37304f3cc9
This is another implementation of the Package class. And we will later need it when reading the package from FUSE. Bug: 127071893 Test: unit tests pass, sideload a file package on sailfish Change-Id: I3de5d5ef60b29c8b73517d6de3498459d7d95975
469 lines
15 KiB
C++
469 lines
15 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "verifier.h"
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <android-base/logging.h>
|
|
#include <openssl/bio.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/ecdsa.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/obj_mac.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/rsa.h>
|
|
#include <ziparchive/zip_archive.h>
|
|
|
|
#include "asn1_decoder.h"
|
|
#include "otautil/print_sha1.h"
|
|
|
|
/*
|
|
* Simple version of PKCS#7 SignedData extraction. This extracts the
|
|
* signature OCTET STRING to be used for signature verification.
|
|
*
|
|
* For full details, see http://www.ietf.org/rfc/rfc3852.txt
|
|
*
|
|
* The PKCS#7 structure looks like:
|
|
*
|
|
* SEQUENCE (ContentInfo)
|
|
* OID (ContentType)
|
|
* [0] (content)
|
|
* SEQUENCE (SignedData)
|
|
* INTEGER (version CMSVersion)
|
|
* SET (DigestAlgorithmIdentifiers)
|
|
* SEQUENCE (EncapsulatedContentInfo)
|
|
* [0] (CertificateSet OPTIONAL)
|
|
* [1] (RevocationInfoChoices OPTIONAL)
|
|
* SET (SignerInfos)
|
|
* SEQUENCE (SignerInfo)
|
|
* INTEGER (CMSVersion)
|
|
* SEQUENCE (SignerIdentifier)
|
|
* SEQUENCE (DigestAlgorithmIdentifier)
|
|
* SEQUENCE (SignatureAlgorithmIdentifier)
|
|
* OCTET STRING (SignatureValue)
|
|
*/
|
|
static bool read_pkcs7(const uint8_t* pkcs7_der, size_t pkcs7_der_len,
|
|
std::vector<uint8_t>* sig_der) {
|
|
CHECK(sig_der != nullptr);
|
|
sig_der->clear();
|
|
|
|
asn1_context ctx(pkcs7_der, pkcs7_der_len);
|
|
|
|
std::unique_ptr<asn1_context> pkcs7_seq(ctx.asn1_sequence_get());
|
|
if (pkcs7_seq == nullptr || !pkcs7_seq->asn1_sequence_next()) {
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<asn1_context> signed_data_app(pkcs7_seq->asn1_constructed_get());
|
|
if (signed_data_app == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<asn1_context> signed_data_seq(signed_data_app->asn1_sequence_get());
|
|
if (signed_data_seq == nullptr ||
|
|
!signed_data_seq->asn1_sequence_next() ||
|
|
!signed_data_seq->asn1_sequence_next() ||
|
|
!signed_data_seq->asn1_sequence_next() ||
|
|
!signed_data_seq->asn1_constructed_skip_all()) {
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<asn1_context> sig_set(signed_data_seq->asn1_set_get());
|
|
if (sig_set == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<asn1_context> sig_seq(sig_set->asn1_sequence_get());
|
|
if (sig_seq == nullptr ||
|
|
!sig_seq->asn1_sequence_next() ||
|
|
!sig_seq->asn1_sequence_next() ||
|
|
!sig_seq->asn1_sequence_next() ||
|
|
!sig_seq->asn1_sequence_next()) {
|
|
return false;
|
|
}
|
|
|
|
const uint8_t* sig_der_ptr;
|
|
size_t sig_der_length;
|
|
if (!sig_seq->asn1_octet_string_get(&sig_der_ptr, &sig_der_length)) {
|
|
return false;
|
|
}
|
|
|
|
sig_der->resize(sig_der_length);
|
|
std::copy(sig_der_ptr, sig_der_ptr + sig_der_length, sig_der->begin());
|
|
return true;
|
|
}
|
|
|
|
int verify_file(VerifierInterface* package, const std::vector<Certificate>& keys) {
|
|
CHECK(package);
|
|
package->SetProgress(0.0);
|
|
|
|
// An archive with a whole-file signature will end in six bytes:
|
|
//
|
|
// (2-byte signature start) $ff $ff (2-byte comment size)
|
|
//
|
|
// (As far as the ZIP format is concerned, these are part of the archive comment.) We start by
|
|
// reading this footer, this tells us how far back from the end we have to start reading to find
|
|
// the whole comment.
|
|
|
|
#define FOOTER_SIZE 6
|
|
uint64_t length = package->GetPackageSize();
|
|
|
|
if (length < FOOTER_SIZE) {
|
|
LOG(ERROR) << "not big enough to contain footer";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
uint8_t footer[FOOTER_SIZE];
|
|
if (!package->ReadFullyAtOffset(footer, FOOTER_SIZE, length - FOOTER_SIZE)) {
|
|
LOG(ERROR) << "Failed to read footer";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
if (footer[2] != 0xff || footer[3] != 0xff) {
|
|
LOG(ERROR) << "footer is wrong";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
size_t comment_size = footer[4] + (footer[5] << 8);
|
|
size_t signature_start = footer[0] + (footer[1] << 8);
|
|
LOG(INFO) << "comment is " << comment_size << " bytes; signature is " << signature_start
|
|
<< " bytes from end";
|
|
|
|
if (signature_start > comment_size) {
|
|
LOG(ERROR) << "signature start: " << signature_start << " is larger than comment size: "
|
|
<< comment_size;
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
if (signature_start <= FOOTER_SIZE) {
|
|
LOG(ERROR) << "Signature start is in the footer";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
#define EOCD_HEADER_SIZE 22
|
|
|
|
// The end-of-central-directory record is 22 bytes plus any comment length.
|
|
size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
|
|
|
|
if (length < eocd_size) {
|
|
LOG(ERROR) << "not big enough to contain EOCD";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
// Determine how much of the file is covered by the signature. This is everything except the
|
|
// signature data and length, which includes all of the EOCD except for the comment length field
|
|
// (2 bytes) and the comment data.
|
|
uint64_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
|
|
|
|
uint8_t eocd[eocd_size];
|
|
if (!package->ReadFullyAtOffset(eocd, eocd_size, length - eocd_size)) {
|
|
LOG(ERROR) << "Failed to read EOCD of " << eocd_size << " bytes";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
// If this is really is the EOCD record, it will begin with the magic number $50 $4b $05 $06.
|
|
if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) {
|
|
LOG(ERROR) << "signature length doesn't match EOCD marker";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
for (size_t i = 4; i < eocd_size-3; ++i) {
|
|
if (eocd[i] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
|
|
// If the sequence $50 $4b $05 $06 appears anywhere after the real one, libziparchive will
|
|
// find the later (wrong) one, which could be exploitable. Fail the verification if this
|
|
// sequence occurs anywhere after the real one.
|
|
LOG(ERROR) << "EOCD marker occurs after start of EOCD";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
}
|
|
|
|
bool need_sha1 = false;
|
|
bool need_sha256 = false;
|
|
for (const auto& key : keys) {
|
|
switch (key.hash_len) {
|
|
case SHA_DIGEST_LENGTH: need_sha1 = true; break;
|
|
case SHA256_DIGEST_LENGTH: need_sha256 = true; break;
|
|
}
|
|
}
|
|
|
|
SHA_CTX sha1_ctx;
|
|
SHA256_CTX sha256_ctx;
|
|
SHA1_Init(&sha1_ctx);
|
|
SHA256_Init(&sha256_ctx);
|
|
|
|
std::vector<HasherUpdateCallback> hashers;
|
|
if (need_sha1) {
|
|
hashers.emplace_back(
|
|
std::bind(&SHA1_Update, &sha1_ctx, std::placeholders::_1, std::placeholders::_2));
|
|
}
|
|
if (need_sha256) {
|
|
hashers.emplace_back(
|
|
std::bind(&SHA256_Update, &sha256_ctx, std::placeholders::_1, std::placeholders::_2));
|
|
}
|
|
|
|
double frac = -1.0;
|
|
uint64_t so_far = 0;
|
|
while (so_far < signed_len) {
|
|
// On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a 1196MiB full OTA and
|
|
// 60% for an 89MiB incremental OTA. http://b/28135231.
|
|
uint64_t read_size = std::min<uint64_t>(signed_len - so_far, 16 * MiB);
|
|
package->UpdateHashAtOffset(hashers, so_far, read_size);
|
|
so_far += read_size;
|
|
|
|
double f = so_far / static_cast<double>(signed_len);
|
|
if (f > frac + 0.02 || read_size == so_far) {
|
|
package->SetProgress(f);
|
|
frac = f;
|
|
}
|
|
}
|
|
|
|
uint8_t sha1[SHA_DIGEST_LENGTH];
|
|
SHA1_Final(sha1, &sha1_ctx);
|
|
uint8_t sha256[SHA256_DIGEST_LENGTH];
|
|
SHA256_Final(sha256, &sha256_ctx);
|
|
|
|
const uint8_t* signature = eocd + eocd_size - signature_start;
|
|
size_t signature_size = signature_start - FOOTER_SIZE;
|
|
|
|
LOG(INFO) << "signature (offset: " << std::hex << (length - signature_start) << ", length: "
|
|
<< signature_size << "): " << print_hex(signature, signature_size);
|
|
|
|
std::vector<uint8_t> sig_der;
|
|
if (!read_pkcs7(signature, signature_size, &sig_der)) {
|
|
LOG(ERROR) << "Could not find signature DER block";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
// Check to make sure at least one of the keys matches the signature. Since any key can match,
|
|
// we need to try each before determining a verification failure has happened.
|
|
size_t i = 0;
|
|
for (const auto& key : keys) {
|
|
const uint8_t* hash;
|
|
int hash_nid;
|
|
switch (key.hash_len) {
|
|
case SHA_DIGEST_LENGTH:
|
|
hash = sha1;
|
|
hash_nid = NID_sha1;
|
|
break;
|
|
case SHA256_DIGEST_LENGTH:
|
|
hash = sha256;
|
|
hash_nid = NID_sha256;
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
// The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that the signing tool appends
|
|
// after the signature itself.
|
|
if (key.key_type == Certificate::KEY_TYPE_RSA) {
|
|
if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der.data(), sig_der.size(),
|
|
key.rsa.get())) {
|
|
LOG(INFO) << "failed to verify against RSA key " << i;
|
|
continue;
|
|
}
|
|
|
|
LOG(INFO) << "whole-file signature verified against RSA key " << i;
|
|
return VERIFY_SUCCESS;
|
|
} else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) {
|
|
if (!ECDSA_verify(0, hash, key.hash_len, sig_der.data(), sig_der.size(), key.ec.get())) {
|
|
LOG(INFO) << "failed to verify against EC key " << i;
|
|
continue;
|
|
}
|
|
|
|
LOG(INFO) << "whole-file signature verified against EC key " << i;
|
|
return VERIFY_SUCCESS;
|
|
} else {
|
|
LOG(INFO) << "Unknown key type " << key.key_type;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (need_sha1) {
|
|
LOG(INFO) << "SHA-1 digest: " << print_hex(sha1, SHA_DIGEST_LENGTH);
|
|
}
|
|
if (need_sha256) {
|
|
LOG(INFO) << "SHA-256 digest: " << print_hex(sha256, SHA256_DIGEST_LENGTH);
|
|
}
|
|
LOG(ERROR) << "failed to verify whole-file signature";
|
|
return VERIFY_FAILURE;
|
|
}
|
|
|
|
static std::vector<Certificate> IterateZipEntriesAndSearchForKeys(const ZipArchiveHandle& handle) {
|
|
void* cookie;
|
|
ZipString suffix("x509.pem");
|
|
int32_t iter_status = StartIteration(handle, &cookie, nullptr, &suffix);
|
|
if (iter_status != 0) {
|
|
LOG(ERROR) << "Failed to iterate over entries in the certificate zipfile: "
|
|
<< ErrorCodeString(iter_status);
|
|
return {};
|
|
}
|
|
|
|
std::vector<Certificate> result;
|
|
|
|
ZipString name;
|
|
ZipEntry entry;
|
|
while ((iter_status = Next(cookie, &entry, &name)) == 0) {
|
|
std::vector<uint8_t> pem_content(entry.uncompressed_length);
|
|
if (int32_t extract_status =
|
|
ExtractToMemory(handle, &entry, pem_content.data(), pem_content.size());
|
|
extract_status != 0) {
|
|
LOG(ERROR) << "Failed to extract " << std::string(name.name, name.name + name.name_length);
|
|
return {};
|
|
}
|
|
|
|
Certificate cert(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr);
|
|
// Aborts the parsing if we fail to load one of the key file.
|
|
if (!LoadCertificateFromBuffer(pem_content, &cert)) {
|
|
LOG(ERROR) << "Failed to load keys from "
|
|
<< std::string(name.name, name.name + name.name_length);
|
|
return {};
|
|
}
|
|
|
|
result.emplace_back(std::move(cert));
|
|
}
|
|
|
|
if (iter_status != -1) {
|
|
LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(iter_status);
|
|
return {};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::vector<Certificate> LoadKeysFromZipfile(const std::string& zip_name) {
|
|
ZipArchiveHandle handle;
|
|
if (int32_t open_status = OpenArchive(zip_name.c_str(), &handle); open_status != 0) {
|
|
LOG(ERROR) << "Failed to open " << zip_name << ": " << ErrorCodeString(open_status);
|
|
return {};
|
|
}
|
|
|
|
std::vector<Certificate> result = IterateZipEntriesAndSearchForKeys(handle);
|
|
CloseArchive(handle);
|
|
return result;
|
|
}
|
|
|
|
bool CheckRSAKey(const std::unique_ptr<RSA, RSADeleter>& rsa) {
|
|
if (!rsa) {
|
|
return false;
|
|
}
|
|
|
|
const BIGNUM* out_n;
|
|
const BIGNUM* out_e;
|
|
RSA_get0_key(rsa.get(), &out_n, &out_e, nullptr /* private exponent */);
|
|
auto modulus_bits = BN_num_bits(out_n);
|
|
if (modulus_bits != 2048) {
|
|
LOG(ERROR) << "Modulus should be 2048 bits long, actual: " << modulus_bits;
|
|
return false;
|
|
}
|
|
|
|
BN_ULONG exponent = BN_get_word(out_e);
|
|
if (exponent != 3 && exponent != 65537) {
|
|
LOG(ERROR) << "Public exponent should be 3 or 65537, actual: " << exponent;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CheckECKey(const std::unique_ptr<EC_KEY, ECKEYDeleter>& ec_key) {
|
|
if (!ec_key) {
|
|
return false;
|
|
}
|
|
|
|
const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key.get());
|
|
if (!ec_group) {
|
|
LOG(ERROR) << "Failed to get the ec_group from the ec_key";
|
|
return false;
|
|
}
|
|
auto degree = EC_GROUP_get_degree(ec_group);
|
|
if (degree != 256) {
|
|
LOG(ERROR) << "Field size of the ec key should be 256 bits long, actual: " << degree;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoadCertificateFromBuffer(const std::vector<uint8_t>& pem_content, Certificate* cert) {
|
|
std::unique_ptr<BIO, decltype(&BIO_free)> content(
|
|
BIO_new_mem_buf(pem_content.data(), pem_content.size()), BIO_free);
|
|
|
|
std::unique_ptr<X509, decltype(&X509_free)> x509(
|
|
PEM_read_bio_X509(content.get(), nullptr, nullptr, nullptr), X509_free);
|
|
if (!x509) {
|
|
LOG(ERROR) << "Failed to read x509 certificate";
|
|
return false;
|
|
}
|
|
|
|
int nid = X509_get_signature_nid(x509.get());
|
|
switch (nid) {
|
|
// SignApk has historically accepted md5WithRSA certificates, but treated them as
|
|
// sha1WithRSA anyway. Continue to do so for backwards compatibility.
|
|
case NID_md5WithRSA:
|
|
case NID_md5WithRSAEncryption:
|
|
case NID_sha1WithRSA:
|
|
case NID_sha1WithRSAEncryption:
|
|
cert->hash_len = SHA_DIGEST_LENGTH;
|
|
break;
|
|
case NID_sha256WithRSAEncryption:
|
|
case NID_ecdsa_with_SHA256:
|
|
cert->hash_len = SHA256_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
LOG(ERROR) << "Unrecognized signature nid " << OBJ_nid2ln(nid);
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)> public_key(X509_get_pubkey(x509.get()),
|
|
EVP_PKEY_free);
|
|
if (!public_key) {
|
|
LOG(ERROR) << "Failed to extract the public key from x509 certificate";
|
|
return false;
|
|
}
|
|
|
|
int key_type = EVP_PKEY_id(public_key.get());
|
|
if (key_type == EVP_PKEY_RSA) {
|
|
cert->key_type = Certificate::KEY_TYPE_RSA;
|
|
cert->ec.reset();
|
|
cert->rsa.reset(EVP_PKEY_get1_RSA(public_key.get()));
|
|
if (!cert->rsa || !CheckRSAKey(cert->rsa)) {
|
|
LOG(ERROR) << "Failed to validate the rsa key info from public key";
|
|
return false;
|
|
}
|
|
} else if (key_type == EVP_PKEY_EC) {
|
|
cert->key_type = Certificate::KEY_TYPE_EC;
|
|
cert->rsa.reset();
|
|
cert->ec.reset(EVP_PKEY_get1_EC_KEY(public_key.get()));
|
|
if (!cert->ec || !CheckECKey(cert->ec)) {
|
|
LOG(ERROR) << "Failed to validate the ec key info from the public key";
|
|
return false;
|
|
}
|
|
} else {
|
|
LOG(ERROR) << "Unrecognized public key type " << OBJ_nid2ln(key_type);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|