4e8e93b666
to make it more cleaner and easier to read Change-Id: If536d482c0ed645368084e76d8ec060f05d89137 Signed-off-by: Nanik Tolaram <nanikjava@gmail.com>
379 lines
10 KiB
C
379 lines
10 KiB
C
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Hash table. The dominant calls are add and lookup, with removals
|
|
* happening very infrequently. We use probing, and don't worry much
|
|
* about tombstone removal.
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
#define LOG_TAG "minzip"
|
|
#include "Log.h"
|
|
#include "Hash.h"
|
|
|
|
/* table load factor, i.e. how full can it get before we resize */
|
|
//#define LOAD_NUMER 3 // 75%
|
|
//#define LOAD_DENOM 4
|
|
#define LOAD_NUMER 5 // 62.5%
|
|
#define LOAD_DENOM 8
|
|
//#define LOAD_NUMER 1 // 50%
|
|
//#define LOAD_DENOM 2
|
|
|
|
/*
|
|
* Compute the capacity needed for a table to hold "size" elements.
|
|
*/
|
|
size_t mzHashSize(size_t size) {
|
|
return (size * LOAD_DENOM) / LOAD_NUMER +1;
|
|
}
|
|
|
|
/*
|
|
* Round up to the next highest power of 2.
|
|
*
|
|
* Found on http://graphics.stanford.edu/~seander/bithacks.html.
|
|
*/
|
|
unsigned int roundUpPower2(unsigned int val)
|
|
{
|
|
val--;
|
|
val |= val >> 1;
|
|
val |= val >> 2;
|
|
val |= val >> 4;
|
|
val |= val >> 8;
|
|
val |= val >> 16;
|
|
val++;
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Create and initialize a hash table.
|
|
*/
|
|
HashTable* mzHashTableCreate(size_t initialSize, HashFreeFunc freeFunc)
|
|
{
|
|
HashTable* pHashTable;
|
|
|
|
assert(initialSize > 0);
|
|
|
|
pHashTable = (HashTable*) malloc(sizeof(*pHashTable));
|
|
if (pHashTable == NULL)
|
|
return NULL;
|
|
|
|
pHashTable->tableSize = roundUpPower2(initialSize);
|
|
pHashTable->numEntries = pHashTable->numDeadEntries = 0;
|
|
pHashTable->freeFunc = freeFunc;
|
|
pHashTable->pEntries =
|
|
(HashEntry*) calloc((size_t)pHashTable->tableSize, sizeof(HashTable));
|
|
if (pHashTable->pEntries == NULL) {
|
|
free(pHashTable);
|
|
return NULL;
|
|
}
|
|
|
|
return pHashTable;
|
|
}
|
|
|
|
/*
|
|
* Clear out all entries.
|
|
*/
|
|
void mzHashTableClear(HashTable* pHashTable)
|
|
{
|
|
HashEntry* pEnt;
|
|
int i;
|
|
|
|
pEnt = pHashTable->pEntries;
|
|
for (i = 0; i < pHashTable->tableSize; i++, pEnt++) {
|
|
if (pEnt->data == HASH_TOMBSTONE) {
|
|
// nuke entry
|
|
pEnt->data = NULL;
|
|
} else if (pEnt->data != NULL) {
|
|
// call free func then nuke entry
|
|
if (pHashTable->freeFunc != NULL)
|
|
(*pHashTable->freeFunc)(pEnt->data);
|
|
pEnt->data = NULL;
|
|
}
|
|
}
|
|
|
|
pHashTable->numEntries = 0;
|
|
pHashTable->numDeadEntries = 0;
|
|
}
|
|
|
|
/*
|
|
* Free the table.
|
|
*/
|
|
void mzHashTableFree(HashTable* pHashTable)
|
|
{
|
|
if (pHashTable == NULL)
|
|
return;
|
|
mzHashTableClear(pHashTable);
|
|
free(pHashTable->pEntries);
|
|
free(pHashTable);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
* Count up the number of tombstone entries in the hash table.
|
|
*/
|
|
static int countTombStones(HashTable* pHashTable)
|
|
{
|
|
int i, count;
|
|
|
|
for (count = i = 0; i < pHashTable->tableSize; i++) {
|
|
if (pHashTable->pEntries[i].data == HASH_TOMBSTONE)
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Resize a hash table. We do this when adding an entry increased the
|
|
* size of the table beyond its comfy limit.
|
|
*
|
|
* This essentially requires re-inserting all elements into the new storage.
|
|
*
|
|
* If multiple threads can access the hash table, the table's lock should
|
|
* have been grabbed before issuing the "lookup+add" call that led to the
|
|
* resize, so we don't have a synchronization problem here.
|
|
*/
|
|
static bool resizeHash(HashTable* pHashTable, int newSize)
|
|
{
|
|
HashEntry* pNewEntries;
|
|
int i;
|
|
|
|
assert(countTombStones(pHashTable) == pHashTable->numDeadEntries);
|
|
|
|
pNewEntries = (HashEntry*) calloc(newSize, sizeof(HashTable));
|
|
if (pNewEntries == NULL)
|
|
return false;
|
|
|
|
for (i = 0; i < pHashTable->tableSize; i++) {
|
|
void* data = pHashTable->pEntries[i].data;
|
|
if (data != NULL && data != HASH_TOMBSTONE) {
|
|
int hashValue = pHashTable->pEntries[i].hashValue;
|
|
int newIdx;
|
|
|
|
/* probe for new spot, wrapping around */
|
|
newIdx = hashValue & (newSize-1);
|
|
while (pNewEntries[newIdx].data != NULL)
|
|
newIdx = (newIdx + 1) & (newSize-1);
|
|
|
|
pNewEntries[newIdx].hashValue = hashValue;
|
|
pNewEntries[newIdx].data = data;
|
|
}
|
|
}
|
|
|
|
free(pHashTable->pEntries);
|
|
pHashTable->pEntries = pNewEntries;
|
|
pHashTable->tableSize = newSize;
|
|
pHashTable->numDeadEntries = 0;
|
|
|
|
assert(countTombStones(pHashTable) == 0);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Look up an entry.
|
|
*
|
|
* We probe on collisions, wrapping around the table.
|
|
*/
|
|
void* mzHashTableLookup(HashTable* pHashTable, unsigned int itemHash, void* item,
|
|
HashCompareFunc cmpFunc, bool doAdd)
|
|
{
|
|
HashEntry* pEntry;
|
|
HashEntry* pEnd;
|
|
void* result = NULL;
|
|
|
|
assert(pHashTable->tableSize > 0);
|
|
assert(item != HASH_TOMBSTONE);
|
|
assert(item != NULL);
|
|
|
|
/* jump to the first entry and probe for a match */
|
|
pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
|
|
pEnd = &pHashTable->pEntries[pHashTable->tableSize];
|
|
while (pEntry->data != NULL) {
|
|
if (pEntry->data != HASH_TOMBSTONE &&
|
|
pEntry->hashValue == itemHash &&
|
|
(*cmpFunc)(pEntry->data, item) == 0)
|
|
{
|
|
/* match */
|
|
break;
|
|
}
|
|
|
|
pEntry++;
|
|
if (pEntry == pEnd) { /* wrap around to start */
|
|
if (pHashTable->tableSize == 1)
|
|
break; /* edge case - single-entry table */
|
|
pEntry = pHashTable->pEntries;
|
|
}
|
|
}
|
|
|
|
if (pEntry->data == NULL) {
|
|
if (doAdd) {
|
|
pEntry->hashValue = itemHash;
|
|
pEntry->data = item;
|
|
pHashTable->numEntries++;
|
|
|
|
/*
|
|
* We've added an entry. See if this brings us too close to full.
|
|
*/
|
|
if ((pHashTable->numEntries+pHashTable->numDeadEntries) * LOAD_DENOM
|
|
> pHashTable->tableSize * LOAD_NUMER)
|
|
{
|
|
if (!resizeHash(pHashTable, pHashTable->tableSize * 2)) {
|
|
/* don't really have a way to indicate failure */
|
|
LOGE("Dalvik hash resize failure\n");
|
|
abort();
|
|
}
|
|
/* note "pEntry" is now invalid */
|
|
}
|
|
|
|
/* full table is bad -- search for nonexistent never halts */
|
|
assert(pHashTable->numEntries < pHashTable->tableSize);
|
|
result = item;
|
|
} else {
|
|
assert(result == NULL);
|
|
}
|
|
} else {
|
|
result = pEntry->data;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Remove an entry from the table.
|
|
*
|
|
* Does NOT invoke the "free" function on the item.
|
|
*/
|
|
bool mzHashTableRemove(HashTable* pHashTable, unsigned int itemHash, void* item)
|
|
{
|
|
HashEntry* pEntry;
|
|
HashEntry* pEnd;
|
|
|
|
assert(pHashTable->tableSize > 0);
|
|
|
|
/* jump to the first entry and probe for a match */
|
|
pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
|
|
pEnd = &pHashTable->pEntries[pHashTable->tableSize];
|
|
while (pEntry->data != NULL) {
|
|
if (pEntry->data == item) {
|
|
pEntry->data = HASH_TOMBSTONE;
|
|
pHashTable->numEntries--;
|
|
pHashTable->numDeadEntries++;
|
|
return true;
|
|
}
|
|
|
|
pEntry++;
|
|
if (pEntry == pEnd) { /* wrap around to start */
|
|
if (pHashTable->tableSize == 1)
|
|
break; /* edge case - single-entry table */
|
|
pEntry = pHashTable->pEntries;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Execute a function on every entry in the hash table.
|
|
*
|
|
* If "func" returns a nonzero value, terminate early and return the value.
|
|
*/
|
|
int mzHashForeach(HashTable* pHashTable, HashForeachFunc func, void* arg)
|
|
{
|
|
int i, val;
|
|
|
|
for (i = 0; i < pHashTable->tableSize; i++) {
|
|
HashEntry* pEnt = &pHashTable->pEntries[i];
|
|
|
|
if (pEnt->data != NULL && pEnt->data != HASH_TOMBSTONE) {
|
|
val = (*func)(pEnt->data, arg);
|
|
if (val != 0)
|
|
return val;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Look up an entry, counting the number of times we have to probe.
|
|
*
|
|
* Returns -1 if the entry wasn't found.
|
|
*/
|
|
int countProbes(HashTable* pHashTable, unsigned int itemHash, const void* item,
|
|
HashCompareFunc cmpFunc)
|
|
{
|
|
HashEntry* pEntry;
|
|
HashEntry* pEnd;
|
|
int count = 0;
|
|
|
|
assert(pHashTable->tableSize > 0);
|
|
assert(item != HASH_TOMBSTONE);
|
|
assert(item != NULL);
|
|
|
|
/* jump to the first entry and probe for a match */
|
|
pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
|
|
pEnd = &pHashTable->pEntries[pHashTable->tableSize];
|
|
while (pEntry->data != NULL) {
|
|
if (pEntry->data != HASH_TOMBSTONE &&
|
|
pEntry->hashValue == itemHash &&
|
|
(*cmpFunc)(pEntry->data, item) == 0)
|
|
{
|
|
/* match */
|
|
break;
|
|
}
|
|
|
|
pEntry++;
|
|
if (pEntry == pEnd) { /* wrap around to start */
|
|
if (pHashTable->tableSize == 1)
|
|
break; /* edge case - single-entry table */
|
|
pEntry = pHashTable->pEntries;
|
|
}
|
|
|
|
count++;
|
|
}
|
|
if (pEntry->data == NULL)
|
|
return -1;
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Evaluate the amount of probing required for the specified hash table.
|
|
*
|
|
* We do this by running through all entries in the hash table, computing
|
|
* the hash value and then doing a lookup.
|
|
*
|
|
* The caller should lock the table before calling here.
|
|
*/
|
|
void mzHashTableProbeCount(HashTable* pHashTable, HashCalcFunc calcFunc,
|
|
HashCompareFunc cmpFunc)
|
|
{
|
|
int numEntries, minProbe, maxProbe, totalProbe;
|
|
HashIter iter;
|
|
|
|
numEntries = maxProbe = totalProbe = 0;
|
|
minProbe = 65536*32767;
|
|
|
|
for (mzHashIterBegin(pHashTable, &iter); !mzHashIterDone(&iter);
|
|
mzHashIterNext(&iter))
|
|
{
|
|
const void* data = (const void*)mzHashIterData(&iter);
|
|
int count;
|
|
|
|
count = countProbes(pHashTable, (*calcFunc)(data), data, cmpFunc);
|
|
|
|
numEntries++;
|
|
|
|
if (count < minProbe)
|
|
minProbe = count;
|
|
if (count > maxProbe)
|
|
maxProbe = count;
|
|
totalProbe += count;
|
|
}
|
|
|
|
LOGI("Probe: min=%d max=%d, total=%d in %d (%d), avg=%.3f\n",
|
|
minProbe, maxProbe, totalProbe, numEntries, pHashTable->tableSize,
|
|
(float) totalProbe / (float) numEntries);
|
|
}
|