e3425a0220
The WebKit merge to r66079 built with JSC JavaScript engine triggers the overflow. Change-Id: Ifcb92aa019cfb0e7a93d667e15a792554fc0f676
2775 lines
113 KiB
C
2775 lines
113 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <common.h>
|
|
#include <debug.h>
|
|
#include <libelf.h>
|
|
#include <libebl.h>
|
|
#ifdef ARM_SPECIFIC_HACKS
|
|
#include <libebl_arm.h>
|
|
#endif/*ARM_SPECIFIC_HACKS*/
|
|
#include <elf.h>
|
|
#include <gelf.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <hash.h>
|
|
#include <apriori.h>
|
|
#include <source.h>
|
|
#include <tweak.h>
|
|
#include <rangesort.h>
|
|
#include <prelink_info.h>
|
|
#include <prelinkmap.h>
|
|
#include <libgen.h>
|
|
|
|
#ifndef ADJUST_ELF
|
|
#error "ADJUST_ELF must be defined!"
|
|
#endif
|
|
|
|
/* When this macro is defined, apriori sets to ZERO those relocation values for
|
|
which it canot find the appropriate referent.
|
|
*/
|
|
#define PERMISSIVE
|
|
#define COPY_SECTION_DATA_BUFFER (0)
|
|
/* When this macro is set to a nonzero value, we replace calls to elf_strptr()
|
|
on the target ELF handle with code that extracts the strings directly from
|
|
the data buffers of that ELF handle. In this case, elf_strptr() does not
|
|
work as expected, as it tries to read the data buffer of the associated
|
|
string section directly from the file, and that buffer does not exist yet
|
|
in the file, since we haven't committed our changes yet.
|
|
*/
|
|
#define ELF_STRPTR_IS_BROKEN (1)
|
|
|
|
/* When the macro below is defined, apriori does not mark for removal those
|
|
relocation sections that it fully handles. Instead, apriori just sets their
|
|
sizes to zero. This is more for debugging than of any actual use.
|
|
|
|
This macro is meaningful only when ADJUST_ELF!=0
|
|
*/
|
|
#define REMOVE_HANDLED_SECTIONS
|
|
|
|
extern int verbose_flag;
|
|
|
|
static source_t *sources = NULL;
|
|
|
|
/* Retouch data is a very concise representation of the resolved relocations.
|
|
This data is used to randomize the location of prelinked libraries at
|
|
update time, on the device.
|
|
*/
|
|
|
|
// We will store retouch entries into this buffer, then dump them at the
|
|
// end of the .so file before setup_prelink_info().
|
|
#define RETOUCH_MAX_SIZE 600000
|
|
static char *retouch_buf;
|
|
static unsigned int retouch_byte_cnt;
|
|
// Compression state.
|
|
static int32_t offs_prev;
|
|
static uint32_t cont_prev;
|
|
|
|
#define false 0
|
|
#define true 1
|
|
|
|
void retouch_init(void) {
|
|
offs_prev = 0;
|
|
cont_prev = 0;
|
|
retouch_byte_cnt = 0;
|
|
retouch_buf = malloc(RETOUCH_MAX_SIZE+12);
|
|
FAILIF(retouch_buf == NULL,
|
|
"Could not allocate %d bytes.\n", RETOUCH_MAX_SIZE+12);
|
|
}
|
|
|
|
//
|
|
// We use three encoding schemes; this takes care of much of the redundancy
|
|
// inherent in lists of relocations:
|
|
//
|
|
// * two bytes, leading 1, 2b for d_offset ("s"), 13b for d_contents ("c")
|
|
//
|
|
// 76543210 76543210
|
|
// 1ssccccc cccccccc
|
|
//
|
|
// * three bytes, leading 01, 2b for delta offset, 20b for delta contents
|
|
//
|
|
// 76543210 76543210 76543210
|
|
// 01sscccc cccccccc cccccccc
|
|
//
|
|
// * eigth bytes, leading 00, 30b for offset, 32b for contents
|
|
//
|
|
// 76543210 76543210 76543210 76543210
|
|
// 00ssssss ssssssss ssssssss ssssssss + 4 bytes contents
|
|
//
|
|
// NOTE 1: All deltas are w.r.t. the previous line in the list.
|
|
// NOTE 2: Two-bit ("ss") offsets mean: "00"=4, "01"=8, "10"=12, and "11"=16.
|
|
// NOTE 3: Delta contents are signed. To map back to a int32 we refill with 1s.
|
|
// NOTE 4: Special encoding for -1 offset. Extended back to 32b when decoded.
|
|
//
|
|
|
|
void retouch_encode(int32_t offset, uint32_t contents) {
|
|
int64_t d_offs = offset-offs_prev;
|
|
int64_t d_cont = (int64_t)contents-(int64_t)cont_prev;
|
|
|
|
uint8_t output[8];
|
|
uint32_t output_size;
|
|
|
|
if ((d_offs > 3) &&
|
|
(d_offs % 4) == 0 &&
|
|
(d_offs / 4) < 5 &&
|
|
(d_cont < 4000) &&
|
|
(d_cont > -4000)) {
|
|
// we can fit in 2 bytes
|
|
output[0] =
|
|
0x80 |
|
|
(((d_offs/4)-1) << 5) |
|
|
(((uint64_t)d_cont & 0x1f00) >> 8);
|
|
output[1] =
|
|
((uint64_t)d_cont & 0xff);
|
|
output_size = 2;
|
|
} else if ((d_offs > 3) &&
|
|
(d_offs % 4) == 0 &&
|
|
(d_offs / 4) < 5 &&
|
|
(d_cont < 510000) &&
|
|
(d_cont > -510000)) {
|
|
// fit in 3 bytes
|
|
output[0] =
|
|
0x40 |
|
|
(((d_offs/4)-1) << 4) |
|
|
(((uint64_t)d_cont & 0xf0000) >> 16);
|
|
output[1] =
|
|
((uint64_t)d_cont & 0xff00) >> 8;
|
|
output[2] =
|
|
((uint64_t)d_cont & 0xff);
|
|
output_size = 3;
|
|
} else {
|
|
// fit in 8 bytes; we can't support files bigger than (1GB-1)
|
|
// with this encoding: no library is that big anyway..
|
|
FAILIF(offset < -1 || offset > 0x3ffffffe, "Offset out of range.\n");
|
|
output[0] = (offset & 0x3f000000) >> 24;
|
|
output[1] = (offset & 0xff0000) >> 16;
|
|
output[2] = (offset & 0xff00) >> 8;
|
|
output[3] = (offset & 0xff);
|
|
output[4] = (contents & 0xff000000) >> 24;
|
|
output[5] = (contents & 0xff0000) >> 16;
|
|
output[6] = (contents & 0xff00) >> 8;
|
|
output[7] = (contents & 0xff);
|
|
output_size = 8;
|
|
}
|
|
|
|
// If this happens, the retouch buffer size can be bumped up.
|
|
// Currently, the largest case is libwebcore, at about 250K.
|
|
FAILIF((retouch_byte_cnt+output_size) > RETOUCH_MAX_SIZE,
|
|
"About to overflow retouch buffer.\n");
|
|
|
|
memcpy(retouch_buf+retouch_byte_cnt, output, output_size);
|
|
retouch_byte_cnt += output_size;
|
|
|
|
offs_prev = offset;
|
|
cont_prev = contents;
|
|
}
|
|
|
|
void retouch_dump(const char *fname, int elf_little,
|
|
unsigned int retouch_byte_cnt, char *retouch_buf) {
|
|
int fd = open(fname, O_WRONLY);
|
|
FAILIF(fd < 0,
|
|
"open(%s, O_WRONLY): %s (%d)\n" ,
|
|
fname, strerror(errno), errno);
|
|
off_t sz = lseek(fd, 0, SEEK_END);
|
|
FAILIF(sz == (off_t)-1,
|
|
"lseek(%d, 0, SEEK_END): %s (%d)!\n",
|
|
fd, strerror(errno), errno);
|
|
|
|
// The retouch blob ends with "RETOUCH XXXX", where XXXX is the 4-byte
|
|
// size of the retouch blob, in target endianness.
|
|
strncpy(retouch_buf+retouch_byte_cnt, "RETOUCH ", 8);
|
|
if (elf_little ^ is_host_little()) {
|
|
*(unsigned int *)(retouch_buf+retouch_byte_cnt+8) =
|
|
switch_endianness(retouch_byte_cnt);
|
|
} else {
|
|
*(unsigned int *)(retouch_buf+retouch_byte_cnt+8) =
|
|
retouch_byte_cnt;
|
|
}
|
|
|
|
int num_written = write(fd, retouch_buf, retouch_byte_cnt+12);
|
|
FAILIF(num_written < 0,
|
|
"write(%d, &info, sizeof(info)): %s (%d)\n",
|
|
fd, strerror(errno), errno);
|
|
FAILIF((retouch_byte_cnt+12) != num_written,
|
|
"Could not write %d bytes as expected (wrote %d bytes instead)!\n",
|
|
retouch_byte_cnt, num_written);
|
|
FAILIF(close(fd) < 0, "close(%d): %s (%d)!\n", fd, strerror(errno), errno);
|
|
}
|
|
|
|
/* End of retouch code.
|
|
*/
|
|
|
|
#if defined(DEBUG) && 0
|
|
|
|
static void print_shdr(source_t *source, Elf_Scn *scn)
|
|
{
|
|
GElf_Shdr shdr_mem, *shdr;
|
|
shdr = gelf_getshdr(scn, &shdr_mem);
|
|
Elf_Data *data = elf_getdata(scn, NULL);
|
|
INFO("\t%02d: data = %p, hdr = { offset = %8lld, size = %lld }, "
|
|
"data->d_buf = %p data->d_off = %lld, data->d_size = %d\n",
|
|
elf_ndxscn(scn),
|
|
data,
|
|
shdr->sh_offset, shdr->sh_size,
|
|
data->d_buf, data->d_off, data->d_size);
|
|
}
|
|
|
|
static void print_shdr_idx(source_t *source, Elf *elf, int idx)
|
|
{
|
|
print_shdr(source, elf_getscn(elf, idx));
|
|
}
|
|
|
|
static void print_shdrs(source_t *source) {
|
|
Elf_Scn *scn = NULL;
|
|
INFO("section offset dump for new ELF\n");
|
|
while ((scn = elf_nextscn (source->elf, scn)) != NULL)
|
|
print_shdr(source, scn);
|
|
|
|
INFO("\nsection offset dump for original ELF\n");
|
|
while ((scn = elf_nextscn (source->oldelf, scn)) != NULL)
|
|
print_shdr(source, scn);
|
|
|
|
#if 0
|
|
{
|
|
INFO("section offset dump for new ELF\n");
|
|
int i = 0;
|
|
for (i = 0; i < source->shnum; i++) {
|
|
scn = elf_getscn(source->elf, i);
|
|
print_shdr(source, scn);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif /* DEBUG */
|
|
|
|
static char * find_file(const char *libname,
|
|
char **lib_lookup_dirs,
|
|
int num_lib_lookup_dirs);
|
|
|
|
static inline source_t* find_source(const char *name,
|
|
char **lib_lookup_dirs,
|
|
int num_lib_lookup_dirs) {
|
|
char *full = find_file(name, lib_lookup_dirs, num_lib_lookup_dirs);
|
|
if (full) {
|
|
source_t *trav = sources;
|
|
while (trav) {
|
|
if (!strcmp(trav->name, full))
|
|
break;
|
|
trav = trav->next;
|
|
}
|
|
free(full);
|
|
return trav;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static inline void add_to_sources(source_t *src) {
|
|
src->next = sources;
|
|
sources = src;
|
|
}
|
|
|
|
static void handle_range_error(range_error_t err,
|
|
range_t *left, range_t *right) {
|
|
switch (err) {
|
|
case ERROR_CONTAINS:
|
|
ERROR("ERROR: section (%lld, %lld bytes) contains "
|
|
"section (%lld, %lld bytes)\n",
|
|
left->start, left->length,
|
|
right->start, right->length);
|
|
break;
|
|
case ERROR_OVERLAPS:
|
|
ERROR("ERROR: Section (%lld, %lld bytes) intersects "
|
|
"section (%lld, %lld bytes)\n",
|
|
left->start, left->length,
|
|
right->start, right->length);
|
|
break;
|
|
default:
|
|
ASSERT(!"Unknown range error code!");
|
|
}
|
|
|
|
FAILIF(1, "Range error.\n");
|
|
}
|
|
|
|
static void create_elf_sections(source_t *source, Elf *elf)
|
|
{
|
|
INFO("Creating new ELF sections.\n");
|
|
ASSERT(elf == NULL || source->elf == NULL || source->elf == elf);
|
|
if (elf == NULL) {
|
|
ASSERT(source->elf != NULL);
|
|
elf = source->elf;
|
|
}
|
|
|
|
int cnt = 1;
|
|
Elf_Scn *oldscn = NULL, *scn;
|
|
while ((oldscn = elf_nextscn (source->oldelf, oldscn)) != NULL) {
|
|
GElf_Shdr *oldshdr, oldshdr_mem;
|
|
|
|
scn = elf_newscn(elf);
|
|
FAILIF_LIBELF(NULL == scn, elf_newscn);
|
|
|
|
oldshdr = gelf_getshdr(oldscn, &oldshdr_mem);
|
|
FAILIF_LIBELF(NULL == oldshdr, gelf_getshdr);
|
|
/* Set the section header of the new section to be the same as the
|
|
headset of the old section by default. */
|
|
gelf_update_shdr(scn, oldshdr);
|
|
|
|
/* Copy the section data */
|
|
Elf_Data *olddata = elf_getdata(oldscn, NULL);
|
|
FAILIF_LIBELF(NULL == olddata, elf_getdata);
|
|
|
|
Elf_Data *data = elf_newdata(scn);
|
|
FAILIF_LIBELF(NULL == data, elf_newdata);
|
|
*data = *olddata;
|
|
#if COPY_SECTION_DATA_BUFFER
|
|
if (olddata->d_buf != NULL) {
|
|
data->d_buf = MALLOC(data->d_size);
|
|
memcpy(data->d_buf, olddata->d_buf, olddata->d_size);
|
|
}
|
|
#endif
|
|
|
|
INFO("\tsection %02d: [%-30s] created\n",
|
|
cnt,
|
|
elf_strptr(source->oldelf,
|
|
source->shstrndx,
|
|
oldshdr->sh_name));
|
|
|
|
if (ADJUST_ELF) {
|
|
ASSERT(source->shdr_info != NULL);
|
|
/* Create a new section. */
|
|
source->shdr_info[cnt].idx = cnt;
|
|
source->shdr_info[cnt].newscn = scn;
|
|
source->shdr_info[cnt].data = data;
|
|
source->shdr_info[cnt].
|
|
use_old_shdr_for_relocation_calculations = 1;
|
|
INFO("\tsection [%s] (old offset %lld, old size %lld) "
|
|
"will have index %d (was %d).\n",
|
|
source->shdr_info[cnt].name,
|
|
source->shdr_info[cnt].old_shdr.sh_offset,
|
|
source->shdr_info[cnt].old_shdr.sh_size,
|
|
source->shdr_info[cnt].idx,
|
|
elf_ndxscn(source->shdr_info[cnt].scn));
|
|
/* Same as the next assert */
|
|
ASSERT(elf_ndxscn (source->shdr_info[cnt].newscn) ==
|
|
source->shdr_info[cnt].idx);
|
|
}
|
|
|
|
ASSERT(elf_ndxscn(scn) == (size_t)cnt);
|
|
cnt++;
|
|
}
|
|
}
|
|
|
|
/* This function sets up the shdr_info[] array of a source_t. We call it only
|
|
when ADJUST_ELF is non-zero (i.e., support for adjusting an ELF file for
|
|
changes in sizes and numbers of relocation sections is compiled in. Note
|
|
that setup_shdr_info() depends only on the information in source->oldelf,
|
|
not on source->elf.
|
|
*/
|
|
|
|
static void setup_shdr_info(source_t *source)
|
|
{
|
|
if (ADJUST_ELF)
|
|
{
|
|
/* Allocate the section-header-info buffer. */
|
|
INFO("Allocating section-header info structure (%d) bytes...\n",
|
|
source->shnum * sizeof (shdr_info_t));
|
|
|
|
source->shdr_info = (shdr_info_t *)CALLOC(source->shnum,
|
|
sizeof (shdr_info_t));
|
|
|
|
/* Mark the SHT_NULL section as handled. */
|
|
source->shdr_info[0].idx = 2;
|
|
|
|
int cnt = 1;
|
|
Elf_Scn *oldscn = NULL;
|
|
while ((oldscn = elf_nextscn (source->oldelf, oldscn)) != NULL) {
|
|
/* Copy the section header */
|
|
ASSERT(elf_ndxscn(oldscn) == (size_t)cnt);
|
|
|
|
/* Initialized the corresponding shdr_info entry */
|
|
{
|
|
/* Mark the section with a non-zero index. Later, when we
|
|
decide to drop a section, we will set its idx to zero, and
|
|
assign section numbers to the remaining sections.
|
|
*/
|
|
source->shdr_info[cnt].idx = 1;
|
|
|
|
source->shdr_info[cnt].scn = oldscn;
|
|
|
|
/* NOTE: Here we pupulate the section-headset struct with the
|
|
same values as the original section's. After the
|
|
first run of prelink(), we will update the sh_size
|
|
fields of those sections that need resizing.
|
|
*/
|
|
FAILIF_LIBELF(NULL ==
|
|
gelf_getshdr(oldscn,
|
|
&source->shdr_info[cnt].shdr),
|
|
gelf_getshdr);
|
|
|
|
/* Get the name of the section. */
|
|
source->shdr_info[cnt].name =
|
|
elf_strptr (source->oldelf, source->shstrndx,
|
|
source->shdr_info[cnt].shdr.sh_name);
|
|
|
|
INFO("\tname: %s\n", source->shdr_info[cnt].name);
|
|
FAILIF(source->shdr_info[cnt].name == NULL,
|
|
"Malformed file: section %d name is null\n",
|
|
cnt);
|
|
|
|
/* Remember the shdr.sh_link value. We need to remember this
|
|
value for those sections that refer to other sections. For
|
|
example, we need to remember it for relocation-entry
|
|
sections, because if we modify the symbol table that a
|
|
relocation-entry section is relative to, then we need to
|
|
patch the relocation section. By the time we get to
|
|
deciding whether we need to patch the relocation section, we
|
|
will have overwritten its header's sh_link field with a new
|
|
value.
|
|
*/
|
|
source->shdr_info[cnt].old_shdr = source->shdr_info[cnt].shdr;
|
|
INFO("\t\toriginal sh_link: %08d\n",
|
|
source->shdr_info[cnt].old_shdr.sh_link);
|
|
INFO("\t\toriginal sh_addr: %lld\n",
|
|
source->shdr_info[cnt].old_shdr.sh_addr);
|
|
INFO("\t\toriginal sh_offset: %lld\n",
|
|
source->shdr_info[cnt].old_shdr.sh_offset);
|
|
INFO("\t\toriginal sh_size: %lld\n",
|
|
source->shdr_info[cnt].old_shdr.sh_size);
|
|
|
|
FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_SYMTAB_SHNDX,
|
|
"Cannot handle sh_type SHT_SYMTAB_SHNDX!\n");
|
|
FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_GROUP,
|
|
"Cannot handle sh_type SHT_GROUP!\n");
|
|
FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_GNU_versym,
|
|
"Cannot handle sh_type SHT_GNU_versym!\n");
|
|
}
|
|
|
|
cnt++;
|
|
} /* for each section */
|
|
} /* if (ADJUST_ELF) */
|
|
}
|
|
|
|
static Elf * init_elf(source_t *source, bool create_new_sections)
|
|
{
|
|
Elf *elf;
|
|
if (source->output != NULL) {
|
|
if (source->output_is_dir) {
|
|
source->output_is_dir++;
|
|
char *dir = source->output;
|
|
int dirlen = strlen(dir);
|
|
/* The main() function maintains a pointer to source->output; it
|
|
frees the buffer after apriori() returns.
|
|
*/
|
|
source->output = MALLOC(dirlen +
|
|
1 + /* slash */
|
|
strlen(source->name) +
|
|
1); /* null terminator */
|
|
strcpy(source->output, dir);
|
|
source->output[dirlen] = '/';
|
|
strcpy(source->output + dirlen + 1,
|
|
basename(source->name));
|
|
}
|
|
|
|
/* Save some of the info; needed for retouching (ASLR). */
|
|
retouch_init();
|
|
|
|
source->newelf_fd = open(source->output,
|
|
O_RDWR | O_CREAT,
|
|
0666);
|
|
FAILIF(source->newelf_fd < 0, "open(%s): %s (%d)\n",
|
|
source->output,
|
|
strerror(errno),
|
|
errno);
|
|
elf = elf_begin(source->newelf_fd, ELF_C_WRITE, NULL);
|
|
FAILIF_LIBELF(elf == NULL, elf_begin);
|
|
} else {
|
|
elf = elf_clone(source->oldelf, ELF_C_EMPTY);
|
|
FAILIF_LIBELF(elf == NULL, elf_clone);
|
|
}
|
|
|
|
GElf_Ehdr *oldehdr = gelf_getehdr(source->oldelf, &source->old_ehdr_mem);
|
|
FAILIF_LIBELF(NULL == oldehdr, gelf_getehdr);
|
|
|
|
/* Create new ELF and program headers for the elf file */
|
|
INFO("Creating empty ELF and program headers...\n");
|
|
FAILIF_LIBELF(gelf_newehdr (elf, gelf_getclass (source->oldelf)) == 0,
|
|
gelf_newehdr);
|
|
FAILIF_LIBELF(oldehdr->e_type != ET_REL
|
|
&& gelf_newphdr (elf,
|
|
oldehdr->e_phnum) == 0,
|
|
gelf_newphdr);
|
|
|
|
/* Copy the elf header */
|
|
INFO("Copying ELF header...\n");
|
|
GElf_Ehdr *ehdr = gelf_getehdr(elf, &source->ehdr_mem);
|
|
FAILIF_LIBELF(NULL == ehdr, gelf_getehdr);
|
|
memcpy(ehdr, oldehdr, sizeof(GElf_Ehdr));
|
|
FAILIF_LIBELF(!gelf_update_ehdr(elf, ehdr), gelf_update_ehdr);
|
|
|
|
/* Copy out the old program header: notice that if the ELF file does not
|
|
have a program header, this loop won't execute.
|
|
*/
|
|
INFO("Copying ELF program header...\n");
|
|
{
|
|
int cnt;
|
|
source->phdr_info = (GElf_Phdr *)CALLOC(ehdr->e_phnum,
|
|
sizeof(GElf_Phdr));
|
|
for (cnt = 0; cnt < ehdr->e_phnum; ++cnt) {
|
|
INFO("\tRetrieving entry %d\n", cnt);
|
|
FAILIF_LIBELF(NULL ==
|
|
gelf_getphdr(source->oldelf, cnt,
|
|
source->phdr_info + cnt),
|
|
gelf_getphdr);
|
|
FAILIF_LIBELF(gelf_update_phdr (elf, cnt,
|
|
source->phdr_info + cnt) == 0,
|
|
gelf_update_phdr);
|
|
}
|
|
}
|
|
|
|
/* Copy the sections and the section headers. */
|
|
if (create_new_sections)
|
|
{
|
|
create_elf_sections(source, elf);
|
|
}
|
|
|
|
/* The ELF library better follows our layout when this is not a
|
|
relocatable object file. */
|
|
elf_flagelf (elf, ELF_C_SET, (ehdr->e_type != ET_REL ? ELF_F_LAYOUT : 0));
|
|
|
|
return elf;
|
|
}
|
|
|
|
static shdr_info_t *lookup_shdr_info_by_new_section(
|
|
source_t *source,
|
|
const char *sname,
|
|
Elf_Scn *newscn)
|
|
{
|
|
if (source->shdr_info == NULL) return NULL;
|
|
int cnt;
|
|
for (cnt = 0; cnt < source->shnum; cnt++) {
|
|
if (source->shdr_info[cnt].newscn == newscn) {
|
|
INFO("\t\tnew section at %p matches shdr_info[%d], "
|
|
"section [%s]!\n",
|
|
newscn,
|
|
cnt,
|
|
source->shdr_info[cnt].name);
|
|
FAILIF(strcmp(sname, source->shdr_info[cnt].name),
|
|
"Matched section's name [%s] does not match "
|
|
"looked-up section's name [%s]!\n",
|
|
source->shdr_info[cnt].name,
|
|
sname);
|
|
return source->shdr_info + cnt;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool do_init_source(source_t *source, unsigned base)
|
|
{
|
|
/* Find various sections. */
|
|
size_t scnidx;
|
|
Elf_Scn *scn;
|
|
GElf_Shdr *shdr, shdr_mem;
|
|
source->sorted_sections = init_range_list();
|
|
INFO("Processing [%s]'s sections...\n", source->name);
|
|
for (scnidx = 1; scnidx < (size_t)source->shnum; scnidx++) {
|
|
INFO("\tGetting section index %d...\n", scnidx);
|
|
scn = elf_getscn(source->elf, scnidx);
|
|
if (NULL == scn) {
|
|
/* If we get an error from elf_getscn(), it means that a section
|
|
at the requested index does not exist. This may happen when
|
|
we remove sections. Since we do not update source->shnum
|
|
(we can't, since we need to know the original number of sections
|
|
to know source->shdr_info[]'s length), we will attempt to
|
|
retrieve a section for an index that no longer exists in the
|
|
new ELF file. */
|
|
INFO("\tThere is no section at index %d anymore, continuing.\n",
|
|
scnidx);
|
|
continue;
|
|
}
|
|
shdr = gelf_getshdr(scn, &shdr_mem);
|
|
FAILIF_LIBELF(NULL == shdr, gelf_getshdr);
|
|
|
|
/* We haven't modified the shstrtab section, and so shdr->sh_name
|
|
has the same value as before. Thus we look up the name based
|
|
on the old ELF handle. We cannot use shstrndx on the new ELF
|
|
handle because the index of the shstrtab section may have
|
|
changed (and calling elf_getshstrndx() returns the same section
|
|
index, so libelf can't handle thise ither).
|
|
*/
|
|
const char *sname =
|
|
elf_strptr(source->oldelf, source->shstrndx, shdr->sh_name);
|
|
ASSERT(sname);
|
|
|
|
INFO("\tAdding [%s] (%lld, %lld)...\n",
|
|
sname,
|
|
shdr->sh_addr,
|
|
shdr->sh_addr + shdr->sh_size);
|
|
if ((shdr->sh_flags & SHF_ALLOC) == SHF_ALLOC) {
|
|
add_unique_range_nosort(source->sorted_sections,
|
|
shdr->sh_addr,
|
|
shdr->sh_size,
|
|
scn,
|
|
handle_range_error,
|
|
NULL); /* no user-data destructor */
|
|
}
|
|
|
|
if (shdr->sh_type == SHT_DYNSYM) {
|
|
source->symtab.scn = scn;
|
|
source->symtab.data = elf_getdata(scn, NULL);
|
|
FAILIF_LIBELF(NULL == source->symtab.data, elf_getdata);
|
|
memcpy(&source->symtab.shdr, shdr, sizeof(GElf_Shdr));
|
|
source->symtab.info = lookup_shdr_info_by_new_section(
|
|
source, sname, scn);
|
|
ASSERT(source->shdr_info == NULL || source->symtab.info != NULL);
|
|
|
|
/* The sh_link field of the section header of the symbol table
|
|
contains the index of the associated strings table. */
|
|
source->strtab.scn = elf_getscn(source->elf,
|
|
source->symtab.shdr.sh_link);
|
|
FAILIF_LIBELF(NULL == source->strtab.scn, elf_getscn);
|
|
FAILIF_LIBELF(NULL == gelf_getshdr(source->strtab.scn,
|
|
&source->strtab.shdr),
|
|
gelf_getshdr);
|
|
source->strtab.data = elf_getdata(source->strtab.scn, NULL);
|
|
FAILIF_LIBELF(NULL == source->strtab.data, elf_getdata);
|
|
source->strtab.info = lookup_shdr_info_by_new_section(
|
|
source,
|
|
elf_strptr(source->oldelf, source->shstrndx,
|
|
source->strtab.shdr.sh_name),
|
|
source->strtab.scn);
|
|
ASSERT(source->shdr_info == NULL || source->strtab.info != NULL);
|
|
} else if (shdr->sh_type == SHT_DYNAMIC) {
|
|
source->dynamic.scn = scn;
|
|
source->dynamic.data = elf_getdata(scn, NULL);
|
|
FAILIF_LIBELF(NULL == source->dynamic.data, elf_getdata);
|
|
memcpy(&source->dynamic.shdr, shdr, sizeof(GElf_Shdr));
|
|
source->dynamic.info = lookup_shdr_info_by_new_section(
|
|
source, sname, scn);
|
|
ASSERT(source->shdr_info == NULL || source->dynamic.info != NULL);
|
|
} else if (shdr->sh_type == SHT_HASH) {
|
|
source->hash.scn = scn;
|
|
source->hash.data = elf_getdata(scn, NULL);
|
|
FAILIF_LIBELF(NULL == source->hash.data, elf_getdata);
|
|
memcpy(&source->hash.shdr, shdr, sizeof(GElf_Shdr));
|
|
source->hash.info = lookup_shdr_info_by_new_section(
|
|
source, sname, scn);
|
|
ASSERT(source->shdr_info == NULL || source->hash.info != NULL);
|
|
} else if (shdr->sh_type == SHT_REL || shdr->sh_type == SHT_RELA) {
|
|
if (source->num_relocation_sections ==
|
|
source->relocation_sections_size) {
|
|
source->relocation_sections_size += 5;
|
|
source->relocation_sections =
|
|
(section_info_t *)REALLOC(source->relocation_sections,
|
|
source->relocation_sections_size *
|
|
sizeof(section_info_t));
|
|
}
|
|
section_info_t *reloc =
|
|
source->relocation_sections + source->num_relocation_sections;
|
|
reloc->scn = scn;
|
|
reloc->info = lookup_shdr_info_by_new_section(source, sname, scn);
|
|
ASSERT(source->shdr_info == NULL || reloc->info != NULL);
|
|
reloc->data = elf_getdata(scn, NULL);
|
|
FAILIF_LIBELF(NULL == reloc->data, elf_getdata);
|
|
memcpy(&reloc->shdr, shdr, sizeof(GElf_Shdr));
|
|
source->num_relocation_sections++;
|
|
} else if (!strcmp(sname, ".bss")) {
|
|
source->bss.scn = scn;
|
|
source->bss.data = elf_getdata(scn, NULL);
|
|
source->bss.info = lookup_shdr_info_by_new_section(
|
|
source, sname, scn);
|
|
ASSERT(source->shdr_info == NULL || source->bss.info != NULL);
|
|
/* The BSS section occupies no space in the ELF file. */
|
|
FAILIF_LIBELF(NULL == source->bss.data, elf_getdata)
|
|
FAILIF(NULL != source->bss.data->d_buf,
|
|
"Enexpected: section [%s] has data!",
|
|
sname);
|
|
memcpy(&source->bss.shdr, shdr, sizeof(GElf_Shdr));
|
|
}
|
|
}
|
|
sort_ranges(source->sorted_sections);
|
|
|
|
source->unfinished =
|
|
(unfinished_relocation_t *)CALLOC(source->num_relocation_sections,
|
|
sizeof(unfinished_relocation_t));
|
|
|
|
if (source->dynamic.scn == NULL) {
|
|
INFO("File [%s] does not have a dynamic section!\n", source->name);
|
|
/* If this is a static executable, we won't update anything. */
|
|
source->dry_run = 1;
|
|
return false;
|
|
}
|
|
|
|
FAILIF(source->symtab.scn == NULL,
|
|
"File [%s] does not have a dynamic symbol table!\n",
|
|
source->name);
|
|
FAILIF(source->hash.scn == NULL,
|
|
"File [%s] does not have a hash table!\n",
|
|
source->name);
|
|
FAILIF(source->hash.shdr.sh_link != elf_ndxscn(source->symtab.scn),
|
|
"Hash points to section %d, not to %d as expected!\n",
|
|
source->hash.shdr.sh_link,
|
|
elf_ndxscn(source->symtab.scn));
|
|
|
|
/* Now, find out how many symbols we have and allocate the array of
|
|
satisfied symbols.
|
|
|
|
NOTE: We don't count the number of undefined symbols here; we will
|
|
iterate over the symbol table later, and count them then, when it is
|
|
more convenient.
|
|
*/
|
|
size_t symsize = gelf_fsize (source->elf,
|
|
ELF_T_SYM,
|
|
1, source->elf_hdr.e_version);
|
|
ASSERT(symsize);
|
|
|
|
source->num_syms = source->symtab.data->d_size / symsize;
|
|
source->base = (source->oldelf_hdr.e_type == ET_DYN) ? base : 0;
|
|
INFO("Relink base for [%s]: 0x%lx\n", source->name, source->base);
|
|
FAILIF(source->base == -1,
|
|
"Can't prelink [%s]: it's a shared library and you did not "
|
|
"provide a prelink address!\n",
|
|
source->name);
|
|
#ifdef SUPPORT_ANDROID_PRELINK_TAGS
|
|
FAILIF(source->prelinked && source->base != source->prelink_base,
|
|
"ERROR: file [%s] has already been prelinked for 0x%08lx. "
|
|
"Cannot change to 0x%08lx!\n",
|
|
source->name,
|
|
source->prelink_base,
|
|
source->base);
|
|
#endif/*SUPPORT_ANDROID_PRELINK_TAGS*/
|
|
|
|
return true;
|
|
}
|
|
|
|
static source_t* init_source(const char *full_path,
|
|
const char *output, int is_file,
|
|
int base, int dry_run)
|
|
{
|
|
source_t *source = (source_t *)CALLOC(1, sizeof(source_t));
|
|
|
|
ASSERT(full_path);
|
|
source->name = full_path;
|
|
source->output = output;
|
|
source->output_is_dir = !is_file;
|
|
|
|
source->newelf_fd = -1;
|
|
source->elf_fd = -1;
|
|
INFO("Opening %s...\n", full_path);
|
|
source->elf_fd =
|
|
open(full_path, ((dry_run || output != NULL) ? O_RDONLY : O_RDWR));
|
|
FAILIF(source->elf_fd < 0, "open(%s): %s (%d)\n",
|
|
full_path,
|
|
strerror(errno),
|
|
errno);
|
|
|
|
FAILIF(fstat(source->elf_fd, &source->elf_file_info) < 0,
|
|
"fstat(%s(fd %d)): %s (%d)\n",
|
|
source->name,
|
|
source->elf_fd,
|
|
strerror(errno),
|
|
errno);
|
|
INFO("File [%s]'s size is %lld bytes!\n",
|
|
source->name,
|
|
source->elf_file_info.st_size);
|
|
|
|
INFO("Calling elf_begin(%s)...\n", full_path);
|
|
|
|
source->oldelf =
|
|
elf_begin(source->elf_fd,
|
|
(dry_run || output != NULL) ? ELF_C_READ : ELF_C_RDWR,
|
|
NULL);
|
|
FAILIF_LIBELF(source->oldelf == NULL, elf_begin);
|
|
|
|
/* libelf can recognize COFF and A.OUT formats, but we handle only ELF. */
|
|
if(elf_kind(source->oldelf) != ELF_K_ELF) {
|
|
ERROR("Input file %s is not in ELF format!\n", full_path);
|
|
return NULL;
|
|
}
|
|
|
|
/* Make sure this is a shared library or an executable. */
|
|
{
|
|
INFO("Making sure %s is a shared library or an executable...\n",
|
|
full_path);
|
|
FAILIF_LIBELF(0 == gelf_getehdr(source->oldelf, &source->oldelf_hdr),
|
|
gelf_getehdr);
|
|
FAILIF(source->oldelf_hdr.e_type != ET_DYN &&
|
|
source->oldelf_hdr.e_type != ET_EXEC,
|
|
"%s must be a shared library (elf type is %d, expecting %d).\n",
|
|
full_path,
|
|
source->oldelf_hdr.e_type,
|
|
ET_DYN);
|
|
}
|
|
|
|
#ifdef SUPPORT_ANDROID_PRELINK_TAGS
|
|
/* First, check to see if the file has been prelinked. */
|
|
source->prelinked =
|
|
check_prelinked(source->name,
|
|
source->oldelf_hdr.e_ident[EI_DATA] == ELFDATA2LSB,
|
|
&source->prelink_base);
|
|
/* Note that in the INFO() below we need to use oldelf_hdr because we
|
|
haven't cloned the ELF file yet, and source->elf_hdr is not defined. */
|
|
if (source->prelinked) {
|
|
PRINT("%s [%s] is already prelinked at 0x%08lx!\n",
|
|
(source->oldelf_hdr.e_type == ET_EXEC ?
|
|
"Executable" : "Shared library"),
|
|
source->name,
|
|
source->prelink_base);
|
|
/* Force a dry run when the file has already been prelinked */
|
|
source->dry_run = dry_run = 1;
|
|
}
|
|
else {
|
|
INFO("%s [%s] is not prelinked!\n",
|
|
(source->oldelf_hdr.e_type == ET_EXEC ?
|
|
"Executable" : "Shared library"),
|
|
source->name);
|
|
source->dry_run = dry_run;
|
|
}
|
|
#endif/*SUPPORT_ANDROID_PRELINK_TAGS*/
|
|
|
|
/* Get the index of the section-header-strings-table section. */
|
|
FAILIF_LIBELF(elf_getshstrndx (source->oldelf, &source->shstrndx) < 0,
|
|
elf_getshstrndx);
|
|
|
|
FAILIF_LIBELF(elf_getshnum (source->oldelf, (size_t *)&source->shnum) < 0,
|
|
elf_getshnum);
|
|
|
|
/* When we have a dry run, or when ADJUST_ELF is enabled, we use
|
|
source->oldelf for source->elf, because the former is mmapped privately,
|
|
so changes to it have no effect. With ADJUST_ELF, the first run of
|
|
prelink() is a dry run. We will reopen the elf file for write access
|
|
after that dry run, before we call adjust_elf. */
|
|
|
|
source->elf = (ADJUST_ELF || source->dry_run) ?
|
|
source->oldelf : init_elf(source, ADJUST_ELF == 0);
|
|
|
|
FAILIF_LIBELF(0 == gelf_getehdr(source->elf, &source->elf_hdr),
|
|
gelf_getehdr);
|
|
#ifdef DEBUG
|
|
ASSERT(!memcmp(&source->oldelf_hdr,
|
|
&source->elf_hdr,
|
|
sizeof(source->elf_hdr)));
|
|
#endif
|
|
|
|
/* Get the EBL handling. The -g option is currently the only reason
|
|
we need EBL so dont open the backend unless necessary. */
|
|
source->ebl = ebl_openbackend (source->elf);
|
|
FAILIF_LIBELF(NULL == source->ebl, ebl_openbackend);
|
|
#ifdef ARM_SPECIFIC_HACKS
|
|
FAILIF_LIBELF(0 != arm_init(source->elf, source->elf_hdr.e_machine,
|
|
source->ebl, sizeof(Ebl)),
|
|
arm_init);
|
|
#endif/*ARM_SPECIFIC_HACKS*/
|
|
|
|
add_to_sources(source);
|
|
if (do_init_source(source, base) == false) return NULL;
|
|
return source;
|
|
}
|
|
|
|
/* complements do_init_source() */
|
|
static void do_destroy_source(source_t *source)
|
|
{
|
|
int cnt;
|
|
destroy_range_list(source->sorted_sections);
|
|
source->sorted_sections = NULL;
|
|
for (cnt = 0; cnt < source->num_relocation_sections; cnt++) {
|
|
FREEIF(source->unfinished[cnt].rels);
|
|
source->unfinished[cnt].rels = NULL;
|
|
source->unfinished[cnt].num_rels = 0;
|
|
source->unfinished[cnt].rels_size = 0;
|
|
}
|
|
if (source->jmprel.sections != NULL) {
|
|
destroy_range_list(source->jmprel.sections);
|
|
source->jmprel.sections = NULL;
|
|
}
|
|
if (source->rel.sections != NULL) {
|
|
destroy_range_list(source->rel.sections);
|
|
source->rel.sections = NULL;
|
|
}
|
|
FREE(source->unfinished); /* do_init_source() */
|
|
source->unfinished = NULL;
|
|
FREE(source->relocation_sections); /* do_init_source() */
|
|
source->relocation_sections = NULL;
|
|
source->num_relocation_sections = source->relocation_sections_size = 0;
|
|
}
|
|
|
|
static void destroy_source(source_t *source)
|
|
{
|
|
/* Is this a little-endian ELF file? */
|
|
if (source->oldelf != source->elf) {
|
|
/* If it's a dynamic executable, this must not be a dry run. */
|
|
if (!source->dry_run && source->dynamic.scn != NULL)
|
|
{
|
|
FAILIF_LIBELF(elf_update(source->elf, ELF_C_WRITE) == -1,
|
|
elf_update);
|
|
}
|
|
FAILIF_LIBELF(elf_end(source->oldelf), elf_end);
|
|
}
|
|
ebl_closebackend(source->ebl);
|
|
FAILIF_LIBELF(elf_end(source->elf), elf_end);
|
|
FAILIF(close(source->elf_fd) < 0, "Could not close file %s: %s (%d)!\n",
|
|
source->name, strerror(errno), errno);
|
|
FAILIF((source->newelf_fd >= 0) && (close(source->newelf_fd) < 0),
|
|
"Could not close output file: %s (%d)!\n", strerror(errno), errno);
|
|
|
|
#ifdef SUPPORT_ANDROID_PRELINK_TAGS
|
|
if (!source->dry_run) {
|
|
if (source->dynamic.scn != NULL &&
|
|
source->elf_hdr.e_type != ET_EXEC)
|
|
{
|
|
/* For some reason, trying to write directly to source->elf_fd
|
|
causes a "bad file descriptor" error because of something libelf
|
|
does. We just close the file descriptor and open a new one in
|
|
function setup_prelink_info() below. */
|
|
INFO("%s: setting up prelink tag at end of file.\n",
|
|
source->output ? source->output : source->name);
|
|
retouch_encode(-1, source->base);
|
|
retouch_dump(source->output ? source->output : source->name,
|
|
source->elf_hdr.e_ident[EI_DATA] == ELFDATA2LSB,
|
|
retouch_byte_cnt,
|
|
retouch_buf);
|
|
setup_prelink_info(source->output ? source->output : source->name,
|
|
source->elf_hdr.e_ident[EI_DATA] == ELFDATA2LSB,
|
|
source->base);
|
|
}
|
|
else INFO("%s: executable, NOT setting up prelink tag.\n",
|
|
source->name);
|
|
}
|
|
#endif/*SUPPORT_ANDROID_PRELINK_TAGS*/
|
|
|
|
do_destroy_source(source);
|
|
if (retouch_buf != NULL) { free(retouch_buf); retouch_buf = NULL; }
|
|
|
|
if (source->shstrtab_data != NULL)
|
|
FREEIF(source->shstrtab_data->d_buf); /* adjust_elf */
|
|
|
|
FREE(source->lib_deps); /* list of library dependencies (process_file()) */
|
|
FREEIF(source->shdr_info); /* setup_shdr_info() */
|
|
FREEIF(source->phdr_info); /* init_elf() */
|
|
FREE(source->name); /* assigned to by init_source() */
|
|
/* If the output is a directory, in init_elf() we allocate a buffer where
|
|
we copy the directory, a slash, and the file name. Here we free that
|
|
buffer.
|
|
*/
|
|
if (source->output_is_dir > 1) {
|
|
FREE(source->output);
|
|
}
|
|
FREE(source); /* init_source() */
|
|
}
|
|
|
|
static void reinit_source(source_t *source)
|
|
{
|
|
do_destroy_source(source);
|
|
do_init_source(source, source->base);
|
|
|
|
{
|
|
/* We've gathered all the DT_DYNAMIC entries; now we need to figure
|
|
out which relocation sections fit in which range as described by
|
|
the entries. Before we do so, however, we will populate the
|
|
jmprel and rel members of source, as well as their sizes.
|
|
*/
|
|
|
|
size_t dynidx, numdyn;
|
|
GElf_Dyn *dyn, dyn_mem;
|
|
|
|
numdyn = source->dynamic.shdr.sh_size /
|
|
source->dynamic.shdr.sh_entsize;
|
|
|
|
source->rel.idx = source->rel.sz_idx = -1;
|
|
source->jmprel.idx = source->jmprel.sz_idx = -1;
|
|
for (dynidx = 0; dynidx < numdyn; dynidx++) {
|
|
dyn = gelf_getdyn (source->dynamic.data,
|
|
dynidx,
|
|
&dyn_mem);
|
|
FAILIF_LIBELF(NULL == dyn, gelf_getdyn);
|
|
switch (dyn->d_tag)
|
|
{
|
|
case DT_NEEDED:
|
|
break;
|
|
case DT_JMPREL:
|
|
INFO("reinit_source: DT_JMPREL is at index %d, 0x%08llx.\n",
|
|
dynidx, dyn->d_un.d_ptr);
|
|
source->jmprel.idx = dynidx;
|
|
source->jmprel.addr = dyn->d_un.d_ptr;
|
|
break;
|
|
case DT_PLTRELSZ:
|
|
INFO("reinit_source: DT_PLTRELSZ is at index %d, 0x%08llx.\n",
|
|
dynidx, dyn->d_un.d_val);
|
|
source->jmprel.sz_idx = dynidx;
|
|
source->jmprel.size = dyn->d_un.d_val;
|
|
break;
|
|
case DT_REL:
|
|
INFO("reinit_source: DT_REL is at index %d, 0x%08llx.\n",
|
|
dynidx, dyn->d_un.d_ptr);
|
|
source->rel.idx = dynidx;
|
|
source->rel.addr = dyn->d_un.d_ptr;
|
|
break;
|
|
case DT_RELSZ:
|
|
INFO("reinit_source: DT_RELSZ is at index %d, 0x%08llx.\n",
|
|
dynidx, dyn->d_un.d_val);
|
|
source->rel.sz_idx = dynidx;
|
|
source->rel.size = dyn->d_un.d_val;
|
|
break;
|
|
case DT_RELA:
|
|
case DT_RELASZ:
|
|
FAILIF(1, "Can't handle DT_RELA and DT_RELASZ entries!\n");
|
|
break;
|
|
} /* switch */
|
|
} /* for each dynamic entry... */
|
|
}
|
|
}
|
|
|
|
static GElf_Sym *hash_lookup_global_or_weak_symbol(source_t *lib,
|
|
const char *symname,
|
|
GElf_Sym *lib_sym_mem)
|
|
{
|
|
int lib_symidx = hash_lookup(lib->elf,
|
|
lib->hash.data,
|
|
lib->symtab.data,
|
|
lib->strtab.data,
|
|
symname);
|
|
|
|
GElf_Sym sym_mem;
|
|
if (SHN_UNDEF != lib_symidx) {
|
|
/* We found the symbol--now check to see if it is global
|
|
or weak. If this is the case, then the symbol satisfies
|
|
the dependency. */
|
|
GElf_Sym *lib_sym = gelf_getsymshndx(lib->symtab.data,
|
|
NULL,
|
|
lib_symidx,
|
|
&sym_mem,
|
|
NULL);
|
|
FAILIF_LIBELF(NULL == lib_sym, gelf_getsymshndx);
|
|
#if ELF_STRPTR_IS_BROKEN
|
|
ASSERT(!strcmp(
|
|
symname,
|
|
((char *)elf_getdata(elf_getscn(lib->elf,
|
|
lib->symtab.shdr.sh_link),
|
|
NULL)->d_buf) +
|
|
lib_sym->st_name));
|
|
#else
|
|
ASSERT(!strcmp(
|
|
symname,
|
|
elf_strptr(lib->elf, lib->symtab.shdr.sh_link,
|
|
lib_sym->st_name)));
|
|
#endif
|
|
if (lib_sym->st_shndx != SHN_UNDEF &&
|
|
(GELF_ST_BIND(lib_sym->st_info) == STB_GLOBAL ||
|
|
GELF_ST_BIND(lib_sym->st_info) == STB_WEAK)) {
|
|
memcpy(lib_sym_mem, &sym_mem, sizeof(GElf_Sym));
|
|
return lib_sym;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static source_t *lookup_symbol_in_dependencies(source_t *source,
|
|
const char *symname,
|
|
GElf_Sym *found_sym)
|
|
{
|
|
source_t *sym_source = NULL; /* return value */
|
|
|
|
/* This is an undefined symbol. Go over the list of libraries
|
|
and look it up. */
|
|
size_t libidx;
|
|
int found = 0;
|
|
source_t *last_found = NULL;
|
|
for (libidx = 0; libidx < (size_t)source->num_lib_deps; libidx++) {
|
|
source_t *lib = source->lib_deps[libidx];
|
|
if (hash_lookup_global_or_weak_symbol(lib, symname, found_sym) != NULL)
|
|
{
|
|
sym_source = lib;
|
|
if (found) {
|
|
if (found == 1) {
|
|
found++;
|
|
ERROR("ERROR: multiple definitions found for [%s:%s]!\n",
|
|
source->name, symname);
|
|
ERROR("\tthis definition [%s]\n", lib->name);
|
|
}
|
|
ERROR("\tprevious definition [%s]\n", last_found->name);
|
|
}
|
|
last_found = lib;
|
|
if (!found) found = 1;
|
|
}
|
|
}
|
|
|
|
#if ELF_STRPTR_IS_BROKEN
|
|
ASSERT(!sym_source ||
|
|
!strcmp(symname,
|
|
(char *)(elf_getdata(elf_getscn(
|
|
sym_source->elf,
|
|
sym_source->symtab.shdr.sh_link),
|
|
NULL)->d_buf) +
|
|
found_sym->st_name));
|
|
#else
|
|
ASSERT(!sym_source ||
|
|
!strcmp(symname,
|
|
elf_strptr(sym_source->elf,
|
|
sym_source->symtab.shdr.sh_link,
|
|
found_sym->st_name)));
|
|
#endif
|
|
|
|
return sym_source;
|
|
}
|
|
|
|
static int do_prelink(source_t *source,
|
|
Elf_Data *reloc_scn_data,
|
|
int reloc_scn_entry_size,
|
|
unfinished_relocation_t *unfinished,
|
|
int locals_only,
|
|
bool dry_run,
|
|
char **lib_lookup_dirs, int num_lib_lookup_dirs,
|
|
char **default_libs, int num_default_libs,
|
|
int *num_unfinished_relocs)
|
|
{
|
|
int num_relocations = 0;
|
|
|
|
size_t num_rels;
|
|
num_rels = reloc_scn_data->d_size / reloc_scn_entry_size;
|
|
|
|
INFO("\tThere are %d relocations.\n", num_rels);
|
|
|
|
int rel_idx;
|
|
for (rel_idx = 0; rel_idx < (size_t)num_rels; rel_idx++) {
|
|
GElf_Rel *rel, rel_mem;
|
|
|
|
//INFO("\tHandling relocation %d/%d\n", rel_idx, num_rels);
|
|
|
|
rel = gelf_getrel(reloc_scn_data, rel_idx, &rel_mem);
|
|
FAILIF_LIBELF(rel == NULL, gelf_getrel);
|
|
GElf_Sym *sym = NULL, sym_mem;
|
|
unsigned sym_idx = GELF_R_SYM(rel->r_info);
|
|
source_t *sym_source = NULL;
|
|
/* found_sym points to found_sym_mem, when sym_source != NULL, and
|
|
to sym, when the sybmol is locally defined. If the symbol is
|
|
not locally defined and sym_source == NULL, then sym is not
|
|
defined either. */
|
|
GElf_Sym *found_sym = NULL, found_sym_mem;
|
|
const char *symname = NULL;
|
|
int sym_is_local = 1;
|
|
if (sym_idx) {
|
|
sym = gelf_getsymshndx(source->symtab.data,
|
|
NULL,
|
|
sym_idx,
|
|
&sym_mem,
|
|
NULL);
|
|
FAILIF_LIBELF(NULL == sym, gelf_getsymshndx);
|
|
#if ELF_STRPTR_IS_BROKEN
|
|
symname =
|
|
((char *)source->strtab.data->d_buf) +
|
|
sym->st_name;
|
|
#else
|
|
symname = elf_strptr(source->elf,
|
|
elf_ndxscn(source->strtab.scn),
|
|
sym->st_name);
|
|
#endif
|
|
|
|
/* If the symbol is defined and is either not in the BSS
|
|
section, or if it is in the BSS then the relocation is
|
|
not a copy relocation, then the symbol's source is this
|
|
library (i.e., it is locally-defined). Otherwise, the
|
|
symbol is imported.
|
|
*/
|
|
|
|
sym_is_local = 0;
|
|
if (sym->st_shndx != SHN_UNDEF &&
|
|
(source->bss.scn == NULL ||
|
|
sym->st_shndx != elf_ndxscn(source->bss.scn) ||
|
|
#ifdef ARM_SPECIFIC_HACKS
|
|
GELF_R_TYPE(rel->r_info) != R_ARM_COPY
|
|
#else
|
|
1
|
|
#endif
|
|
))
|
|
{
|
|
sym_is_local = 1;
|
|
}
|
|
|
|
if (sym_is_local) {
|
|
INFO("\t\tSymbol [%s:%s] is defined locally.\n",
|
|
source->name,
|
|
symname);
|
|
sym_source = source;
|
|
found_sym = sym;
|
|
}
|
|
else if (!locals_only) {
|
|
sym_source = lookup_symbol_in_dependencies(source,
|
|
symname,
|
|
&found_sym_mem);
|
|
|
|
/* The symbol was not in the list of dependencies, which by
|
|
itself is an error: it means either that the symbol does
|
|
not exist anywhere, or that the library which has the symbol
|
|
has not been listed as a dependency in this library or
|
|
executable. It could also mean (for a library) that the
|
|
symbol is defined in the executable that links agsinst it,
|
|
which is obviously not a good thing. These are bad things,
|
|
but they do happen, which is why we have the ability to
|
|
provide a list of default dependencies, including
|
|
executables. Here we check to see if the symbol has been
|
|
defined in any of them.
|
|
*/
|
|
if (NULL == sym_source) {
|
|
INFO("\t\tChecking default dependencies...\n");
|
|
int i;
|
|
source_t *lib, *old_sym_source = NULL;
|
|
int printed_initial_error = 0;
|
|
for (i = 0; i < num_default_libs; i++) {
|
|
INFO("\tChecking in [%s].\n", default_libs[i]);
|
|
lib = find_source(default_libs[i],
|
|
lib_lookup_dirs,
|
|
num_lib_lookup_dirs);
|
|
FAILIF(NULL == lib,
|
|
"Can't find default library [%s]!\n",
|
|
default_libs[i]);
|
|
if (hash_lookup_global_or_weak_symbol(lib,
|
|
symname,
|
|
&found_sym_mem)) {
|
|
found_sym = &found_sym_mem;
|
|
sym_source = lib;
|
|
#if ELF_STRPTR_IS_BROKEN
|
|
ASSERT(!strcmp(symname,
|
|
(char *)(elf_getdata(
|
|
elf_getscn(
|
|
sym_source->elf,
|
|
sym_source->symtab.
|
|
shdr.sh_link),
|
|
NULL)->d_buf) +
|
|
found_sym->st_name));
|
|
#else
|
|
ASSERT(!strcmp(symname,
|
|
elf_strptr(sym_source->elf,
|
|
sym_source->symtab.shdr.sh_link,
|
|
found_sym->st_name)));
|
|
|
|
#endif
|
|
INFO("\tFound symbol [%s] in [%s]!\n",
|
|
symname, lib->name);
|
|
if (old_sym_source) {
|
|
if (printed_initial_error == 0) {
|
|
printed_initial_error = 1;
|
|
ERROR("Multiple definition of [%s]:\n"
|
|
"\t[%s]\n",
|
|
symname,
|
|
old_sym_source->name);
|
|
}
|
|
ERROR("\t[%s]\n", sym_source->name);
|
|
}
|
|
old_sym_source = sym_source;
|
|
} else {
|
|
INFO("\tCould not find symbol [%s] in default "
|
|
"lib [%s]!\n", symname, lib->name);
|
|
}
|
|
}
|
|
if (sym_source) {
|
|
ERROR("ERROR: Could not find [%s:%s] in dependent "
|
|
"libraries (but found in default [%s])!\n",
|
|
source->name,
|
|
symname,
|
|
sym_source->name);
|
|
}
|
|
} else {
|
|
found_sym = &found_sym_mem;
|
|
/* We found the symbol in a dependency library. */
|
|
INFO("\t\tSymbol [%s:%s, value %lld] is imported from [%s]\n",
|
|
source->name,
|
|
symname,
|
|
found_sym->st_value,
|
|
sym_source->name);
|
|
}
|
|
} /* if symbol is defined in this library... */
|
|
|
|
if (!locals_only) {
|
|
/* If a symbol is weak and we haven't found it, then report
|
|
an error. We really need to find a way to set its value
|
|
to zero. The problem is that it needs to refer to some
|
|
section. */
|
|
|
|
FAILIF(NULL == sym_source &&
|
|
GELF_ST_BIND(sym->st_info) == STB_WEAK,
|
|
"Cannot handle weak symbols yet (%s:%s <- %s).\n",
|
|
source->name,
|
|
symname,
|
|
sym_source->name);
|
|
#ifdef PERMISSIVE
|
|
if (GELF_ST_BIND(sym->st_info) != STB_WEAK &&
|
|
NULL == sym_source) {
|
|
ERROR("ERROR: Can't find symbol [%s:%s] in dependent or "
|
|
"default libraries!\n", source->name, symname);
|
|
}
|
|
#else
|
|
FAILIF(GELF_ST_BIND(sym->st_info) != STB_WEAK &&
|
|
NULL == sym_source,
|
|
"Can't find symbol [%s:%s] in dependent or default "
|
|
"libraries!\n",
|
|
source->name,
|
|
symname);
|
|
#endif
|
|
} /* if (!locals_only) */
|
|
}
|
|
#if 0 // too chatty
|
|
else
|
|
INFO("\t\tno symbol is associated with this relocation\n");
|
|
#endif
|
|
|
|
|
|
// We prelink only local symbols when locals_only == 1.
|
|
|
|
bool can_relocate = true;
|
|
if (!sym_is_local &&
|
|
(symname[0] == 'd' && symname[1] == 'l' && symname[2] != '\0' &&
|
|
(!strcmp(symname + 2, "open") ||
|
|
!strcmp(symname + 2, "close") ||
|
|
!strcmp(symname + 2, "sym") ||
|
|
!strcmp(symname + 2, "error")))) {
|
|
INFO("********* NOT RELOCATING LIBDL SYMBOL [%s]\n", symname);
|
|
can_relocate = false;
|
|
}
|
|
|
|
if (can_relocate && (sym_is_local || !locals_only))
|
|
{
|
|
GElf_Shdr shdr_mem; Elf_Scn *scn; Elf_Data *data;
|
|
find_section(source, rel->r_offset, &scn, &shdr_mem, &data);
|
|
unsigned *dest =
|
|
(unsigned*)(((char *)data->d_buf) +
|
|
(rel->r_offset - shdr_mem.sh_addr));
|
|
unsigned rel_type = GELF_R_TYPE(rel->r_info);
|
|
char buf[64];
|
|
INFO("\t\t%-15s ",
|
|
ebl_reloc_type_name(source->ebl,
|
|
GELF_R_TYPE(rel->r_info),
|
|
buf,
|
|
sizeof(buf)));
|
|
|
|
/* Section-name offsets do not change, so we use oldelf to get the
|
|
strings. This makes a difference in the second pass of the
|
|
perlinker, after the call to adjust_elf, because
|
|
source->shstrndx no longer contains the index of the
|
|
section-header-strings table.
|
|
*/
|
|
const char *sname = elf_strptr(
|
|
source->oldelf, source->shstrndx, shdr_mem.sh_name);
|
|
|
|
switch (rel_type) {
|
|
case R_ARM_JUMP_SLOT:
|
|
case R_ARM_GLOB_DAT:
|
|
case R_ARM_ABS32:
|
|
ASSERT(data->d_buf != NULL);
|
|
ASSERT(data->d_size >= rel->r_offset - shdr_mem.sh_addr);
|
|
#ifdef PERMISSIVE
|
|
if (sym_source == NULL) {
|
|
ERROR("ERROR: Permissive relocation "
|
|
"[%-15s] [%s:%s]: [0x%llx] = ZERO\n",
|
|
ebl_reloc_type_name(source->ebl,
|
|
GELF_R_TYPE(rel->r_info),
|
|
buf,
|
|
sizeof(buf)),
|
|
sname,
|
|
symname,
|
|
rel->r_offset);
|
|
if (!dry_run)
|
|
*dest = 0;
|
|
} else
|
|
#endif
|
|
{
|
|
ASSERT(sym_source);
|
|
INFO("[%s:%s]: [0x%llx] = 0x%llx + 0x%lx\n",
|
|
sname,
|
|
symname,
|
|
rel->r_offset,
|
|
found_sym->st_value,
|
|
sym_source->base);
|
|
if (!dry_run) {
|
|
PRINT("WARNING: Relocation type not supported "
|
|
"for retouching!");
|
|
*dest = found_sym->st_value + sym_source->base;
|
|
}
|
|
}
|
|
num_relocations++;
|
|
break;
|
|
case R_ARM_RELATIVE:
|
|
ASSERT(data->d_buf != NULL);
|
|
ASSERT(data->d_size >= rel->r_offset - shdr_mem.sh_addr);
|
|
FAILIF(sym != NULL,
|
|
"Unsupported RELATIVE form (symbol != 0)...\n");
|
|
INFO("[%s:%s]: [0x%llx] = 0x%x + 0x%lx\n",
|
|
sname,
|
|
symname ?: "(symbol has no name)",
|
|
rel->r_offset, *dest, source->base);
|
|
if (!dry_run) {
|
|
*dest += source->base;
|
|
|
|
/* Output an entry for the ASLR touch-up process. */
|
|
retouch_encode(rel->r_offset
|
|
-shdr_mem.sh_addr
|
|
+shdr_mem.sh_offset,
|
|
*dest);
|
|
}
|
|
num_relocations++;
|
|
break;
|
|
case R_ARM_COPY:
|
|
#ifdef PERMISSIVE
|
|
if (sym_source == NULL) {
|
|
ERROR("ERROR: Permissive relocation "
|
|
"[%-15s] [%s:%s]: NOT PERFORMING\n",
|
|
ebl_reloc_type_name(source->ebl,
|
|
GELF_R_TYPE(rel->r_info),
|
|
buf,
|
|
sizeof(buf)),
|
|
sname,
|
|
symname);
|
|
} else
|
|
#endif
|
|
{
|
|
ASSERT(sym);
|
|
ASSERT(sym_source);
|
|
GElf_Shdr src_shdr_mem;
|
|
Elf_Scn *src_scn;
|
|
Elf_Data *src_data;
|
|
find_section(sym_source, found_sym->st_value,
|
|
&src_scn,
|
|
&src_shdr_mem,
|
|
&src_data);
|
|
INFO("Found [%s:%s (%lld)] in section [%s] .\n",
|
|
sym_source->name,
|
|
symname,
|
|
found_sym->st_value,
|
|
#if ELF_STRPTR_IS_BROKEN
|
|
(((char *)elf_getdata(
|
|
elf_getscn(sym_source->elf,
|
|
sym_source->shstrndx),
|
|
NULL)->d_buf) + src_shdr_mem.sh_name)
|
|
#else
|
|
elf_strptr(sym_source->elf,
|
|
sym_source->shstrndx,
|
|
src_shdr_mem.sh_name)
|
|
#endif
|
|
);
|
|
|
|
unsigned *src = NULL;
|
|
if (src_data->d_buf == NULL)
|
|
{
|
|
#ifdef PERMISSIVE
|
|
if (sym_source->bss.scn == NULL ||
|
|
elf_ndxscn(src_scn) !=
|
|
elf_ndxscn(sym_source->bss.scn)) {
|
|
ERROR("ERROR: Permissive relocation (NULL source "
|
|
"not from .bss) [%-15s] [%s:%s]: "
|
|
"NOT PERFORMING\n",
|
|
ebl_reloc_type_name(source->ebl,
|
|
GELF_R_TYPE(rel->r_info),
|
|
buf,
|
|
sizeof(buf)),
|
|
sname,
|
|
symname);
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
ASSERT(src_data->d_size >=
|
|
found_sym->st_value - src_shdr_mem.sh_addr);
|
|
src = (unsigned*)(((char *)src_data->d_buf) +
|
|
(found_sym->st_value -
|
|
src_shdr_mem.sh_addr));
|
|
}
|
|
ASSERT(symname);
|
|
INFO("[%s:%s]: [0x%llx] <- [0x%llx] size %lld\n",
|
|
sname,
|
|
symname, rel->r_offset,
|
|
found_sym->st_value,
|
|
found_sym->st_size);
|
|
|
|
#ifdef PERMISSIVE
|
|
if (src_data->d_buf != NULL ||
|
|
(sym_source->bss.scn != NULL &&
|
|
elf_ndxscn(src_scn) ==
|
|
elf_ndxscn(sym_source->bss.scn)))
|
|
#endif/*PERMISSIVE*/
|
|
{
|
|
if (data->d_buf == NULL) {
|
|
INFO("Incomplete relocation [%-15s] of [%s:%s].\n",
|
|
ebl_reloc_type_name(source->ebl,
|
|
GELF_R_TYPE(rel->r_info),
|
|
buf,
|
|
sizeof(buf)),
|
|
sname,
|
|
symname);
|
|
FAILIF(unfinished == NULL,
|
|
"You passed unfinished as NULL expecting "
|
|
"to handle all relocations, "
|
|
"but at least one cannot be handled!\n");
|
|
if (unfinished->num_rels == unfinished->rels_size) {
|
|
unfinished->rels_size += 10;
|
|
unfinished->rels = (GElf_Rel *)REALLOC(
|
|
unfinished->rels,
|
|
unfinished->rels_size *
|
|
sizeof(GElf_Rel));
|
|
}
|
|
unfinished->rels[unfinished->num_rels++] = *rel;
|
|
num_relocations--;
|
|
(*num_unfinished_relocs)++;
|
|
}
|
|
else {
|
|
if (src_data->d_buf != NULL)
|
|
{
|
|
ASSERT(data->d_buf != NULL);
|
|
ASSERT(data->d_size >= rel->r_offset -
|
|
shdr_mem.sh_addr);
|
|
if (!dry_run) {
|
|
PRINT("WARNING: Relocation type not supported "
|
|
"for retouching!");
|
|
memcpy(dest, src, found_sym->st_size);
|
|
}
|
|
}
|
|
else {
|
|
ASSERT(src == NULL);
|
|
ASSERT(elf_ndxscn(src_scn) ==
|
|
elf_ndxscn(sym_source->bss.scn));
|
|
if (!dry_run) {
|
|
PRINT("WARNING: Relocation type not supported "
|
|
"for retouching!");
|
|
memset(dest, 0, found_sym->st_size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
num_relocations++;
|
|
}
|
|
break;
|
|
default:
|
|
FAILIF(1, "Unknown relocation type %d!\n", rel_type);
|
|
} // switch
|
|
} // relocate
|
|
else {
|
|
INFO("\t\tNot relocating symbol [%s]%s\n",
|
|
symname,
|
|
(can_relocate ? ", relocating only locals" :
|
|
", which is a libdl symbol"));
|
|
FAILIF(unfinished == NULL,
|
|
"You passed unfinished as NULL expecting to handle all "
|
|
"relocations, but at least one cannot be handled!\n");
|
|
if (unfinished->num_rels == unfinished->rels_size) {
|
|
unfinished->rels_size += 10;
|
|
unfinished->rels = (GElf_Rel *)REALLOC(
|
|
unfinished->rels,
|
|
unfinished->rels_size *
|
|
sizeof(GElf_Rel));
|
|
}
|
|
unfinished->rels[unfinished->num_rels++] = *rel;
|
|
(*num_unfinished_relocs)++;
|
|
}
|
|
} // for each relocation entry
|
|
|
|
return num_relocations;
|
|
}
|
|
|
|
static int prelink(source_t *source,
|
|
int locals_only,
|
|
bool dry_run,
|
|
char **lib_lookup_dirs, int num_lib_lookup_dirs,
|
|
char **default_libs, int num_default_libs,
|
|
int *num_unfinished_relocs)
|
|
{
|
|
INFO("Prelinking [%s] (number of relocation sections: %d)%s...\n",
|
|
source->name, source->num_relocation_sections,
|
|
(dry_run ? " (dry run)" : ""));
|
|
int num_relocations = 0;
|
|
int rel_scn_idx;
|
|
for (rel_scn_idx = 0; rel_scn_idx < source->num_relocation_sections;
|
|
rel_scn_idx++)
|
|
{
|
|
section_info_t *reloc_scn = source->relocation_sections + rel_scn_idx;
|
|
unfinished_relocation_t *unfinished = source->unfinished + rel_scn_idx;
|
|
|
|
/* We haven't modified the shstrtab section, and so shdr->sh_name has
|
|
the same value as before. Thus we look up the name based on the old
|
|
ELF handle. We cannot use shstrndx on the new ELF handle because
|
|
the index of the shstrtab section may have changed (and calling
|
|
elf_getshstrndx() returns the same section index, so libelf can't
|
|
handle thise ither).
|
|
|
|
If reloc_scn->info is available, we can assert that the
|
|
section-name has not changed. If this assertion fails,
|
|
then we cannot use the elf_strptr() trick below to get
|
|
the section name. One solution would be to save it in
|
|
the section_info_t structure.
|
|
*/
|
|
ASSERT(reloc_scn->info == NULL ||
|
|
reloc_scn->shdr.sh_name == reloc_scn->info->old_shdr.sh_name);
|
|
const char *sname =
|
|
elf_strptr(source->oldelf,
|
|
source->shstrndx,
|
|
reloc_scn->shdr.sh_name);
|
|
ASSERT(sname != NULL);
|
|
|
|
INFO("\n\tIterating relocation section [%s]...\n", sname);
|
|
|
|
/* In general, the new size of the section differs from the original
|
|
size of the section, because we can handle some of the relocations.
|
|
This was communicated to adjust_elf, which modified the ELF file
|
|
according to the new section sizes. Now, when prelink() does the
|
|
actual work of prelinking, it needs to know the original size of the
|
|
relocation section so that it can see all of the original relocation
|
|
entries!
|
|
*/
|
|
size_t d_size = reloc_scn->data->d_size;
|
|
if (reloc_scn->info != NULL &&
|
|
reloc_scn->data->d_size != reloc_scn->info->old_shdr.sh_size)
|
|
{
|
|
INFO("Setting size of section [%s] to from new size %d to old "
|
|
"size %lld temporarily (so prelinker can see all "
|
|
"relocations).\n",
|
|
reloc_scn->info->name,
|
|
d_size,
|
|
reloc_scn->info->old_shdr.sh_size);
|
|
reloc_scn->data->d_size = reloc_scn->info->old_shdr.sh_size;
|
|
}
|
|
|
|
num_relocations +=
|
|
do_prelink(source,
|
|
reloc_scn->data, reloc_scn->shdr.sh_entsize,
|
|
unfinished,
|
|
locals_only, dry_run,
|
|
lib_lookup_dirs, num_lib_lookup_dirs,
|
|
default_libs, num_default_libs,
|
|
num_unfinished_relocs);
|
|
|
|
if (reloc_scn->data->d_size != d_size)
|
|
{
|
|
ASSERT(reloc_scn->info != NULL);
|
|
INFO("Resetting size of section [%s] to %d\n",
|
|
reloc_scn->info->name,
|
|
d_size);
|
|
reloc_scn->data->d_size = d_size;
|
|
}
|
|
}
|
|
|
|
/* Now prelink those relocation sections which were fully handled, and
|
|
therefore removed. They are not a part of the
|
|
source->relocation_sections[] array anymore, but we can find them by
|
|
scanning source->shdr_info[] and looking for sections with idx == 0.
|
|
*/
|
|
|
|
if (ADJUST_ELF && source->shdr_info != NULL) {
|
|
/* Walk over the shdr_info[] array to see if we've removed any
|
|
relocation sections. prelink() those sections as well.
|
|
*/
|
|
int i;
|
|
for (i = 0; i < source->shnum; i++) {
|
|
shdr_info_t *info = source->shdr_info + i;
|
|
if (info->idx == 0 &&
|
|
(info->shdr.sh_type == SHT_REL ||
|
|
info->shdr.sh_type == SHT_RELA)) {
|
|
|
|
Elf_Data *data = elf_getdata(info->scn, NULL);
|
|
ASSERT(data->d_size == 0);
|
|
data->d_size = info->old_shdr.sh_size;
|
|
|
|
INFO("\n\tIterating relocation section [%s], which was "
|
|
"discarded (size %d, entry size %lld).\n",
|
|
info->name,
|
|
data->d_size,
|
|
info->old_shdr.sh_entsize);
|
|
|
|
num_relocations +=
|
|
do_prelink(source,
|
|
data, info->old_shdr.sh_entsize,
|
|
NULL, /* the section was fully handled */
|
|
locals_only, dry_run,
|
|
lib_lookup_dirs, num_lib_lookup_dirs,
|
|
default_libs, num_default_libs,
|
|
num_unfinished_relocs);
|
|
|
|
data->d_size = 0;
|
|
}
|
|
}
|
|
}
|
|
return num_relocations;
|
|
}
|
|
|
|
static char * find_file(const char *libname,
|
|
char **lib_lookup_dirs,
|
|
int num_lib_lookup_dirs) {
|
|
if (libname[0] == '/') {
|
|
/* This is an absolute path name--just return it. */
|
|
/* INFO("ABSOLUTE PATH: [%s].\n", libname); */
|
|
return strdup(libname);
|
|
} else {
|
|
/* First try the working directory. */
|
|
int fd;
|
|
if ((fd = open(libname, O_RDONLY)) > 0) {
|
|
close(fd);
|
|
/* INFO("FOUND IN CURRENT DIR: [%s].\n", libname); */
|
|
return strdup(libname);
|
|
} else {
|
|
/* Iterate over all library paths. For each path, append the file
|
|
name and see if there is a file at that place. If that fails,
|
|
bail out. */
|
|
|
|
char *name;
|
|
while (num_lib_lookup_dirs--) {
|
|
size_t lib_len = strlen(*lib_lookup_dirs);
|
|
/* one extra character for the slash, and another for the
|
|
terminating NULL. */
|
|
name = (char *)MALLOC(lib_len + strlen(libname) + 2);
|
|
strcpy(name, *lib_lookup_dirs);
|
|
name[lib_len] = '/';
|
|
strcpy(name + lib_len + 1, libname);
|
|
if ((fd = open(name, O_RDONLY)) > 0) {
|
|
close(fd);
|
|
/* INFO("FOUND: [%s] in [%s].\n", libname, name); */
|
|
return name;
|
|
}
|
|
INFO("NOT FOUND: [%s] in [%s].\n", libname, name);
|
|
free(name);
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void adjust_dynamic_segment_entry_size(source_t *source,
|
|
dt_rel_info_t *dyn)
|
|
{
|
|
/* Update the size entry in the DT_DYNAMIC segment. */
|
|
GElf_Dyn *dyn_entry, dyn_entry_mem;
|
|
dyn_entry = gelf_getdyn(source->dynamic.data,
|
|
dyn->sz_idx,
|
|
&dyn_entry_mem);
|
|
FAILIF_LIBELF(NULL == dyn_entry, gelf_getdyn);
|
|
/* If we are calling this function to adjust the size of the dynamic entry,
|
|
then there should be some unfinished relocations remaining. If there
|
|
are none, then we should remove the entry from the dynamic section
|
|
altogether.
|
|
*/
|
|
ASSERT(dyn->num_unfinished_relocs);
|
|
|
|
size_t relsize = gelf_fsize(source->elf,
|
|
ELF_T_REL,
|
|
1,
|
|
source->elf_hdr.e_version);
|
|
|
|
if (unlikely(verbose_flag)) {
|
|
char buf[64];
|
|
INFO("Updating entry %d: [%-10s], %08llx --> %08x\n",
|
|
dyn->sz_idx,
|
|
ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag,
|
|
buf, sizeof (buf)),
|
|
dyn_entry->d_un.d_val,
|
|
dyn->num_unfinished_relocs * relsize);
|
|
}
|
|
|
|
dyn_entry->d_un.d_val = dyn->num_unfinished_relocs * relsize;
|
|
|
|
FAILIF_LIBELF(!gelf_update_dyn(source->dynamic.data,
|
|
dyn->sz_idx,
|
|
dyn_entry),
|
|
gelf_update_dyn);
|
|
}
|
|
|
|
static void adjust_dynamic_segment_entries(source_t *source)
|
|
{
|
|
/* This function many remove entries from the dynamic segment, but it won't
|
|
resize the relevant section. It'll just fill the remainted with empty
|
|
DT entries.
|
|
|
|
FIXME: This is not guaranteed right now. If a dynamic segment does not
|
|
end with null DT entries, I think this will break.
|
|
*/
|
|
FAILIF(source->rel.processed,
|
|
"More than one section matches DT_REL entry in dynamic segment!\n");
|
|
FAILIF(source->jmprel.processed,
|
|
"More than one section matches DT_JMPREL entry in "
|
|
"dynamic segment!\n");
|
|
source->rel.processed =
|
|
source->jmprel.processed = 1;
|
|
|
|
if (source->rel.num_unfinished_relocs > 0)
|
|
adjust_dynamic_segment_entry_size(source, &source->rel);
|
|
|
|
if (source->jmprel.num_unfinished_relocs > 0)
|
|
adjust_dynamic_segment_entry_size(source, &source->jmprel);
|
|
|
|
/* If at least one of the entries is empty, then we need to remove it. We
|
|
have already adjusted the size of the other.
|
|
*/
|
|
if (source->rel.num_unfinished_relocs == 0 ||
|
|
source->jmprel.num_unfinished_relocs == 0)
|
|
{
|
|
/* We need to delete the DT_REL/DT_RELSZ and DT_PLTREL/DT_PLTRELSZ
|
|
entries from the dynamic segment. */
|
|
|
|
GElf_Dyn *dyn_entry, dyn_entry_mem;
|
|
size_t dynidx, updateidx;
|
|
|
|
size_t numdyn =
|
|
source->dynamic.shdr.sh_size /
|
|
source->dynamic.shdr.sh_entsize;
|
|
|
|
for (updateidx = dynidx = 0; dynidx < numdyn; dynidx++)
|
|
{
|
|
dyn_entry = gelf_getdyn(source->dynamic.data,
|
|
dynidx,
|
|
&dyn_entry_mem);
|
|
FAILIF_LIBELF(NULL == dyn_entry, gelf_getdyn);
|
|
if ((source->rel.num_unfinished_relocs == 0 &&
|
|
(dynidx == source->rel.idx ||
|
|
dynidx == source->rel.sz_idx)) ||
|
|
(source->jmprel.num_unfinished_relocs == 0 &&
|
|
(dynidx == source->jmprel.idx ||
|
|
dynidx == source->jmprel.sz_idx)))
|
|
{
|
|
if (unlikely(verbose_flag)) {
|
|
char buf[64];
|
|
INFO("\t(!)\tRemoving entry %02d: [%-10s], %08llx\n",
|
|
dynidx,
|
|
ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag,
|
|
buf, sizeof (buf)),
|
|
dyn_entry->d_un.d_val);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (unlikely(verbose_flag)) {
|
|
char buf[64];
|
|
INFO("\t\tKeeping entry %02d: [%-10s], %08llx\n",
|
|
dynidx,
|
|
ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag,
|
|
buf, sizeof (buf)),
|
|
dyn_entry->d_un.d_val);
|
|
}
|
|
|
|
gelf_update_dyn(source->dynamic.data,
|
|
updateidx,
|
|
&dyn_entry_mem);
|
|
updateidx++;
|
|
}
|
|
}
|
|
} /* adjust_dynamic_segment_entries */
|
|
|
|
static bool adjust_dynamic_segment_for(source_t *source,
|
|
dt_rel_info_t *dyn,
|
|
bool adjust_section_size_only)
|
|
{
|
|
bool dropped_sections = false;
|
|
|
|
/* Go over the sections that belong to this dynamic range. */
|
|
dyn->num_unfinished_relocs = 0;
|
|
if (dyn->sections) {
|
|
int num_scns, idx;
|
|
range_t *scns = get_sorted_ranges(dyn->sections, &num_scns);
|
|
|
|
INFO("\tdynamic range %s:[%lld, %lld) contains %d sections.\n",
|
|
source->name,
|
|
dyn->addr,
|
|
dyn->addr + dyn->size,
|
|
num_scns);
|
|
|
|
ASSERT(scns);
|
|
int next_idx = 0, next_rel_off = 0;
|
|
/* The total number of unfinished relocations for this dynamic
|
|
* entry. */
|
|
section_info_t *next = (section_info_t *)scns[next_idx].user;
|
|
section_info_t *first = next;
|
|
ASSERT(first);
|
|
for (idx = 0; idx < num_scns; idx++) {
|
|
section_info_t *reloc_scn = (section_info_t *)scns[idx].user;
|
|
size_t rel_scn_idx = reloc_scn - source->relocation_sections;
|
|
ASSERT(rel_scn_idx < (size_t)source->num_relocation_sections);
|
|
unfinished_relocation_t *unfinished =
|
|
&source->unfinished[rel_scn_idx];
|
|
int unf_idx;
|
|
|
|
ASSERT(reloc_scn->info == NULL ||
|
|
reloc_scn->shdr.sh_name ==
|
|
reloc_scn->info->old_shdr.sh_name);
|
|
const char *sname =
|
|
elf_strptr(source->oldelf,
|
|
source->shstrndx,
|
|
reloc_scn->shdr.sh_name);
|
|
|
|
INFO("\tsection [%s] contains %d unfinished relocs.\n",
|
|
sname,
|
|
unfinished->num_rels);
|
|
|
|
for (unf_idx = 0; unf_idx < unfinished->num_rels; unf_idx++)
|
|
{
|
|
/* There are unfinished relocations. Copy them forward to the
|
|
lowest section we can. */
|
|
|
|
while (next_rel_off ==
|
|
(int)(next->shdr.sh_size/next->shdr.sh_entsize))
|
|
{
|
|
INFO("\tsection [%s] has filled up with %d unfinished "
|
|
"relocs.\n",
|
|
sname,
|
|
next_rel_off);
|
|
|
|
next_idx++;
|
|
ASSERT(next_idx <= idx);
|
|
next = (section_info_t *)scns[next_idx].user;
|
|
next_rel_off = 0;
|
|
}
|
|
|
|
if (!adjust_section_size_only) {
|
|
INFO("\t\tmoving unfinished relocation %2d to [%s:%d]\n",
|
|
unf_idx,
|
|
sname,
|
|
next_rel_off);
|
|
FAILIF_LIBELF(0 ==
|
|
gelf_update_rel(next->data,
|
|
next_rel_off,
|
|
&unfinished->rels[unf_idx]),
|
|
gelf_update_rel);
|
|
}
|
|
|
|
next_rel_off++;
|
|
dyn->num_unfinished_relocs++;
|
|
}
|
|
} /* for */
|
|
|
|
/* Set the size of the last section, and mark all subsequent
|
|
sections for removal. At this point, next is the section
|
|
to which we last wrote data, next_rel_off is the offset before
|
|
which we wrote the last relocation, and so next_rel_off *
|
|
relsize is the new size of the section.
|
|
*/
|
|
|
|
bool adjust_file = ADJUST_ELF && source->elf_hdr.e_type != ET_EXEC;
|
|
if (adjust_file && !source->dry_run)
|
|
{
|
|
size_t relsize = gelf_fsize(source->elf,
|
|
ELF_T_REL,
|
|
1,
|
|
source->elf_hdr.e_version);
|
|
|
|
ASSERT(next->info == NULL ||
|
|
next->shdr.sh_name == next->info->old_shdr.sh_name);
|
|
const char *sname =
|
|
elf_strptr(source->oldelf,
|
|
source->shstrndx,
|
|
next->shdr.sh_name);
|
|
|
|
INFO("\tsection [%s] (index %d) has %d unfinished relocs, "
|
|
"changing its size to %ld bytes (from %ld bytes).\n",
|
|
sname,
|
|
elf_ndxscn(next->scn),
|
|
next_rel_off,
|
|
(long)(next_rel_off * relsize),
|
|
(long)(next->shdr.sh_size));
|
|
|
|
/* source->shdr_info[] must be allocated prior to calling this
|
|
function. This is in fact done in process_file(), by calling
|
|
setup_shdr_info() just before we call adjust_dynamic_segment().
|
|
*/
|
|
ASSERT(source->shdr_info != NULL);
|
|
|
|
/* We do not update the data field of shdr_info[], because it does
|
|
not exist yet (with ADJUST_ELF != 0). We create the new section
|
|
and section data after the first call to prelink(). For now, we
|
|
save the results of our analysis by modifying the sh_size field
|
|
of the section header. When we create the new sections' data,
|
|
we set the size of the data from the sh_size fields of the
|
|
section headers.
|
|
|
|
NOTE: The assertion applies only to the first call of
|
|
adjust_dynamic_segment (which calls this function). By
|
|
the second call, we've already created the data for the
|
|
new sections. The only sections for which we haven't
|
|
created data are the relocation sections we are removing.
|
|
*/
|
|
#ifdef DEBUG
|
|
ASSERT((!adjust_section_size_only &&
|
|
(source->shdr_info[elf_ndxscn(next->scn)].idx > 0)) ||
|
|
source->shdr_info[elf_ndxscn(next->scn)].data == NULL);
|
|
#endif
|
|
|
|
//FIXME: what else do we need to do here? Do we need to update
|
|
// another copy of the shdr so that it's picked up when we
|
|
// commit the file?
|
|
next->shdr.sh_size = next_rel_off * relsize;
|
|
source->shdr_info[elf_ndxscn(next->scn)].shdr.sh_size =
|
|
next->shdr.sh_size;
|
|
if (next_rel_off * relsize == 0) {
|
|
#ifdef REMOVE_HANDLED_SECTIONS
|
|
INFO("\tsection [%s] (index %d) is now empty, marking for "
|
|
"removal.\n",
|
|
sname,
|
|
elf_ndxscn(next->scn));
|
|
source->shdr_info[elf_ndxscn(next->scn)].idx = 0;
|
|
dropped_sections = true;
|
|
#endif
|
|
}
|
|
|
|
while (++next_idx < num_scns) {
|
|
next = (section_info_t *)scns[next_idx].user;
|
|
#ifdef REMOVE_HANDLED_SECTIONS
|
|
ASSERT(next->info == NULL ||
|
|
next->shdr.sh_name == next->info->old_shdr.sh_name);
|
|
const char *sname =
|
|
elf_strptr(source->oldelf,
|
|
source->shstrndx,
|
|
next->shdr.sh_name);
|
|
INFO("\tsection [%s] (index %d) is now empty, marking for "
|
|
"removal.\n",
|
|
sname,
|
|
elf_ndxscn(next->scn));
|
|
/* mark for removal */
|
|
source->shdr_info[elf_ndxscn(next->scn)].idx = 0;
|
|
dropped_sections = true;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
} /* if (dyn->sections) */
|
|
else {
|
|
/* The dynamic entry won't have any sections when it itself doesn't
|
|
exist. This could happen when we remove all relocation sections
|
|
from a dynamic entry because we have managed to handle all
|
|
relocations in them.
|
|
*/
|
|
INFO("\tNo section for dynamic entry!\n");
|
|
}
|
|
|
|
return dropped_sections;
|
|
}
|
|
|
|
static bool adjust_dynamic_segment(source_t *source,
|
|
bool adjust_section_size_only)
|
|
{
|
|
bool dropped_section;
|
|
INFO("Adjusting dynamic segment%s.\n",
|
|
(adjust_section_size_only ? " (section sizes only)" : ""));
|
|
INFO("\tadjusting dynamic segment REL.\n");
|
|
dropped_section =
|
|
adjust_dynamic_segment_for(source, &source->rel,
|
|
adjust_section_size_only);
|
|
INFO("\tadjusting dynamic segment JMPREL.\n");
|
|
dropped_section =
|
|
adjust_dynamic_segment_for(source, &source->jmprel,
|
|
adjust_section_size_only) ||
|
|
dropped_section;
|
|
if (!adjust_section_size_only)
|
|
adjust_dynamic_segment_entries(source);
|
|
return dropped_section;
|
|
}
|
|
|
|
static void match_relocation_sections_to_dynamic_ranges(source_t *source)
|
|
{
|
|
/* We've gathered all the DT_DYNAMIC entries; now we need to figure out
|
|
which relocation sections fit in which range as described by the
|
|
entries.
|
|
*/
|
|
|
|
int relidx;
|
|
for (relidx = 0; relidx < source->num_relocation_sections; relidx++) {
|
|
section_info_t *reloc_scn = &source->relocation_sections[relidx];
|
|
|
|
int index = elf_ndxscn(reloc_scn->scn);
|
|
|
|
ASSERT(reloc_scn->info == NULL ||
|
|
reloc_scn->shdr.sh_name == reloc_scn->info->old_shdr.sh_name);
|
|
const char *sname =
|
|
elf_strptr(source->oldelf,
|
|
source->shstrndx,
|
|
reloc_scn->shdr.sh_name);
|
|
|
|
INFO("Checking section [%s], index %d, for match to dynamic ranges\n",
|
|
sname, index);
|
|
if (source->shdr_info == NULL || reloc_scn->info->idx > 0) {
|
|
if (source->rel.addr &&
|
|
source->rel.addr <= reloc_scn->shdr.sh_addr &&
|
|
reloc_scn->shdr.sh_addr < source->rel.addr + source->rel.size)
|
|
{
|
|
/* The entire section must fit in the dynamic range. */
|
|
if((reloc_scn->shdr.sh_addr + reloc_scn->shdr.sh_size) >
|
|
(source->rel.addr + source->rel.size))
|
|
{
|
|
PRINT("WARNING: In [%s], section %s:[%lld,%lld) "
|
|
"is not fully contained in dynamic range "
|
|
"[%lld,%lld)!\n",
|
|
source->name,
|
|
sname,
|
|
reloc_scn->shdr.sh_addr,
|
|
reloc_scn->shdr.sh_addr +
|
|
reloc_scn->shdr.sh_size,
|
|
source->rel.addr,
|
|
source->rel.addr + source->rel.size);
|
|
}
|
|
|
|
if (NULL == source->rel.sections) {
|
|
source->rel.sections = init_range_list();
|
|
ASSERT(source->rel.sections);
|
|
}
|
|
add_unique_range_nosort(source->rel.sections,
|
|
reloc_scn->shdr.sh_addr,
|
|
reloc_scn->shdr.sh_size,
|
|
reloc_scn,
|
|
NULL,
|
|
NULL);
|
|
INFO("\tSection [%s] matches dynamic range REL.\n",
|
|
sname);
|
|
}
|
|
else if (source->jmprel.addr &&
|
|
source->jmprel.addr <= reloc_scn->shdr.sh_addr &&
|
|
reloc_scn->shdr.sh_addr <= source->jmprel.addr +
|
|
source->jmprel.size)
|
|
{
|
|
if((reloc_scn->shdr.sh_addr + reloc_scn->shdr.sh_size) >
|
|
(source->jmprel.addr + source->jmprel.size))
|
|
{
|
|
PRINT("WARNING: In [%s], section %s:[%lld,%lld) "
|
|
"is not fully "
|
|
"contained in dynamic range [%lld,%lld)!\n",
|
|
source->name,
|
|
sname,
|
|
reloc_scn->shdr.sh_addr,
|
|
reloc_scn->shdr.sh_addr +
|
|
reloc_scn->shdr.sh_size,
|
|
source->jmprel.addr,
|
|
source->jmprel.addr + source->jmprel.size);
|
|
}
|
|
|
|
if (NULL == source->jmprel.sections) {
|
|
source->jmprel.sections = init_range_list();
|
|
ASSERT(source->jmprel.sections);
|
|
}
|
|
add_unique_range_nosort(source->jmprel.sections,
|
|
reloc_scn->shdr.sh_addr,
|
|
reloc_scn->shdr.sh_size,
|
|
reloc_scn,
|
|
NULL,
|
|
NULL);
|
|
INFO("\tSection [%s] matches dynamic range JMPREL.\n",
|
|
sname);
|
|
}
|
|
else
|
|
PRINT("WARNING: Relocation section [%s:%s] does not match "
|
|
"any DT_ entry.\n",
|
|
source->name,
|
|
sname);
|
|
}
|
|
else {
|
|
INFO("Section [%s] was removed, not matching it to dynamic "
|
|
"ranges.\n",
|
|
sname);
|
|
}
|
|
} /* for ... */
|
|
|
|
if (source->rel.sections) sort_ranges(source->rel.sections);
|
|
if (source->jmprel.sections) sort_ranges(source->jmprel.sections);
|
|
}
|
|
|
|
static void drop_sections(source_t *source)
|
|
{
|
|
INFO("We are dropping some sections from [%s]--creating section entries "
|
|
"only for remaining sections.\n",
|
|
source->name);
|
|
/* Renumber the sections. The numbers for the sections after those we are
|
|
dropping will be shifted back by the number of dropped sections. */
|
|
int cnt, idx;
|
|
for (cnt = idx = 1; cnt < source->shnum; ++cnt) {
|
|
if (source->shdr_info[cnt].idx > 0) {
|
|
source->shdr_info[cnt].idx = idx++;
|
|
|
|
/* Create a new section. */
|
|
FAILIF_LIBELF((source->shdr_info[cnt].newscn =
|
|
elf_newscn(source->elf)) == NULL, elf_newscn);
|
|
ASSERT(elf_ndxscn (source->shdr_info[cnt].newscn) ==
|
|
source->shdr_info[cnt].idx);
|
|
|
|
/* Copy the section data */
|
|
Elf_Data *olddata =
|
|
elf_getdata(source->shdr_info[cnt].scn, // old section
|
|
NULL);
|
|
FAILIF_LIBELF(NULL == olddata, elf_getdata);
|
|
Elf_Data *data =
|
|
elf_newdata(source->shdr_info[cnt].newscn);
|
|
FAILIF_LIBELF(NULL == data, elf_newdata);
|
|
*data = *olddata;
|
|
#if COPY_SECTION_DATA_BUFFER
|
|
if (olddata->d_buf != NULL) {
|
|
data->d_buf = MALLOC(data->d_size);
|
|
memcpy(data->d_buf, olddata->d_buf, olddata->d_size);
|
|
}
|
|
#endif
|
|
source->shdr_info[cnt].data = data;
|
|
|
|
if (data->d_size !=
|
|
source->shdr_info[cnt].shdr.sh_size) {
|
|
INFO("Trimming new-section data from %d to %lld bytes "
|
|
"(as calculated by adjust_dynamic_segment()).\n",
|
|
data->d_size,
|
|
source->shdr_info[cnt].shdr.sh_size);
|
|
data->d_size =
|
|
source->shdr_info[cnt].shdr.sh_size;
|
|
}
|
|
|
|
INFO("\tsection [%s] (old offset %lld, old size %lld) "
|
|
"will have index %d (was %d), new size %d\n",
|
|
source->shdr_info[cnt].name,
|
|
source->shdr_info[cnt].old_shdr.sh_offset,
|
|
source->shdr_info[cnt].old_shdr.sh_size,
|
|
source->shdr_info[cnt].idx,
|
|
elf_ndxscn(source->shdr_info[cnt].scn),
|
|
data->d_size);
|
|
} else {
|
|
INFO("\tIgnoring section [%s] (offset %lld, size %lld, index %d), "
|
|
"it will be discarded.\n",
|
|
source->shdr_info[cnt].name,
|
|
source->shdr_info[cnt].shdr.sh_offset,
|
|
source->shdr_info[cnt].shdr.sh_size,
|
|
elf_ndxscn(source->shdr_info[cnt].scn));
|
|
}
|
|
|
|
/* NOTE: We mark use_old_shdr_for_relocation_calculations even for the
|
|
sections we are removing. adjust_elf has an assertion that makes
|
|
sure that if the values for the size of a section according to its
|
|
header and its data structure differ, then we are using explicitly
|
|
the old section header for calculations, and that the section in
|
|
question is a relocation section.
|
|
*/
|
|
source->shdr_info[cnt].use_old_shdr_for_relocation_calculations = true;
|
|
} /* for */
|
|
}
|
|
|
|
static source_t* process_file(const char *filename,
|
|
const char *output, int is_file,
|
|
void (*report_library_size_in_memory)(
|
|
const char *name, off_t fsize),
|
|
unsigned (*get_next_link_address)(
|
|
const char *name),
|
|
int locals_only,
|
|
char **lib_lookup_dirs,
|
|
int num_lib_lookup_dirs,
|
|
char **default_libs,
|
|
int num_default_libs,
|
|
int dry_run,
|
|
int *total_num_handled_relocs,
|
|
int *total_num_unhandled_relocs)
|
|
{
|
|
/* Look up the file in the list of already-handles files, which are
|
|
represented by source_t structs. If we do not find the file, then we
|
|
haven't prelinked it yet. If we find it, then we have, so we do
|
|
nothing. Keep in mind that apriori operates on an entire collection
|
|
of files, and if application A used library L, and so does application
|
|
B, if we process A first, then by the time we get to B we will have
|
|
prelinked L already; that's why we check first to see if a library has
|
|
been prelinked.
|
|
*/
|
|
source_t *source =
|
|
find_source(filename, lib_lookup_dirs, num_lib_lookup_dirs);
|
|
if (NULL == source) {
|
|
/* If we could not find the source, then it hasn't been processed yet,
|
|
so we go ahead and process it! */
|
|
INFO("Processing [%s].\n", filename);
|
|
char *full = find_file(filename, lib_lookup_dirs, num_lib_lookup_dirs);
|
|
FAILIF(NULL == full,
|
|
"Could not find [%s] in the current directory or in any of "
|
|
"the search paths!\n", filename);
|
|
|
|
unsigned base = get_next_link_address(full);
|
|
|
|
source = init_source(full, output, is_file, base, dry_run);
|
|
|
|
if (source == NULL) {
|
|
INFO("File [%s] is a static executable.\n", filename);
|
|
return NULL;
|
|
}
|
|
ASSERT(source->dynamic.scn != NULL);
|
|
|
|
/* We need to increment the next prelink address only when the file we
|
|
are currently handing is a shared library. Executables do not need
|
|
to be prelinked at a different address, they are always at address
|
|
zero.
|
|
|
|
Also, if we are prelinking locals only, then we are handling a
|
|
single file per invokation of apriori, so there is no need to
|
|
increment the prelink address unless there is a global prelink map,
|
|
in which case we do need to check to see if the library isn't
|
|
running into its neighbouts in the prelink map.
|
|
*/
|
|
if (source->oldelf_hdr.e_type != ET_EXEC &&
|
|
(!locals_only ||
|
|
report_library_size_in_memory ==
|
|
pm_report_library_size_in_memory)) {
|
|
/* This sets the next link address only if an increment was not
|
|
specified by the user. If an address increment was specified,
|
|
then we just check to make sure that the file size is less than
|
|
the increment.
|
|
|
|
NOTE: The file size is the absolute highest number of bytes that
|
|
the file may occupy in memory, if the entire file is loaded, but
|
|
this is almost next the case. A file will often have sections
|
|
which are not loaded, which could add a lot of size. That's why
|
|
we start off with the file size and then subtract the size of
|
|
the biggest sections that will not get loaded, which are the
|
|
varios DWARF sections, all of which of which are named starting
|
|
with ".debug_".
|
|
|
|
We could do better than this (by caculating exactly how many
|
|
bytes from that file will be loaded), but that's an overkill.
|
|
Unless the prelink-address increment becomes too small, the file
|
|
size after subtracting the sizes of the DWARF section will be a
|
|
good-enough upper bound.
|
|
*/
|
|
|
|
unsigned long fsize = source->elf_file_info.st_size;
|
|
INFO("Calculating loadable file size for next link address. "
|
|
"Starting with %ld.\n", fsize);
|
|
if (true) {
|
|
Elf_Scn *scn = NULL;
|
|
GElf_Shdr shdr_mem, *shdr;
|
|
const char *scn_name;
|
|
while ((scn = elf_nextscn (source->oldelf, scn)) != NULL) {
|
|
shdr = gelf_getshdr(scn, &shdr_mem);
|
|
FAILIF_LIBELF(NULL == shdr, gelf_getshdr);
|
|
scn_name = elf_strptr (source->oldelf,
|
|
source->shstrndx, shdr->sh_name);
|
|
ASSERT(scn_name != NULL);
|
|
|
|
if (!(shdr->sh_flags & SHF_ALLOC)) {
|
|
INFO("\tDecrementing by %lld on account of section "
|
|
"[%s].\n",
|
|
shdr->sh_size,
|
|
scn_name);
|
|
fsize -= shdr->sh_size;
|
|
}
|
|
}
|
|
}
|
|
INFO("Done calculating loadable file size for next link address: "
|
|
"Final value is %ld.\n", fsize);
|
|
report_library_size_in_memory(source->name, fsize);
|
|
}
|
|
|
|
/* Identify the dynamic segment and process it. Specifically, we find
|
|
out what dependencies, if any, this file has. Whenever we encounter
|
|
such a dependency, we process it recursively; we find out where the
|
|
various relocation information sections are stored. */
|
|
|
|
size_t dynidx;
|
|
GElf_Dyn *dyn, dyn_mem;
|
|
size_t numdyn =
|
|
source->dynamic.shdr.sh_size /
|
|
source->dynamic.shdr.sh_entsize;
|
|
ASSERT(source->dynamic.shdr.sh_size == source->dynamic.data->d_size);
|
|
|
|
source->rel.idx = source->rel.sz_idx = -1;
|
|
source->jmprel.idx = source->jmprel.sz_idx = -1;
|
|
|
|
for (dynidx = 0; dynidx < numdyn; dynidx++) {
|
|
dyn = gelf_getdyn (source->dynamic.data,
|
|
dynidx,
|
|
&dyn_mem);
|
|
FAILIF_LIBELF(NULL == dyn, gelf_getdyn);
|
|
/* When we are processing only the local relocations in a file,
|
|
we don't need to handle any of the dependencies. It won't
|
|
hurt if we do, but we will be doing unnecessary work.
|
|
*/
|
|
switch (dyn->d_tag)
|
|
{
|
|
case DT_NEEDED:
|
|
if (!locals_only) {
|
|
/* Process the needed library recursively.
|
|
*/
|
|
const char *dep_lib =
|
|
#if ELF_STRPTR_IS_BROKEN
|
|
(((char *)elf_getdata(
|
|
elf_getscn(source->elf,
|
|
source->dynamic.shdr.sh_link),
|
|
NULL)->d_buf) + dyn->d_un.d_val);
|
|
#else
|
|
elf_strptr (source->elf,
|
|
source->dynamic.shdr.sh_link,
|
|
dyn->d_un.d_val);
|
|
#endif
|
|
ASSERT(dep_lib != NULL);
|
|
INFO("[%s] depends on [%s].\n", filename, dep_lib);
|
|
ASSERT(output == NULL || is_file == 0);
|
|
source_t *dep = process_file(dep_lib,
|
|
output, is_file,
|
|
report_library_size_in_memory,
|
|
get_next_link_address,
|
|
locals_only,
|
|
lib_lookup_dirs,
|
|
num_lib_lookup_dirs,
|
|
default_libs,
|
|
num_default_libs,
|
|
dry_run,
|
|
total_num_handled_relocs,
|
|
total_num_unhandled_relocs);
|
|
|
|
/* Add the library to the dependency list. */
|
|
if (source->num_lib_deps == source->lib_deps_size) {
|
|
source->lib_deps_size += 10;
|
|
source->lib_deps = REALLOC(source->lib_deps,
|
|
source->lib_deps_size *
|
|
sizeof(source_t *));
|
|
}
|
|
source->lib_deps[source->num_lib_deps++] = dep;
|
|
}
|
|
break;
|
|
case DT_JMPREL:
|
|
source->jmprel.idx = dynidx;
|
|
source->jmprel.addr = dyn->d_un.d_ptr;
|
|
break;
|
|
case DT_PLTRELSZ:
|
|
source->jmprel.sz_idx = dynidx;
|
|
source->jmprel.size = dyn->d_un.d_val;
|
|
break;
|
|
case DT_REL:
|
|
source->rel.idx = dynidx;
|
|
source->rel.addr = dyn->d_un.d_ptr;
|
|
break;
|
|
case DT_RELSZ:
|
|
source->rel.sz_idx = dynidx;
|
|
source->rel.size = dyn->d_un.d_val;
|
|
break;
|
|
case DT_RELA:
|
|
case DT_RELASZ:
|
|
FAILIF(1, "Can't handle DT_RELA and DT_RELASZ entries!\n");
|
|
break;
|
|
} /* switch */
|
|
} /* for each dynamic entry... */
|
|
|
|
INFO("Handling [%s].\n", filename);
|
|
|
|
#ifdef SUPPORT_ANDROID_PRELINK_TAGS
|
|
if (!source->prelinked)
|
|
#endif
|
|
{
|
|
/* When ADJUST_ELF is defined, this call to prelink is a dry run
|
|
intended to calculate the number of relocations that could not
|
|
be handled. This, in turn, allows us to calculate the amount by
|
|
which we can shrink the various relocation sections before we
|
|
call adjust_elf. After we've adjusted the sections, we will
|
|
call prelink() one more time to do the actual work.
|
|
|
|
NOTE: Even when ADJUST_ELF != 0, we cannot adjust an ELF file
|
|
that is an executabe, because an executable is not PIC.
|
|
*/
|
|
|
|
int num_unfinished_relocs = 0;
|
|
bool adjust_file = ADJUST_ELF && source->elf_hdr.e_type != ET_EXEC;
|
|
INFO("\n\n\tPRELINKING %s\n\n",
|
|
adjust_file ?
|
|
"(CALCULATE NUMBER OF HANDLED RELOCATIONS)" :
|
|
"(ACTUAL)");
|
|
int num_relocs = prelink(source, locals_only,
|
|
adjust_file || dry_run,
|
|
lib_lookup_dirs, num_lib_lookup_dirs,
|
|
default_libs, num_default_libs,
|
|
&num_unfinished_relocs);
|
|
INFO("[%s]: (calculate changes) handled %d, could not handle %d "
|
|
"relocations.\n",
|
|
source->name,
|
|
num_relocs,
|
|
num_unfinished_relocs);
|
|
|
|
if (adjust_file && !dry_run)
|
|
{
|
|
/* Find out the new section sizes of the relocation sections,
|
|
but do not move any relocations around, because adjust_elf
|
|
needs to know about all relocations in order to adjust the
|
|
file correctly.
|
|
*/
|
|
match_relocation_sections_to_dynamic_ranges(source);
|
|
|
|
/* We haven't set up source->shdr_info[] yet, so we do it now.
|
|
|
|
NOTE: setup_shdr_info() depends only on source->oldelf, not
|
|
on source->elf! source->elf is not even defined yet. We
|
|
initialize source->shdr_info[] based on the section
|
|
information of the unmodified ELF file, and then make our
|
|
modifications in the call to adjust_dynamic_segment() based
|
|
on this information. adjust_dynamic_segment() will
|
|
rearrange the unhandled relocations in the beginning of
|
|
their relocation sections, and adjust the size of those
|
|
relocation sections. In the case when a relocation section
|
|
is completely handled, adjust_dynamic_segment() will mark it
|
|
for removal by function adjust_elf.
|
|
*/
|
|
|
|
ASSERT(source->elf == source->oldelf);
|
|
ASSERT(source->shdr_info == NULL);
|
|
setup_shdr_info(source);
|
|
ASSERT(source->shdr_info != NULL);
|
|
|
|
INFO("\n\n\tADJUSTING DYNAMIC SEGMENT "
|
|
"(CALCULATE CHANGES)\n\n");
|
|
bool drop_some_sections = adjust_dynamic_segment(source, true);
|
|
|
|
/* Reopen the elf file! Note that we are not doing a dry run
|
|
(the if statement above makes sure of that.)
|
|
|
|
NOTE: We call init_elf() after we called
|
|
adjust_dynamic_segment() in order to have
|
|
adjust_dynamic_segment() refer to source->oldelf when
|
|
it refers to source->elf. Since
|
|
adjust_dynamic_segment doesn't actually write to the
|
|
ELF file, this is OK. adjust_dynamic_segment()
|
|
updates the sh_size fields of saved section headers
|
|
and optionally marks sections for removal.
|
|
|
|
Having adjust_dynamic_segment() refer to
|
|
source->oldelf means that we'll have access to
|
|
section-name strings so we can print them out in our
|
|
logging and debug output.
|
|
*/
|
|
source->elf = init_elf(source, false);
|
|
|
|
/* This is the same code as in init_source() after the call to
|
|
* init_elf(). */
|
|
ASSERT(source->elf != source->oldelf);
|
|
ebl_closebackend(source->ebl);
|
|
source->ebl = ebl_openbackend (source->elf);
|
|
FAILIF_LIBELF(NULL == source->ebl, ebl_openbackend);
|
|
#ifdef ARM_SPECIFIC_HACKS
|
|
FAILIF_LIBELF(0 != arm_init(source->elf,
|
|
source->elf_hdr.e_machine,
|
|
source->ebl, sizeof(Ebl)),
|
|
arm_init);
|
|
#endif/*ARM_SPECIFIC_HACKS*/
|
|
|
|
if (drop_some_sections)
|
|
drop_sections(source);
|
|
else {
|
|
INFO("All sections remain in [%s]--we are changing at "
|
|
"most section sizes.\n", source->name);
|
|
create_elf_sections(source, NULL);
|
|
int cnt, idx;
|
|
for (cnt = idx = 1; cnt < source->shnum; ++cnt) {
|
|
Elf_Data *data = elf_getdata(
|
|
source->shdr_info[cnt].newscn, // new section
|
|
NULL);
|
|
if (data->d_size !=
|
|
source->shdr_info[cnt].shdr.sh_size) {
|
|
INFO("Trimming new-section data from %d to %lld "
|
|
"bytes (as calculated by "
|
|
"adjust_dynamic_segment()).\n",
|
|
data->d_size,
|
|
source->shdr_info[cnt].shdr.sh_size);
|
|
data->d_size = source->shdr_info[cnt].shdr.sh_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Shrink it! */
|
|
INFO("\n\n\tADJUSTING ELF\n\n");
|
|
adjust_elf(
|
|
source->oldelf, source->name,
|
|
source->elf, source->name,
|
|
source->ebl,
|
|
&source->old_ehdr_mem,
|
|
NULL, 0, // no symbol filter
|
|
source->shdr_info, // information on how to adjust the ELF
|
|
source->shnum, // length of source->shdr_info[]
|
|
source->phdr_info, // program-header info
|
|
source->shnum, // irrelevant--we're not rebuilding shstrtab
|
|
source->shnum, // number of sections in file
|
|
source->shstrndx, // index of shstrtab (both in
|
|
// shdr_info[] and as a section index)
|
|
NULL, // irrelevant, since we are not rebuilding shstrtab
|
|
drop_some_sections, // some sections are being dropped
|
|
elf_ndxscn(source->dynamic.scn), // index of .dynamic
|
|
elf_ndxscn(source->symtab.scn), // index of .dynsym
|
|
1, // allow shady business
|
|
&source->shstrtab_data,
|
|
true,
|
|
false); // do not rebuild shstrtab
|
|
|
|
INFO("\n\n\tREINITIALIZING STRUCTURES "
|
|
"(TO CONTAIN ADJUSTMENTS)\n\n");
|
|
reinit_source(source);
|
|
|
|
INFO("\n\n\tPRELINKING (ACTUAL)\n\n");
|
|
#ifdef DEBUG
|
|
int old_num_unfinished_relocs = num_unfinished_relocs;
|
|
#endif
|
|
num_unfinished_relocs = 0;
|
|
#ifdef DEBUG
|
|
int num_relocs_take_two =
|
|
#endif
|
|
prelink(source, locals_only,
|
|
false, /* not a dry run */
|
|
lib_lookup_dirs, num_lib_lookup_dirs,
|
|
default_libs, num_default_libs,
|
|
&num_unfinished_relocs);
|
|
|
|
/* The numbers for the total number of relocations and the
|
|
number of unhandled relocations between the first and second
|
|
invokationof prelink() must be the same! The first time we
|
|
ran prelink() just to calculate the numbers so that we could
|
|
calculate the adjustments to pass to adjust_elf, and the
|
|
second time we actually carry out the prelinking; the
|
|
numbers must stay the same!
|
|
*/
|
|
ASSERT(num_relocs == num_relocs_take_two);
|
|
ASSERT(old_num_unfinished_relocs == num_unfinished_relocs);
|
|
|
|
INFO("[%s]: (actual prelink) handled %d, could not "
|
|
"handle %d relocations.\n",
|
|
source->name,
|
|
num_relocs,
|
|
num_unfinished_relocs);
|
|
} /* if (adjust_elf && !dry_run) */
|
|
|
|
*total_num_handled_relocs += num_relocs;
|
|
*total_num_unhandled_relocs += num_unfinished_relocs;
|
|
|
|
if(num_unfinished_relocs != 0 &&
|
|
source->elf_hdr.e_type != ET_EXEC &&
|
|
!locals_only)
|
|
{
|
|
/* One reason you could have unfinished relocations in an
|
|
executable file is if this file used dlopen() and friends.
|
|
We do not adjust relocation entries to those symbols,
|
|
because libdl is a dummy only--the real functions are
|
|
provided for by the dynamic linker itsef.
|
|
|
|
NOTE FIXME HACK: This is specific to the Android dynamic
|
|
linker, and may not be true in other cases.
|
|
*/
|
|
PRINT("WARNING: Expecting to have unhandled relocations only "
|
|
"for executables (%s is not an executable)!\n",
|
|
source->name);
|
|
}
|
|
|
|
match_relocation_sections_to_dynamic_ranges(source);
|
|
|
|
/* Now, for each relocation section, check to see if its address
|
|
matches one of the DT_DYNAMIC relocation pointers. If so, then
|
|
if the section has no unhandled relocations, simply set the
|
|
associated DT_DYNAMIC entry's size to zero. If the section does
|
|
have unhandled entries, then lump them all together at the front
|
|
of the respective section and update the size of the respective
|
|
DT_DYNAMIC entry to the new size of the section. A better
|
|
approach would be do delete a relocation section if it has been
|
|
fully relocated and to remove its entry from the DT_DYNAMIC
|
|
array, and for relocation entries that still have some
|
|
relocations in them, we should shrink the section if that won't
|
|
violate relative offsets. This is more work, however, and for
|
|
the speed improvement we expect from a prelinker, just patching
|
|
up DT_DYNAMIC will suffice.
|
|
|
|
Note: adjust_dynamic_segment() will modify source->shdr_info[]
|
|
to denote any change in a relocation section's size. This
|
|
will be picked up by adjust_elf, which will rearrange the
|
|
file to eliminate the gap created by the decrease in size
|
|
of the relocation section. We do not need to do this, but
|
|
the relocation section could be large, and reduced
|
|
drastically by the prelinking process, so it pays to
|
|
adjust the file.
|
|
*/
|
|
|
|
INFO("\n\n\tADJUSTING DYNAMIC SEGMENT (ACTUAL)\n\n");
|
|
adjust_dynamic_segment(source, false);
|
|
}
|
|
#ifdef SUPPORT_ANDROID_PRELINK_TAGS
|
|
else INFO("[%s] is already prelinked at 0x%08lx.\n",
|
|
filename,
|
|
source->prelink_base);
|
|
#endif
|
|
} else INFO("[%s] has been processed already.\n", filename);
|
|
|
|
return source;
|
|
}
|
|
|
|
void apriori(char **execs, int num_execs,
|
|
char *output,
|
|
void (*report_library_size_in_memory)(
|
|
const char *name, off_t fsize),
|
|
int (*get_next_link_address)(const char *name),
|
|
int locals_only,
|
|
int dry_run,
|
|
char **lib_lookup_dirs, int num_lib_lookup_dirs,
|
|
char **default_libs, int num_default_libs,
|
|
char *mapfile)
|
|
{
|
|
source_t *source; /* for general usage */
|
|
int input_idx;
|
|
|
|
ASSERT(report_library_size_in_memory != NULL);
|
|
ASSERT(get_next_link_address != NULL);
|
|
|
|
/* Process and prelink each executable and object file. Function
|
|
process_file() is called for each executable in the loop below.
|
|
It calls itself recursively for each library. We prelink each library
|
|
after prelinking its dependencies. */
|
|
int total_num_handled_relocs = 0, total_num_unhandled_relocs = 0;
|
|
for (input_idx = 0; input_idx < num_execs; input_idx++) {
|
|
INFO("executable: [%s]\n", execs[input_idx]);
|
|
/* Here process_file() is actually processing the top-level
|
|
executable files. */
|
|
process_file(execs[input_idx], output, num_execs == 1,
|
|
report_library_size_in_memory,
|
|
get_next_link_address, /* executables get a link address
|
|
of zero, regardless of this
|
|
value */
|
|
locals_only,
|
|
lib_lookup_dirs, num_lib_lookup_dirs,
|
|
default_libs, num_default_libs,
|
|
dry_run,
|
|
&total_num_handled_relocs,
|
|
&total_num_unhandled_relocs);
|
|
/* if source is NULL, then the respective executable is static */
|
|
/* Mark the source as an executable */
|
|
} /* for each input executable... */
|
|
|
|
PRINT("Handled %d relocations.\n", total_num_handled_relocs);
|
|
PRINT("Could not handle %d relocations.\n", total_num_unhandled_relocs);
|
|
|
|
/* We are done! Since the end result of our calculations is a set of
|
|
symbols for each library that other libraries or executables link
|
|
against, we iterate over the set of libraries one last time, and for
|
|
each symbol that is marked as satisfying some dependence, we emit
|
|
a line with the symbol's name to a text file derived from the library's
|
|
name by appending the suffix .syms to it. */
|
|
|
|
if (mapfile != NULL) {
|
|
const char *mapfile_name = mapfile;
|
|
FILE *fp;
|
|
if (*mapfile == '+') {
|
|
mapfile_name = mapfile + 1;
|
|
INFO("Opening map file %s for append/write.\n",
|
|
mapfile_name);
|
|
fp = fopen(mapfile_name, "a");
|
|
}
|
|
else fp = fopen(mapfile_name, "w");
|
|
|
|
FAILIF(fp == NULL, "Cannot open file [%s]: %s (%d)!\n",
|
|
mapfile_name,
|
|
strerror(errno),
|
|
errno);
|
|
source = sources;
|
|
while (source) {
|
|
/* If it's a library, print the results. */
|
|
if (source->elf_hdr.e_type == ET_DYN) {
|
|
/* Add to the memory map file. */
|
|
fprintf(fp, "%s 0x%08lx %lld\n",
|
|
basename(source->name),
|
|
source->base,
|
|
source->elf_file_info.st_size);
|
|
}
|
|
source = source->next;
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
/* Free the resources--you can't do it in the loop above because function
|
|
print_symbol_references() accesses nodes other than the one being
|
|
iterated over.
|
|
*/
|
|
source = sources;
|
|
while (source) {
|
|
source_t *old = source;
|
|
source = source->next;
|
|
/* Destroy the evidence. */
|
|
destroy_source(old);
|
|
}
|
|
}
|