f3bb31c32f
Change-Id: I92d5abd1a628feab3b0246924fab7f97ba3b9d34
501 lines
18 KiB
C++
501 lines
18 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "asn1_decoder.h"
|
|
#include "common.h"
|
|
#include "ui.h"
|
|
#include "verifier.h"
|
|
|
|
#include "mincrypt/dsa_sig.h"
|
|
#include "mincrypt/p256.h"
|
|
#include "mincrypt/p256_ecdsa.h"
|
|
#include "mincrypt/rsa.h"
|
|
#include "mincrypt/sha.h"
|
|
#include "mincrypt/sha256.h"
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
|
|
extern RecoveryUI* ui;
|
|
|
|
/*
|
|
* Simple version of PKCS#7 SignedData extraction. This extracts the
|
|
* signature OCTET STRING to be used for signature verification.
|
|
*
|
|
* For full details, see http://www.ietf.org/rfc/rfc3852.txt
|
|
*
|
|
* The PKCS#7 structure looks like:
|
|
*
|
|
* SEQUENCE (ContentInfo)
|
|
* OID (ContentType)
|
|
* [0] (content)
|
|
* SEQUENCE (SignedData)
|
|
* INTEGER (version CMSVersion)
|
|
* SET (DigestAlgorithmIdentifiers)
|
|
* SEQUENCE (EncapsulatedContentInfo)
|
|
* [0] (CertificateSet OPTIONAL)
|
|
* [1] (RevocationInfoChoices OPTIONAL)
|
|
* SET (SignerInfos)
|
|
* SEQUENCE (SignerInfo)
|
|
* INTEGER (CMSVersion)
|
|
* SEQUENCE (SignerIdentifier)
|
|
* SEQUENCE (DigestAlgorithmIdentifier)
|
|
* SEQUENCE (SignatureAlgorithmIdentifier)
|
|
* OCTET STRING (SignatureValue)
|
|
*/
|
|
static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
|
|
size_t* sig_der_length) {
|
|
asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
|
|
if (ctx == NULL) {
|
|
return false;
|
|
}
|
|
|
|
asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
|
|
if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
|
|
asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
|
|
if (signed_data_app != NULL) {
|
|
asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
|
|
if (signed_data_seq != NULL
|
|
&& asn1_sequence_next(signed_data_seq)
|
|
&& asn1_sequence_next(signed_data_seq)
|
|
&& asn1_sequence_next(signed_data_seq)
|
|
&& asn1_constructed_skip_all(signed_data_seq)) {
|
|
asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
|
|
if (sig_set != NULL) {
|
|
asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
|
|
if (sig_seq != NULL
|
|
&& asn1_sequence_next(sig_seq)
|
|
&& asn1_sequence_next(sig_seq)
|
|
&& asn1_sequence_next(sig_seq)
|
|
&& asn1_sequence_next(sig_seq)) {
|
|
uint8_t* sig_der_ptr;
|
|
if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
|
|
*sig_der = (uint8_t*) malloc(*sig_der_length);
|
|
if (*sig_der != NULL) {
|
|
memcpy(*sig_der, sig_der_ptr, *sig_der_length);
|
|
}
|
|
}
|
|
asn1_context_free(sig_seq);
|
|
}
|
|
asn1_context_free(sig_set);
|
|
}
|
|
asn1_context_free(signed_data_seq);
|
|
}
|
|
asn1_context_free(signed_data_app);
|
|
}
|
|
asn1_context_free(pkcs7_seq);
|
|
}
|
|
asn1_context_free(ctx);
|
|
|
|
return *sig_der != NULL;
|
|
}
|
|
|
|
// Look for an RSA signature embedded in the .ZIP file comment given
|
|
// the path to the zip. Verify it matches one of the given public
|
|
// keys.
|
|
//
|
|
// Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
|
|
// or no key matches the signature).
|
|
|
|
int verify_file(const char* path, const Certificate* pKeys, unsigned int numKeys) {
|
|
ui->SetProgress(0.0);
|
|
|
|
FILE* f = fopen(path, "rb");
|
|
if (f == NULL) {
|
|
LOGE("failed to open %s (%s)\n", path, strerror(errno));
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
// An archive with a whole-file signature will end in six bytes:
|
|
//
|
|
// (2-byte signature start) $ff $ff (2-byte comment size)
|
|
//
|
|
// (As far as the ZIP format is concerned, these are part of the
|
|
// archive comment.) We start by reading this footer, this tells
|
|
// us how far back from the end we have to start reading to find
|
|
// the whole comment.
|
|
|
|
#define FOOTER_SIZE 6
|
|
|
|
if (fseek(f, -FOOTER_SIZE, SEEK_END) != 0) {
|
|
LOGE("failed to seek in %s (%s)\n", path, strerror(errno));
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
unsigned char footer[FOOTER_SIZE];
|
|
if (fread(footer, 1, FOOTER_SIZE, f) != FOOTER_SIZE) {
|
|
LOGE("failed to read footer from %s (%s)\n", path, strerror(errno));
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
if (footer[2] != 0xff || footer[3] != 0xff) {
|
|
LOGE("footer is wrong\n");
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
size_t comment_size = footer[4] + (footer[5] << 8);
|
|
size_t signature_start = footer[0] + (footer[1] << 8);
|
|
LOGI("comment is %zu bytes; signature %zu bytes from end\n",
|
|
comment_size, signature_start);
|
|
|
|
if (signature_start <= FOOTER_SIZE) {
|
|
LOGE("Signature start is in the footer");
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
#define EOCD_HEADER_SIZE 22
|
|
|
|
// The end-of-central-directory record is 22 bytes plus any
|
|
// comment length.
|
|
size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
|
|
|
|
if (fseek(f, -eocd_size, SEEK_END) != 0) {
|
|
LOGE("failed to seek in %s (%s)\n", path, strerror(errno));
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
// Determine how much of the file is covered by the signature.
|
|
// This is everything except the signature data and length, which
|
|
// includes all of the EOCD except for the comment length field (2
|
|
// bytes) and the comment data.
|
|
size_t signed_len = ftell(f) + EOCD_HEADER_SIZE - 2;
|
|
|
|
unsigned char* eocd = (unsigned char*)malloc(eocd_size);
|
|
if (eocd == NULL) {
|
|
LOGE("malloc for EOCD record failed\n");
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
if (fread(eocd, 1, eocd_size, f) != eocd_size) {
|
|
LOGE("failed to read eocd from %s (%s)\n", path, strerror(errno));
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
// If this is really is the EOCD record, it will begin with the
|
|
// magic number $50 $4b $05 $06.
|
|
if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
|
|
eocd[2] != 0x05 || eocd[3] != 0x06) {
|
|
LOGE("signature length doesn't match EOCD marker\n");
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
size_t i;
|
|
for (i = 4; i < eocd_size-3; ++i) {
|
|
if (eocd[i ] == 0x50 && eocd[i+1] == 0x4b &&
|
|
eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
|
|
// if the sequence $50 $4b $05 $06 appears anywhere after
|
|
// the real one, minzip will find the later (wrong) one,
|
|
// which could be exploitable. Fail verification if
|
|
// this sequence occurs anywhere after the real one.
|
|
LOGE("EOCD marker occurs after start of EOCD\n");
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
}
|
|
|
|
#define BUFFER_SIZE 4096
|
|
|
|
bool need_sha1 = false;
|
|
bool need_sha256 = false;
|
|
for (i = 0; i < numKeys; ++i) {
|
|
switch (pKeys[i].hash_len) {
|
|
case SHA_DIGEST_SIZE: need_sha1 = true; break;
|
|
case SHA256_DIGEST_SIZE: need_sha256 = true; break;
|
|
}
|
|
}
|
|
|
|
SHA_CTX sha1_ctx;
|
|
SHA256_CTX sha256_ctx;
|
|
SHA_init(&sha1_ctx);
|
|
SHA256_init(&sha256_ctx);
|
|
unsigned char* buffer = (unsigned char*)malloc(BUFFER_SIZE);
|
|
if (buffer == NULL) {
|
|
LOGE("failed to alloc memory for sha1 buffer\n");
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
double frac = -1.0;
|
|
size_t so_far = 0;
|
|
fseek(f, 0, SEEK_SET);
|
|
while (so_far < signed_len) {
|
|
size_t size = BUFFER_SIZE;
|
|
if (signed_len - so_far < size) size = signed_len - so_far;
|
|
if (fread(buffer, 1, size, f) != size) {
|
|
LOGE("failed to read data from %s (%s)\n", path, strerror(errno));
|
|
fclose(f);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
if (need_sha1) SHA_update(&sha1_ctx, buffer, size);
|
|
if (need_sha256) SHA256_update(&sha256_ctx, buffer, size);
|
|
so_far += size;
|
|
double f = so_far / (double)signed_len;
|
|
if (f > frac + 0.02 || size == so_far) {
|
|
ui->SetProgress(f);
|
|
frac = f;
|
|
}
|
|
}
|
|
fclose(f);
|
|
free(buffer);
|
|
|
|
const uint8_t* sha1 = SHA_final(&sha1_ctx);
|
|
const uint8_t* sha256 = SHA256_final(&sha256_ctx);
|
|
|
|
uint8_t* sig_der = NULL;
|
|
size_t sig_der_length = 0;
|
|
|
|
size_t signature_size = signature_start - FOOTER_SIZE;
|
|
if (!read_pkcs7(eocd + eocd_size - signature_start, signature_size, &sig_der,
|
|
&sig_der_length)) {
|
|
LOGE("Could not find signature DER block\n");
|
|
free(eocd);
|
|
return VERIFY_FAILURE;
|
|
}
|
|
free(eocd);
|
|
|
|
/*
|
|
* Check to make sure at least one of the keys matches the signature. Since
|
|
* any key can match, we need to try each before determining a verification
|
|
* failure has happened.
|
|
*/
|
|
for (i = 0; i < numKeys; ++i) {
|
|
const uint8_t* hash;
|
|
switch (pKeys[i].hash_len) {
|
|
case SHA_DIGEST_SIZE: hash = sha1; break;
|
|
case SHA256_DIGEST_SIZE: hash = sha256; break;
|
|
default: continue;
|
|
}
|
|
|
|
// The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
|
|
// the signing tool appends after the signature itself.
|
|
if (pKeys[i].key_type == Certificate::RSA) {
|
|
if (sig_der_length < RSANUMBYTES) {
|
|
// "signature" block isn't big enough to contain an RSA block.
|
|
LOGI("signature is too short for RSA key %zu\n", i);
|
|
continue;
|
|
}
|
|
|
|
if (!RSA_verify(pKeys[i].rsa, sig_der, RSANUMBYTES,
|
|
hash, pKeys[i].hash_len)) {
|
|
LOGI("failed to verify against RSA key %zu\n", i);
|
|
continue;
|
|
}
|
|
|
|
LOGI("whole-file signature verified against RSA key %zu\n", i);
|
|
free(sig_der);
|
|
return VERIFY_SUCCESS;
|
|
} else if (pKeys[i].key_type == Certificate::EC
|
|
&& pKeys[i].hash_len == SHA256_DIGEST_SIZE) {
|
|
p256_int r, s;
|
|
if (!dsa_sig_unpack(sig_der, sig_der_length, &r, &s)) {
|
|
LOGI("Not a DSA signature block for EC key %zu\n", i);
|
|
continue;
|
|
}
|
|
|
|
p256_int p256_hash;
|
|
p256_from_bin(hash, &p256_hash);
|
|
if (!p256_ecdsa_verify(&(pKeys[i].ec->x), &(pKeys[i].ec->y),
|
|
&p256_hash, &r, &s)) {
|
|
LOGI("failed to verify against EC key %zu\n", i);
|
|
continue;
|
|
}
|
|
|
|
LOGI("whole-file signature verified against EC key %zu\n", i);
|
|
free(sig_der);
|
|
return VERIFY_SUCCESS;
|
|
} else {
|
|
LOGI("Unknown key type %d\n", pKeys[i].key_type);
|
|
}
|
|
}
|
|
free(sig_der);
|
|
LOGE("failed to verify whole-file signature\n");
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
// Reads a file containing one or more public keys as produced by
|
|
// DumpPublicKey: this is an RSAPublicKey struct as it would appear
|
|
// as a C source literal, eg:
|
|
//
|
|
// "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
|
|
//
|
|
// For key versions newer than the original 2048-bit e=3 keys
|
|
// supported by Android, the string is preceded by a version
|
|
// identifier, eg:
|
|
//
|
|
// "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
|
|
//
|
|
// (Note that the braces and commas in this example are actual
|
|
// characters the parser expects to find in the file; the ellipses
|
|
// indicate more numbers omitted from this example.)
|
|
//
|
|
// The file may contain multiple keys in this format, separated by
|
|
// commas. The last key must not be followed by a comma.
|
|
//
|
|
// A Certificate is a pair of an RSAPublicKey and a particular hash
|
|
// (we support SHA-1 and SHA-256; we store the hash length to signify
|
|
// which is being used). The hash used is implied by the version number.
|
|
//
|
|
// 1: 2048-bit RSA key with e=3 and SHA-1 hash
|
|
// 2: 2048-bit RSA key with e=65537 and SHA-1 hash
|
|
// 3: 2048-bit RSA key with e=3 and SHA-256 hash
|
|
// 4: 2048-bit RSA key with e=65537 and SHA-256 hash
|
|
// 5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
|
|
//
|
|
// Returns NULL if the file failed to parse, or if it contain zero keys.
|
|
Certificate*
|
|
load_keys(const char* filename, int* numKeys) {
|
|
Certificate* out = NULL;
|
|
*numKeys = 0;
|
|
|
|
FILE* f = fopen(filename, "r");
|
|
if (f == NULL) {
|
|
LOGE("opening %s: %s\n", filename, strerror(errno));
|
|
goto exit;
|
|
}
|
|
|
|
{
|
|
int i;
|
|
bool done = false;
|
|
while (!done) {
|
|
++*numKeys;
|
|
out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate));
|
|
Certificate* cert = out + (*numKeys - 1);
|
|
memset(cert, '\0', sizeof(Certificate));
|
|
|
|
char start_char;
|
|
if (fscanf(f, " %c", &start_char) != 1) goto exit;
|
|
if (start_char == '{') {
|
|
// a version 1 key has no version specifier.
|
|
cert->key_type = Certificate::RSA;
|
|
cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
|
|
cert->rsa->exponent = 3;
|
|
cert->hash_len = SHA_DIGEST_SIZE;
|
|
} else if (start_char == 'v') {
|
|
int version;
|
|
if (fscanf(f, "%d {", &version) != 1) goto exit;
|
|
switch (version) {
|
|
case 2:
|
|
cert->key_type = Certificate::RSA;
|
|
cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
|
|
cert->rsa->exponent = 65537;
|
|
cert->hash_len = SHA_DIGEST_SIZE;
|
|
break;
|
|
case 3:
|
|
cert->key_type = Certificate::RSA;
|
|
cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
|
|
cert->rsa->exponent = 3;
|
|
cert->hash_len = SHA256_DIGEST_SIZE;
|
|
break;
|
|
case 4:
|
|
cert->key_type = Certificate::RSA;
|
|
cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
|
|
cert->rsa->exponent = 65537;
|
|
cert->hash_len = SHA256_DIGEST_SIZE;
|
|
break;
|
|
case 5:
|
|
cert->key_type = Certificate::EC;
|
|
cert->ec = (ECPublicKey*)calloc(1, sizeof(ECPublicKey));
|
|
cert->hash_len = SHA256_DIGEST_SIZE;
|
|
break;
|
|
default:
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
if (cert->key_type == Certificate::RSA) {
|
|
RSAPublicKey* key = cert->rsa;
|
|
if (fscanf(f, " %i , 0x%x , { %u",
|
|
&(key->len), &(key->n0inv), &(key->n[0])) != 3) {
|
|
goto exit;
|
|
}
|
|
if (key->len != RSANUMWORDS) {
|
|
LOGE("key length (%d) does not match expected size\n", key->len);
|
|
goto exit;
|
|
}
|
|
for (i = 1; i < key->len; ++i) {
|
|
if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit;
|
|
}
|
|
if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit;
|
|
for (i = 1; i < key->len; ++i) {
|
|
if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit;
|
|
}
|
|
fscanf(f, " } } ");
|
|
|
|
LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len);
|
|
} else if (cert->key_type == Certificate::EC) {
|
|
ECPublicKey* key = cert->ec;
|
|
int key_len;
|
|
unsigned int byte;
|
|
uint8_t x_bytes[P256_NBYTES];
|
|
uint8_t y_bytes[P256_NBYTES];
|
|
if (fscanf(f, " %i , { %u", &key_len, &byte) != 2) goto exit;
|
|
if (key_len != P256_NBYTES) {
|
|
LOGE("Key length (%d) does not match expected size %d\n", key_len, P256_NBYTES);
|
|
goto exit;
|
|
}
|
|
x_bytes[P256_NBYTES - 1] = byte;
|
|
for (i = P256_NBYTES - 2; i >= 0; --i) {
|
|
if (fscanf(f, " , %u", &byte) != 1) goto exit;
|
|
x_bytes[i] = byte;
|
|
}
|
|
if (fscanf(f, " } , { %u", &byte) != 1) goto exit;
|
|
y_bytes[P256_NBYTES - 1] = byte;
|
|
for (i = P256_NBYTES - 2; i >= 0; --i) {
|
|
if (fscanf(f, " , %u", &byte) != 1) goto exit;
|
|
y_bytes[i] = byte;
|
|
}
|
|
fscanf(f, " } } ");
|
|
p256_from_bin(x_bytes, &key->x);
|
|
p256_from_bin(y_bytes, &key->y);
|
|
} else {
|
|
LOGE("Unknown key type %d\n", cert->key_type);
|
|
goto exit;
|
|
}
|
|
|
|
// if the line ends in a comma, this file has more keys.
|
|
switch (fgetc(f)) {
|
|
case ',':
|
|
// more keys to come.
|
|
break;
|
|
|
|
case EOF:
|
|
done = true;
|
|
break;
|
|
|
|
default:
|
|
LOGE("unexpected character between keys\n");
|
|
goto exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
fclose(f);
|
|
return out;
|
|
|
|
exit:
|
|
if (f) fclose(f);
|
|
free(out);
|
|
*numKeys = 0;
|
|
return NULL;
|
|
}
|