Merge change 2594 into donut

* changes:
  new image diffing tool and support for image patches in applypatch
This commit is contained in:
Android (Google) Code Review 2009-05-28 21:20:05 -07:00
commit daffeb333e
7 changed files with 890 additions and 28 deletions

View file

@ -12,18 +12,29 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
ifneq ($(TARGET_SIMULATOR),true)
LOCAL_PATH := $(call my-dir) LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS) include $(CLEAR_VARS)
ifneq ($(TARGET_SIMULATOR),true) LOCAL_SRC_FILES := applypatch.c bsdiff.c freecache.c imgpatch.c
LOCAL_SRC_FILES := applypatch.c bsdiff.c freecache.c
LOCAL_MODULE := applypatch LOCAL_MODULE := applypatch
LOCAL_FORCE_STATIC_EXECUTABLE := true LOCAL_FORCE_STATIC_EXECUTABLE := true
LOCAL_MODULE_TAGS := eng LOCAL_MODULE_TAGS := eng
LOCAL_C_INCLUDES += external/bzip2 LOCAL_C_INCLUDES += external/bzip2 external/zlib
LOCAL_STATIC_LIBRARIES += libmincrypt libbz libc LOCAL_STATIC_LIBRARIES += libmincrypt libbz libz libc
include $(BUILD_EXECUTABLE) include $(BUILD_EXECUTABLE)
include $(CLEAR_VARS)
LOCAL_SRC_FILES := imgdiff.c
LOCAL_MODULE := imgdiff
LOCAL_FORCE_STATIC_EXECUTABLE := true
LOCAL_MODULE_TAGS := eng
LOCAL_C_INCLUDES += external/zlib
LOCAL_STATIC_LIBRARIES += libz
include $(BUILD_HOST_EXECUTABLE)
endif # !TARGET_SIMULATOR endif # !TARGET_SIMULATOR

View file

@ -431,11 +431,19 @@ int main(int argc, char** argv) {
} else if (header_bytes_read >= 8 && } else if (header_bytes_read >= 8 &&
memcmp(header, "BSDIFF40", 8) == 0) { memcmp(header, "BSDIFF40", 8) == 0) {
int result = ApplyBSDiffPatch(source_to_use->data, source_to_use->size, int result = ApplyBSDiffPatch(source_to_use->data, source_to_use->size,
patch_filename, output, &ctx); patch_filename, 0, output, &ctx);
if (result != 0) { if (result != 0) {
fprintf(stderr, "ApplyBSDiffPatch failed\n"); fprintf(stderr, "ApplyBSDiffPatch failed\n");
return result; return result;
} }
} else if (header_bytes_read >= 8 &&
memcmp(header, "IMGDIFF1", 8) == 0) {
int result = ApplyImagePatch(source_to_use->data, source_to_use->size,
patch_filename, output, &ctx);
if (result != 0) {
fprintf(stderr, "ApplyImagePatch failed\n");
return result;
}
} else { } else {
fprintf(stderr, "Unknown patch file format"); fprintf(stderr, "Unknown patch file format");
return 1; return 1;

View file

@ -44,6 +44,14 @@ size_t FreeSpaceForFile(const char* filename);
// bsdiff.c // bsdiff.c
void ShowBSDiffLicense(); void ShowBSDiffLicense();
int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size, int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
const char* patch_filename, ssize_t offset,
FILE* output, SHA_CTX* ctx);
int ApplyBSDiffPatchMem(const unsigned char* old_data, ssize_t old_size,
const char* patch_filename, ssize_t patch_offset,
unsigned char** new_data, ssize_t* new_size);
// imgpatch.c
int ApplyImagePatch(const unsigned char* old_data, ssize_t old_size,
const char* patch_filename, const char* patch_filename,
FILE* output, SHA_CTX* ctx); FILE* output, SHA_CTX* ctx);

View file

@ -29,6 +29,7 @@
#include <bzlib.h> #include <bzlib.h>
#include "mincrypt/sha.h" #include "mincrypt/sha.h"
#include "applypatch.h"
void ShowBSDiffLicense() { void ShowBSDiffLicense() {
puts("The bsdiff library used herein is:\n" puts("The bsdiff library used herein is:\n"
@ -80,10 +81,34 @@ static off_t offtin(u_char *buf)
return y; return y;
} }
int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size, int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
const char* patch_filename, const char* patch_filename, ssize_t patch_offset,
FILE* output, SHA_CTX* ctx) { FILE* output, SHA_CTX* ctx) {
unsigned char* new_data;
ssize_t new_size;
if (ApplyBSDiffPatchMem(old_data, old_size, patch_filename, patch_offset,
&new_data, &new_size) != 0) {
return -1;
}
if (fwrite(new_data, 1, new_size, output) < new_size) {
fprintf(stderr, "short write of output: %d (%s)\n", errno, strerror(errno));
return 1;
}
if (ctx) {
SHA_update(ctx, new_data, new_size);
}
free(new_data);
return 0;
}
int ApplyBSDiffPatchMem(const unsigned char* old_data, ssize_t old_size,
const char* patch_filename, ssize_t patch_offset,
unsigned char** new_data, ssize_t* new_size) {
FILE* f; FILE* f;
if ((f = fopen(patch_filename, "rb")) == NULL) { if ((f = fopen(patch_filename, "rb")) == NULL) {
fprintf(stderr, "failed to open patch file\n"); fprintf(stderr, "failed to open patch file\n");
@ -102,6 +127,8 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
// from oldfile to x bytes from the diff block; copy y bytes from the // from oldfile to x bytes from the diff block; copy y bytes from the
// extra block; seek forwards in oldfile by z bytes". // extra block; seek forwards in oldfile by z bytes".
fseek(f, patch_offset, SEEK_SET);
unsigned char header[32]; unsigned char header[32];
if (fread(header, 1, 32, f) < 32) { if (fread(header, 1, 32, f) < 32) {
fprintf(stderr, "failed to read patch file header\n"); fprintf(stderr, "failed to read patch file header\n");
@ -109,17 +136,16 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
} }
if (memcmp(header, "BSDIFF40", 8) != 0) { if (memcmp(header, "BSDIFF40", 8) != 0) {
fprintf(stderr, "corrupt patch file header (magic number)\n"); fprintf(stderr, "corrupt bsdiff patch file header (magic number)\n");
return 1; return 1;
} }
ssize_t ctrl_len, data_len; ssize_t ctrl_len, data_len;
ssize_t new_size;
ctrl_len = offtin(header+8); ctrl_len = offtin(header+8);
data_len = offtin(header+16); data_len = offtin(header+16);
new_size = offtin(header+24); *new_size = offtin(header+24);
if (ctrl_len < 0 || data_len < 0 || new_size < 0) { if (ctrl_len < 0 || data_len < 0 || *new_size < 0) {
fprintf(stderr, "corrupt patch file header (data lengths)\n"); fprintf(stderr, "corrupt patch file header (data lengths)\n");
return 1; return 1;
} }
@ -135,7 +161,7 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
fprintf(stderr, "failed to open patch file\n"); \ fprintf(stderr, "failed to open patch file\n"); \
return 1; \ return 1; \
} \ } \
if (fseeko(f, offset, SEEK_SET)) { \ if (fseeko(f, offset+patch_offset, SEEK_SET)) { \
fprintf(stderr, "failed to seek in patch file\n"); \ fprintf(stderr, "failed to seek in patch file\n"); \
return 1; \ return 1; \
} \ } \
@ -150,9 +176,10 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
#undef OPEN_AT #undef OPEN_AT
unsigned char* new_data = malloc(new_size); *new_data = malloc(*new_size);
if (new_data == NULL) { if (*new_data == NULL) {
fprintf(stderr, "failed to allocate memory for output file\n"); fprintf(stderr, "failed to allocate %d bytes of memory for output file\n",
(int)*new_size);
return 1; return 1;
} }
@ -161,7 +188,7 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
off_t len_read; off_t len_read;
int i; int i;
unsigned char buf[8]; unsigned char buf[8];
while (newpos < new_size) { while (newpos < *new_size) {
// Read control data // Read control data
for (i = 0; i < 3; ++i) { for (i = 0; i < 3; ++i) {
len_read = BZ2_bzRead(&bzerr, cpfbz2, buf, 8); len_read = BZ2_bzRead(&bzerr, cpfbz2, buf, 8);
@ -173,13 +200,13 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
} }
// Sanity check // Sanity check
if (newpos + ctrl[0] > new_size) { if (newpos + ctrl[0] > *new_size) {
fprintf(stderr, "corrupt patch (new file overrun)\n"); fprintf(stderr, "corrupt patch (new file overrun)\n");
return 1; return 1;
} }
// Read diff string // Read diff string
len_read = BZ2_bzRead(&bzerr, dpfbz2, new_data + newpos, ctrl[0]); len_read = BZ2_bzRead(&bzerr, dpfbz2, *new_data + newpos, ctrl[0]);
if (len_read < ctrl[0] || !(bzerr == BZ_OK || bzerr == BZ_STREAM_END)) { if (len_read < ctrl[0] || !(bzerr == BZ_OK || bzerr == BZ_STREAM_END)) {
fprintf(stderr, "corrupt patch (read diff)\n"); fprintf(stderr, "corrupt patch (read diff)\n");
return 1; return 1;
@ -188,7 +215,7 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
// Add old data to diff string // Add old data to diff string
for (i = 0; i < ctrl[0]; ++i) { for (i = 0; i < ctrl[0]; ++i) {
if ((oldpos+i >= 0) && (oldpos+i < old_size)) { if ((oldpos+i >= 0) && (oldpos+i < old_size)) {
new_data[newpos+i] += old_data[oldpos+i]; (*new_data)[newpos+i] += old_data[oldpos+i];
} }
} }
@ -197,13 +224,13 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
oldpos += ctrl[0]; oldpos += ctrl[0];
// Sanity check // Sanity check
if (newpos + ctrl[1] > new_size) { if (newpos + ctrl[1] > *new_size) {
fprintf(stderr, "corrupt patch (new file overrun)\n"); fprintf(stderr, "corrupt patch (new file overrun)\n");
return 1; return 1;
} }
// Read extra string // Read extra string
len_read = BZ2_bzRead(&bzerr, epfbz2, new_data + newpos, ctrl[1]); len_read = BZ2_bzRead(&bzerr, epfbz2, *new_data + newpos, ctrl[1]);
if (len_read < ctrl[1] || !(bzerr == BZ_OK || bzerr == BZ_STREAM_END)) { if (len_read < ctrl[1] || !(bzerr == BZ_OK || bzerr == BZ_STREAM_END)) {
fprintf(stderr, "corrupt patch (read extra)\n"); fprintf(stderr, "corrupt patch (read extra)\n");
return 1; return 1;
@ -221,12 +248,5 @@ int ApplyBSDiffPatch(const unsigned char* old_data, ssize_t old_size,
fclose(dpf); fclose(dpf);
fclose(epf); fclose(epf);
if (fwrite(new_data, 1, new_size, output) < new_size) {
fprintf(stderr, "short write of output: %d (%s)\n", errno, strerror(errno));
return 1;
}
SHA_update(ctx, new_data, new_size);
free(new_data);
return 0; return 0;
} }

560
tools/applypatch/imgdiff.c Normal file
View file

@ -0,0 +1,560 @@
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This program constructs binary patches for images -- such as boot.img
* and recovery.img -- that consist primarily of large chunks of gzipped
* data interspersed with uncompressed data. Doing a naive bsdiff of
* these files is not useful because small changes in the data lead to
* large changes in the compressed bitstream; bsdiff patches of gzipped
* data are typically as large as the data itself.
*
* To patch these usefully, we break the source and target images up into
* chunks of two types: "normal" and "gzip". Normal chunks are simply
* patched using a plain bsdiff. Gzip chunks are first expanded, then a
* bsdiff is applied to the uncompressed data, then the patched data is
* gzipped using the same encoder parameters. Patched chunks are
* concatenated together to create the output file; the output image
* should be *exactly* the same series of bytes as the target image used
* originally to generate the patch.
*
* To work well with this tool, the gzipped sections of the target
* image must have been generated using the same deflate encoder that
* is available in applypatch, namely, the one in the zlib library.
* In practice this means that images should be compressed using the
* "minigzip" tool included in the zlib distribution, not the GNU gzip
* program.
*
* An "imgdiff" patch consists of a header describing the chunk structure
* of the file and any encoding parameters needed for the gzipped
* chunks, followed by N bsdiff patches, one per chunk.
*
* For a diff to be generated, the source and target images must have the
* same "chunk" structure: that is, the same number of gzipped and normal
* chunks in the same order. Android boot and recovery images currently
* consist of five chunks: a small normal header, a gzipped kernel, a
* small normal section, a gzipped ramdisk, and finally a small normal
* footer.
*
* Caveats: we locate gzipped sections within the source and target
* images by searching for the byte sequence 1f8b0800: 1f8b is the gzip
* magic number; 08 specifies the "deflate" encoding [the only encoding
* supported by the gzip standard]; and 00 is the flags byte. We do not
* currently support any extra header fields (which would be indicated by
* a nonzero flags byte). We also don't handle the case when that byte
* sequence appears spuriously in the file. (Note that it would have to
* occur spuriously within a normal chunk to be a problem.)
*
*
* The imgdiff patch header looks like this:
*
* "IMGDIFF1" (8) [magic number and version]
* chunk count (4)
* for each chunk:
* chunk type (4) [CHUNK_NORMAL or CHUNK_GZIP]
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* if chunk type == CHUNK_GZIP:
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* gzip header len (4)
* gzip header (gzip header len)
* gzip footer (8)
*
* All integers are little-endian. "source start" and "source len"
* specify the section of the input image that comprises this chunk,
* including the gzip header and footer for gzip chunks. "source
* expanded len" is the size of the uncompressed source data. "target
* expected len" is the size of the uncompressed data after applying
* the bsdiff patch. The next five parameters specify the zlib
* parameters to be used when compressing the patched data, and the
* next three specify the header and footer to be wrapped around the
* compressed data to create the output chunk (so that header contents
* like the timestamp are recreated exactly).
*
* After the header there are 'chunk count' bsdiff patches; the offset
* of each from the beginning of the file is specified in the header.
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include "zlib.h"
#include "imgdiff.h"
typedef struct {
int type; // CHUNK_NORMAL or CHUNK_GZIP
size_t start; // offset of chunk in original image file
size_t len;
unsigned char* data; // data to be patched (ie, uncompressed, for
// gzip chunks)
// everything else is for CHUNK_GZIP chunks only:
size_t gzip_header_len;
unsigned char* gzip_header;
unsigned char* gzip_footer;
// original (compressed) gzip data, including header and footer
size_t gzip_len;
unsigned char* gzip_data;
// deflate encoder parameters
int level, method, windowBits, memLevel, strategy;
} ImageChunk;
/*
* Read the given file and break it up into chunks, putting the number
* of chunks and their info in *num_chunks and **chunks,
* respectively. Returns a malloc'd block of memory containing the
* contents of the file; various pointers in the output chunk array
* will point into this block of memory. The caller should free the
* return value when done with all the chunks. Returns NULL on
* failure.
*/
unsigned char* ReadImage(const char* filename,
int* num_chunks, ImageChunk** chunks) {
struct stat st;
if (stat(filename, &st) != 0) {
fprintf(stderr, "failed to stat \"%s\": %s\n", filename, strerror(errno));
return NULL;
}
unsigned char* img = malloc(st.st_size + 4);
FILE* f = fopen(filename, "rb");
if (fread(img, 1, st.st_size, f) != st.st_size) {
fprintf(stderr, "failed to read \"%s\" %s\n", filename, strerror(errno));
fclose(f);
return NULL;
}
fclose(f);
// append 4 zero bytes to the data so we can always search for the
// four-byte string 1f8b0800 starting at any point in the actual
// file data, without special-casing the end of the data.
memset(img+st.st_size, 0, 4);
size_t pos = 0;
*num_chunks = 0;
*chunks = NULL;
while (pos < st.st_size) {
unsigned char* p = img+pos;
// Reallocate the list for every chunk; we expect the number of
// chunks to be small (5 for typical boot and recovery images).
++*num_chunks;
*chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk));
ImageChunk* curr = *chunks + (*num_chunks-1);
curr->start = pos;
if (st.st_size - pos >= 4 &&
p[0] == 0x1f && p[1] == 0x8b &&
p[2] == 0x08 && // deflate compression
p[3] == 0x00) { // no header flags
// 'pos' is the offset of the start of a gzip chunk.
curr->type = CHUNK_GZIP;
curr->gzip_header_len = GZIP_HEADER_LEN;
curr->gzip_header = p;
// We must decompress this chunk in order to discover where it
// ends, and so we can put the uncompressed data and its length
// into curr->data and curr->len;
size_t allocated = 32768;
curr->len = 0;
curr->data = malloc(allocated);
curr->gzip_data = p;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = st.st_size - (pos + curr->gzip_header_len);
strm.next_in = p + GZIP_HEADER_LEN;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
do {
strm.avail_out = allocated - curr->len;
strm.next_out = curr->data + curr->len;
ret = inflate(&strm, Z_NO_FLUSH);
curr->len = allocated - strm.avail_out;
if (strm.avail_out == 0) {
allocated *= 2;
curr->data = realloc(curr->data, allocated);
}
} while (ret != Z_STREAM_END);
curr->gzip_len = st.st_size - strm.avail_in - pos + GZIP_FOOTER_LEN;
pos = st.st_size - strm.avail_in;
inflateEnd(&strm);
// consume the gzip footer.
curr->gzip_footer = img+pos;
pos += GZIP_FOOTER_LEN;
p = img+pos;
// The footer (that we just skipped over) contains the size of
// the uncompressed data. Double-check to make sure that it
// matches the size of the data we got when we actually did
// the decompression.
size_t footer_size = p[-4] + (p[-3] << 8) + (p[-2] << 16) + (p[-1] << 24);
if (footer_size != curr->len) {
fprintf(stderr, "Error: footer size %d != decompressed size %d\n",
footer_size, curr->len);
free(img);
return NULL;
}
} else {
// 'pos' is not the offset of the start of a gzip chunk, so scan
// forward until we find a gzip header.
curr->type = CHUNK_NORMAL;
curr->data = p;
for (curr->len = 0; curr->len < (st.st_size - pos); ++curr->len) {
if (p[curr->len] == 0x1f &&
p[curr->len+1] == 0x8b &&
p[curr->len+2] == 0x08 &&
p[curr->len+3] == 0x00) {
break;
}
}
pos += curr->len;
}
}
return img;
}
#define BUFFER_SIZE 32768
/*
* Takes the uncompressed data stored in the chunk, compresses it
* using the zlib parameters stored in the chunk, and checks that it
* matches exactly the compressed data we started with (also stored in
* the chunk). Return 0 on success.
*/
int TryReconstruction(ImageChunk* chunk, unsigned char* out) {
size_t p = chunk->gzip_header_len;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = chunk->len;
strm.next_in = chunk->data;
int ret;
ret = deflateInit2(&strm, chunk->level, chunk->method, chunk->windowBits,
chunk->memLevel, chunk->strategy);
do {
strm.avail_out = BUFFER_SIZE;
strm.next_out = out;
ret = deflate(&strm, Z_FINISH);
size_t have = BUFFER_SIZE - strm.avail_out;
if (memcmp(out, chunk->gzip_data+p, have) != 0) {
// mismatch; data isn't the same.
deflateEnd(&strm);
return -1;
}
p += have;
} while (ret != Z_STREAM_END);
deflateEnd(&strm);
if (p + GZIP_FOOTER_LEN != chunk->gzip_len) {
// mismatch; ran out of data before we should have.
return -1;
}
return 0;
}
/*
* Verify that we can reproduce exactly the same compressed data that
* we started with. Sets the level, method, windowBits, memLevel, and
* strategy fields in the chunk to the encoding parameters needed to
* produce the right output. Returns 0 on success.
*/
int ReconstructGzipChunk(ImageChunk* chunk) {
if (chunk->type != CHUNK_GZIP) {
fprintf(stderr, "attempt to reconstruct non-gzip chunk\n");
return -1;
}
size_t p = 0;
unsigned char* out = malloc(BUFFER_SIZE);
// We only check two combinations of encoder parameters: level 6
// (the default) and level 9 (the maximum).
for (chunk->level = 6; chunk->level <= 9; chunk->level += 3) {
chunk->windowBits = -15; // 32kb window; negative to indicate a raw stream.
chunk->memLevel = 8; // the default value.
chunk->method = Z_DEFLATED;
chunk->strategy = Z_DEFAULT_STRATEGY;
if (TryReconstruction(chunk, out) == 0) {
free(out);
return 0;
}
}
free(out);
return -1;
}
/** Write a 4-byte value to f in little-endian order. */
void Write4(int value, FILE* f) {
fputc(value & 0xff, f);
fputc((value >> 8) & 0xff, f);
fputc((value >> 16) & 0xff, f);
fputc((value >> 24) & 0xff, f);
}
/** Write an 8-byte value to f in little-endian order. */
void Write8(long long value, FILE* f) {
fputc(value & 0xff, f);
fputc((value >> 8) & 0xff, f);
fputc((value >> 16) & 0xff, f);
fputc((value >> 24) & 0xff, f);
fputc((value >> 32) & 0xff, f);
fputc((value >> 40) & 0xff, f);
fputc((value >> 48) & 0xff, f);
fputc((value >> 56) & 0xff, f);
}
/*
* Given source and target chunks, compute a bsdiff patch between them
* by running bsdiff in a subprocess. Return the patch data, placing
* its length in *size. Return NULL on failure. We expect the bsdiff
* program to be in the path.
*/
unsigned char* MakePatch(ImageChunk* src, ImageChunk* tgt, size_t* size) {
char stemp[] = "/tmp/imgdiff-src-XXXXXX";
char ttemp[] = "/tmp/imgdiff-tgt-XXXXXX";
char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
mkstemp(stemp);
mkstemp(ttemp);
mkstemp(ptemp);
FILE* f = fopen(stemp, "wb");
if (f == NULL) {
fprintf(stderr, "failed to open src chunk %s: %s\n",
stemp, strerror(errno));
return NULL;
}
if (fwrite(src->data, 1, src->len, f) != src->len) {
fprintf(stderr, "failed to write src chunk to %s: %s\n",
stemp, strerror(errno));
return NULL;
}
fclose(f);
f = fopen(ttemp, "wb");
if (f == NULL) {
fprintf(stderr, "failed to open tgt chunk %s: %s\n",
ttemp, strerror(errno));
return NULL;
}
if (fwrite(tgt->data, 1, tgt->len, f) != tgt->len) {
fprintf(stderr, "failed to write tgt chunk to %s: %s\n",
ttemp, strerror(errno));
return NULL;
}
fclose(f);
char cmd[200];
sprintf(cmd, "bsdiff %s %s %s", stemp, ttemp, ptemp);
if (system(cmd) != 0) {
fprintf(stderr, "failed to run bsdiff: %s\n", strerror(errno));
return NULL;
}
struct stat st;
if (stat(ptemp, &st) != 0) {
fprintf(stderr, "failed to stat patch file %s: %s\n",
ptemp, strerror(errno));
return NULL;
}
unsigned char* data = malloc(st.st_size);
*size = st.st_size;
f = fopen(ptemp, "rb");
if (f == NULL) {
fprintf(stderr, "failed to open patch %s: %s\n", ptemp, strerror(errno));
return NULL;
}
if (fread(data, 1, st.st_size, f) != st.st_size) {
fprintf(stderr, "failed to read patch %s: %s\n", ptemp, strerror(errno));
return NULL;
}
fclose(f);
unlink(stemp);
unlink(ttemp);
unlink(ptemp);
return data;
}
/*
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
* of uninterpreted data). The resulting patch will likely be about
* as big as the target file, but it lets us handle the case of images
* where some gzip chunks are reconstructible but others aren't (by
* treating the ones that aren't as normal chunks).
*/
void ChangeGzipChunkToNormal(ImageChunk* ch) {
ch->type = CHUNK_NORMAL;
free(ch->data);
ch->data = ch->gzip_data;
ch->len = ch->gzip_len;
}
int main(int argc, char** argv) {
if (argc != 4) {
fprintf(stderr, "usage: %s <src-img> <tgt-img> <patch-file>\n", argv[0]);
return 2;
}
int num_src_chunks;
ImageChunk* src_chunks;
if (ReadImage(argv[1], &num_src_chunks, &src_chunks) == NULL) {
fprintf(stderr, "failed to break apart source image\n");
return 1;
}
int num_tgt_chunks;
ImageChunk* tgt_chunks;
if (ReadImage(argv[2], &num_tgt_chunks, &tgt_chunks) == NULL) {
fprintf(stderr, "failed to break apart target image\n");
return 1;
}
// Verify that the source and target images have the same chunk
// structure (ie, the same sequence of gzip and normal chunks).
if (num_src_chunks != num_tgt_chunks) {
fprintf(stderr, "source and target don't have same number of chunks!\n");
return 1;
}
int i;
for (i = 0; i < num_src_chunks; ++i) {
if (src_chunks[i].type != tgt_chunks[i].type) {
fprintf(stderr, "source and target don't have same chunk "
"structure! (chunk %d)\n", i);
return 1;
}
}
// Confirm that given the uncompressed chunk data in the target, we
// can recompress it and get exactly the same bits as are in the
// input target image. If this fails, treat the chunk as a normal
// non-gzipped chunk.
for (i = 0; i < num_tgt_chunks; ++i) {
if (tgt_chunks[i].type == CHUNK_GZIP) {
if (ReconstructGzipChunk(tgt_chunks+i) < 0) {
printf("failed to reconstruct target gzip chunk %d; "
"treating as normal chunk\n", i);
ChangeGzipChunkToNormal(tgt_chunks+i);
ChangeGzipChunkToNormal(src_chunks+i);
} else {
printf("reconstructed target gzip chunk %d\n", i);
}
}
}
// Compute bsdiff patches for each chunk's data (the uncompressed
// data, in the case of gzip chunks).
unsigned char** patch_data = malloc(num_src_chunks * sizeof(unsigned char*));
size_t* patch_size = malloc(num_src_chunks * sizeof(size_t));
for (i = 0; i < num_src_chunks; ++i) {
patch_data[i] = MakePatch(src_chunks+i, tgt_chunks+i, patch_size+i);
printf("patch %d is %d bytes (of %d)\n", i, patch_size[i],
tgt_chunks[i].type == CHUNK_NORMAL ? tgt_chunks[i].len : tgt_chunks[i].gzip_len);
}
// Figure out how big the imgdiff file header is going to be, so
// that we can correctly compute the offset of each bsdiff patch
// within the file.
size_t total_header_size = 12;
for (i = 0; i < num_src_chunks; ++i) {
total_header_size += 4 + 8*3;
if (src_chunks[i].type == CHUNK_GZIP) {
total_header_size += 8*2 + 4*6 + tgt_chunks[i].gzip_header_len + 8;
}
}
size_t offset = total_header_size;
FILE* f = fopen(argv[3], "wb");
// Write out the headers.
fwrite("IMGDIFF1", 1, 8, f);
Write4(num_src_chunks, f);
for (i = 0; i < num_tgt_chunks; ++i) {
Write4(tgt_chunks[i].type, f);
Write8(src_chunks[i].start, f);
Write8(src_chunks[i].type == CHUNK_NORMAL ? src_chunks[i].len :
(src_chunks[i].gzip_len + src_chunks[i].gzip_header_len + 8), f);
Write8(offset, f);
if (tgt_chunks[i].type == CHUNK_GZIP) {
Write8(src_chunks[i].len, f);
Write8(tgt_chunks[i].len, f);
Write4(tgt_chunks[i].level, f);
Write4(tgt_chunks[i].method, f);
Write4(tgt_chunks[i].windowBits, f);
Write4(tgt_chunks[i].memLevel, f);
Write4(tgt_chunks[i].strategy, f);
Write4(tgt_chunks[i].gzip_header_len, f);
fwrite(tgt_chunks[i].gzip_header, 1, tgt_chunks[i].gzip_header_len, f);
fwrite(tgt_chunks[i].gzip_footer, 1, GZIP_FOOTER_LEN, f);
}
offset += patch_size[i];
}
// Append each chunk's bsdiff patch, in order.
for (i = 0; i < num_tgt_chunks; ++i) {
fwrite(patch_data[i], 1, patch_size[i], f);
}
fclose(f);
return 0;
}

View file

@ -0,0 +1,28 @@
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Image patch chunk types
#define CHUNK_NORMAL 0
#define CHUNK_GZIP 1
// The gzip header size is actually variable, but we currently don't
// support gzipped data with any of the optional fields, so for now it
// will always be ten bytes. See RFC 1952 for the definition of the
// gzip format.
#define GZIP_HEADER_LEN 10
// The gzip footer size really is fixed.
#define GZIP_FOOTER_LEN 8

227
tools/applypatch/imgpatch.c Normal file
View file

@ -0,0 +1,227 @@
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// See imgdiff.c in this directory for a description of the patch file
// format.
#include <stdio.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include "zlib.h"
#include "mincrypt/sha.h"
#include "applypatch.h"
#include "imgdiff.h"
int Read4(unsigned char* p) {
return (int)(((unsigned int)p[3] << 24) |
((unsigned int)p[2] << 16) |
((unsigned int)p[1] << 8) |
(unsigned int)p[0]);
}
long long Read8(unsigned char* p) {
return (long long)(((unsigned long long)p[7] << 56) |
((unsigned long long)p[6] << 48) |
((unsigned long long)p[5] << 40) |
((unsigned long long)p[4] << 32) |
((unsigned long long)p[3] << 24) |
((unsigned long long)p[2] << 16) |
((unsigned long long)p[1] << 8) |
(unsigned long long)p[0]);
}
/*
* Apply the patch given in 'patch_filename' to the source data given
* by (old_data, old_size). Write the patched output to the 'output'
* file, and update the SHA context with the output data as well.
* Return 0 on success.
*/
int ApplyImagePatch(const unsigned char* old_data, ssize_t old_size,
const char* patch_filename,
FILE* output, SHA_CTX* ctx) {
FILE* f;
if ((f = fopen(patch_filename, "rb")) == NULL) {
fprintf(stderr, "failed to open patch file\n");
return -1;
}
unsigned char header[12];
if (fread(header, 1, 12, f) != 12) {
fprintf(stderr, "failed to read patch file header\n");
return -1;
}
if (memcmp(header, "IMGDIFF1", 8) != 0) {
fprintf(stderr, "corrupt patch file header (magic number)\n");
return -1;
}
int num_chunks = Read4(header+8);
int i;
for (i = 0; i < num_chunks; ++i) {
// each chunk's header record starts with 28 bytes (4 + 8*3).
unsigned char chunk[28];
if (fread(chunk, 1, 28, f) != 28) {
fprintf(stderr, "failed to read chunk %d record\n", i);
return -1;
}
int type = Read4(chunk);
size_t src_start = Read8(chunk+4);
size_t src_len = Read8(chunk+12);
size_t patch_offset = Read8(chunk+20);
if (type == CHUNK_NORMAL) {
fprintf(stderr, "CHUNK %d: normal patch offset %d\n", i, patch_offset);
ApplyBSDiffPatch(old_data + src_start, src_len,
patch_filename, patch_offset,
output, ctx);
} else if (type == CHUNK_GZIP) {
fprintf(stderr, "CHUNK %d: gzip patch offset %d\n", i, patch_offset);
// gzip chunks have an additional 40 + gzip_header_len + 8 bytes
// in their chunk header.
unsigned char* gzip = malloc(40);
if (fread(gzip, 1, 40, f) != 40) {
fprintf(stderr, "failed to read chunk %d initial gzip data\n", i);
return -1;
}
size_t gzip_header_len = Read4(gzip+36);
gzip = realloc(gzip, 40 + gzip_header_len + 8);
if (fread(gzip+40, 1, gzip_header_len+8, f) != gzip_header_len+8) {
fprintf(stderr, "failed to read chunk %d remaining gzip data\n", i);
return -1;
}
size_t expanded_len = Read8(gzip);
size_t target_len = Read8(gzip);
int gz_level = Read4(gzip+16);
int gz_method = Read4(gzip+20);
int gz_windowBits = Read4(gzip+24);
int gz_memLevel = Read4(gzip+28);
int gz_strategy = Read4(gzip+32);
// Decompress the source data; the chunk header tells us exactly
// how big we expect it to be when decompressed.
unsigned char* expanded_source = malloc(expanded_len);
if (expanded_source == NULL) {
fprintf(stderr, "failed to allocate %d bytes for expanded_source\n", expanded_len);
return -1;
}
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = src_len - (gzip_header_len + 8);
strm.next_in = (unsigned char*)(old_data + src_start + gzip_header_len);
strm.avail_out = expanded_len;
strm.next_out = expanded_source;
int ret;
ret = inflateInit2(&strm, -15);
if (ret != Z_OK) {
fprintf(stderr, "failed to init source inflation: %d\n", ret);
return -1;
}
// Because we've provided enough room to accommodate the output
// data, we expect one call to inflate() to suffice.
ret = inflate(&strm, Z_SYNC_FLUSH);
if (ret != Z_STREAM_END) {
fprintf(stderr, "source inflation returned %d\n", ret);
return -1;
}
// We should have filled the output buffer exactly.
if (strm.avail_out != 0) {
fprintf(stderr, "source inflation short by %d bytes\n", strm.avail_out);
return -1;
}
inflateEnd(&strm);
// Next, apply the bsdiff patch (in memory) to the uncompressed
// data.
unsigned char* uncompressed_target_data;
ssize_t uncompressed_target_size;
if (ApplyBSDiffPatchMem(expanded_source, expanded_len,
patch_filename, patch_offset,
&uncompressed_target_data,
&uncompressed_target_size) != 0) {
return -1;
}
// Now compress the target data and append it to the output.
// start with the gzip header.
fwrite(gzip+40, 1, gzip_header_len, output);
SHA_update(ctx, gzip+40, gzip_header_len);
// we're done with the expanded_source data buffer, so we'll
// reuse that memory to receive the output of deflate.
unsigned char* temp_data = expanded_source;
ssize_t temp_size = expanded_len;
if (temp_size < 32768) {
// ... unless the buffer is too small, in which case we'll
// allocate a fresh one.
free(temp_data);
temp_data = malloc(32768);
temp_size = 32768;
}
// now the deflate stream
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = uncompressed_target_size;
strm.next_in = uncompressed_target_data;
ret = deflateInit2(&strm, gz_level, gz_method, gz_windowBits,
gz_memLevel, gz_strategy);
do {
strm.avail_out = temp_size;
strm.next_out = temp_data;
ret = deflate(&strm, Z_FINISH);
size_t have = temp_size - strm.avail_out;
if (fwrite(temp_data, 1, have, output) != have) {
fprintf(stderr, "failed to write %d compressed bytes to output\n",
have);
return -1;
}
SHA_update(ctx, temp_data, have);
} while (ret != Z_STREAM_END);
deflateEnd(&strm);
// lastly, the gzip footer.
fwrite(gzip+40+gzip_header_len, 1, 8, output);
SHA_update(ctx, gzip+40+gzip_header_len, 8);
free(temp_data);
free(uncompressed_target_data);
free(gzip);
} else {
fprintf(stderr, "patch chunk %d is unknown type %d\n", i, type);
return -1;
}
}
return 0;
}