatchTest::new_size;
std::vector<std::unique_ptr<Value>> ApplyPatchFullTest::patches;
TemporaryFile* ApplyPatchFullTest::output_f;
std::string ApplyPatchFullTest::output_loc;
TEST_F(ApplyPatchTest, CheckModeSkip) {
std::vector<std::string> sha1s;
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeSingle) {
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeMultiple) {
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeFailure) {
std::vector<std::string> sha1s = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedSingle) {
mangle_file(old_file);
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedMultiple) {
mangle_file(old_file);
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedFailure) {
mangle_file(old_file);
std::vector<std::string> sha1s = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheMissingSingle) {
unlink(&old_file[0]);
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheMissingMultiple) {
unlink(&old_file[0]);
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheMissingFailure) {
unlink(&old_file[0]);
std::vector<std::string> sha1s = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchFullTest, ApplyInPlace) {
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
ASSERT_EQ(0, applypatch(&old_file[0], "-", &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(old_file, new_file));
// reapply, applypatch is idempotent so it should succeed
ASSERT_EQ(0, applypatch(&old_file[0], "-", &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(old_file, new_file));
}
TEST_F(ApplyPatchFullTest, ApplyInNewLocation) {
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
// Apply bsdiff patch to new location.
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
// Reapply to the same location.
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
}
TEST_F(ApplyPatchFullTest, ApplyCorruptedInNewLocation) {
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
// Apply bsdiff patch to new location with corrupted source.
mangle_file(old_file);
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
// Reapply bsdiff patch to new location with corrupted source.
ASSERT_EQ(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_TRUE(file_cmp(output_loc, new_file));
}
TEST_F(ApplyPatchDoubleCacheTest, ApplyDoubleCorruptedInNewLocation) {
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1 };
// Apply bsdiff patch to new location with corrupted source and copy (no new file).
// Expected to fail.
mangle_file(old_file);
mangle_file(cache_file);
ASSERT_NE(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_FALSE(file_cmp(output_loc, new_file));
// Expected to fail again on retry.
ASSERT_NE(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_FALSE(file_cmp(output_loc, new_file));
// Expected to fail with incorrect new file.
mangle_file(output_loc);
ASSERT_NE(
0, applypatch(&old_file[0], &output_loc[0], &new_sha1[0], new_size, sha1s, patches, nullptr));
ASSERT_FALSE(file_cmp(output_loc, new_file));
}
TEST(ApplyPatchModes, InvalidArgs) {
// At least two args (including the filename).
ASSERT_EQ(2, applypatch_modes(1, (const char* []){ "applypatch" }));
// Unrecognized args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-x" }));
}
TEST(ApplyPatchModes, PatchMode) {
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t recovery_img_size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &recovery_img_size);
std::string bonus_file = from_testdata_base("bonus.file");
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size> <src-sha1>:<patch>
TemporaryFile tmp1;
std::vector<const char*> args = {
"applypatch",
"-b",
bonus_file.c_str(),
boot_img.c_str(),
tmp1.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot.p")).c_str()
};
ASSERT_EQ(0, applypatch_modes(args.size(), args.data()));
// applypatch <src-file> <tgt-file> <tgt-sha1> <tgt-size> <src-sha1>:<patch>
TemporaryFile tmp2;
std::vector<const char*> args2 = {
"applypatch",
boot_img.c_str(),
tmp2.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot-with-bonus.p")).c_str()
};
ASSERT_EQ(0, applypatch_modes(args2.size(), args2.data()));
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size> \
// <src-sha1-fake>:<patch1> <src-sha1>:<patch2>
TemporaryFile tmp3;
std::string bad_sha1_a = android::base::StringPrintf("%040x", rand());
std::string bad_sha1_b = android::base::StringPrintf("%040x", rand());
std::vector<const char*> args3 = {
"applypatch",
"-b",
bonus_file.c_str(),
boot_img.c_str(),
tmp3.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
(bad_sha1_a + ":" + from_testdata_base("recovery-from-boot.p")).c_str(),
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot.p")).c_str(),
(bad_sha1_b + ":" + from_testdata_base("recovery-from-boot.p")).c_str(),
};
ASSERT_EQ(0, applypatch_modes(args3.size(), args3.data()));
}
TEST(ApplyPatchModes, PatchModeInvalidArgs) {
// Invalid bonus file.
ASSERT_NE(0, applypatch_modes(3, (const char* []){ "applypatch", "-b", "/doesntexist" }));
std::string bonus_file = from_testdata_base("bonus.file");
// With bonus file, but missing args.
ASSERT_EQ(2, applypatch_modes(3, (const char* []){ "applypatch", "-b", bonus_file.c_str() }));
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t recovery_img_size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &recovery_img_size);
// Bonus file is not supported in flash mode.
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size>
TemporaryFile tmp4;
std::vector<const char*> args4 = {
"applypatch",
"-b",
bonus_file.c_str(),
boot_img.c_str(),
tmp4.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str() };
ASSERT_NE(0, applypatch_modes(args4.size(), args4.data()));
// Failed to parse patch args.
TemporaryFile tmp5;
std::vector<const char*> args5 = {
"applypatch",
boot_img.c_str(),
tmp5.path,
recovery_img_sha1.c_str(),
std::to_string(recovery_img_size).c_str(),
("invalid-sha1:filename" + from_testdata_base("recovery-from-boot-with-bonus.p")).c_str(),
};
ASSERT_NE(0, applypatch_modes(args5.size(), args5.data()));
// Target size cannot be zero.
TemporaryFile tmp6;
std::vector<const char*> args6 = {
"applypatch",
boot_img.c_str(),
tmp6.path,
recovery_img_sha1.c_str(),
"0", // target size
(boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot-with-bonus.p")).c_str()
};
ASSERT_NE(0, applypatch_modes(args6.size(), args6.data()));
}
TEST(ApplyPatchModes, CheckModeInvalidArgs) {
// Insufficient args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-c" }));
}
TEST(ApplyPatchModes, SpaceModeInvalidArgs) {
// Insufficient args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-s" }));
// Invalid bytes arg.
ASSERT_EQ(1, applypatch_modes(3, (const char* []){ "applypatch", "-s", "x" }));
// 0 is invalid.
ASSERT_EQ(1, applypatch_modes(3, (const char* []){ "applypatch", "-s", "0" }));
// 0x10 is fine.
ASSERT_EQ(0, applypatch_modes(3, (const char* []){ "applypatch", "-s", "0x10" }));
}
TEST(ApplyPatchModes, ShowLicenses) {
ASSERT_EQ(0, applypatch_modes(2, (const char* []){ "applypatch", "-l" }));
}