platform_build_blueprint/parser/ast.go

885 lines
21 KiB
Go
Raw Normal View History

// Copyright 2016 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package parser
import (
"fmt"
"os"
"strings"
"text/scanner"
)
type Node interface {
// Pos returns the position of the first token in the Node
Pos() scanner.Position
// End returns the position of the character after the last token in the Node
End() scanner.Position
}
// Definition is an Assignment or a Module at the top level of a Blueprints file
type Definition interface {
Node
String() string
definitionTag()
}
// An Assignment is a variable assignment at the top level of a Blueprints file, scoped to the
// file and subdirs.
type Assignment struct {
Name string
NamePos scanner.Position
Value Expression
EqualsPos scanner.Position
Assigner string
Referenced bool
}
func (a *Assignment) String() string {
return fmt.Sprintf("%s@%s %s %s %t", a.Name, a.EqualsPos, a.Assigner, a.Value, a.Referenced)
}
func (a *Assignment) Pos() scanner.Position { return a.NamePos }
func (a *Assignment) End() scanner.Position { return a.Value.End() }
func (a *Assignment) definitionTag() {}
// A Module is a module definition at the top level of a Blueprints file
type Module struct {
Type string
TypePos scanner.Position
Map
//TODO(delmerico) make this a private field once ag/21588220 lands
Name__internal_only *string
}
func (m *Module) Copy() *Module {
ret := *m
ret.Properties = make([]*Property, len(m.Properties))
for i := range m.Properties {
ret.Properties[i] = m.Properties[i].Copy()
}
return &ret
}
func (m *Module) String() string {
propertyStrings := make([]string, len(m.Properties))
for i, property := range m.Properties {
propertyStrings[i] = property.String()
}
return fmt.Sprintf("%s@%s-%s{%s}", m.Type,
m.LBracePos, m.RBracePos,
strings.Join(propertyStrings, ", "))
}
func (m *Module) definitionTag() {}
func (m *Module) Pos() scanner.Position { return m.TypePos }
func (m *Module) End() scanner.Position { return m.Map.End() }
func (m *Module) Name() string {
if m.Name__internal_only != nil {
return *m.Name__internal_only
}
for _, prop := range m.Properties {
if prop.Name == "name" {
if stringProp, ok := prop.Value.(*String); ok {
name := stringProp.Value
m.Name__internal_only = &name
} else {
name := prop.Value.String()
m.Name__internal_only = &name
}
}
}
if m.Name__internal_only == nil {
name := ""
m.Name__internal_only = &name
}
return *m.Name__internal_only
}
// A Property is a name: value pair within a Map, which may be a top level Module.
type Property struct {
Name string
NamePos scanner.Position
ColonPos scanner.Position
Value Expression
}
func (p *Property) Copy() *Property {
ret := *p
ret.Value = p.Value.Copy()
return &ret
}
func (p *Property) String() string {
return fmt.Sprintf("%s@%s: %s", p.Name, p.ColonPos, p.Value)
}
func (p *Property) Pos() scanner.Position { return p.NamePos }
func (p *Property) End() scanner.Position { return p.Value.End() }
// An Expression is a Value in a Property or Assignment. It can be a literal (String or Bool), a
// Map, a List, an Operator that combines two expressions of the same type, or a Variable that
// references and Assignment.
type Expression interface {
Node
// Copy returns a copy of the Expression that will not affect the original if mutated
Copy() Expression
String() string
// Type returns the underlying Type enum of the Expression if it were to be evaluated, if it's known.
// It's possible that the type isn't known, such as when a select statement with a late-bound variable
// is used. For that reason, Type() is mostly for use in error messages, not to make logic decisions
// off of.
Type() Type
// Eval returns an expression that is fully evaluated to a simple type (List, Map, String,
// Bool, or Select). It will return the origional expression if possible, or allocate a
// new one if modifications were necessary.
Eval(scope *Scope) (Expression, error)
// PrintfInto will substitute any %s's in string literals in the AST with the provided
// value. It will modify the AST in-place. This is used to implement soong config value
// variables, but should be removed when those have switched to selects.
PrintfInto(value string) error
}
// ExpressionsAreSame tells whether the two values are the same Expression.
// This includes the symbolic representation of each Expression but not their positions in the original source tree.
// This does not apply any simplification to the expressions before comparing them
// (for example, "!!a" wouldn't be deemed equal to "a")
func ExpressionsAreSame(a Expression, b Expression) (equal bool, err error) {
return hackyExpressionsAreSame(a, b)
}
// TODO(jeffrygaston) once positions are removed from Expression structs,
// remove this function and have callers use reflect.DeepEqual(a, b)
func hackyExpressionsAreSame(a Expression, b Expression) (equal bool, err error) {
left, err := hackyFingerprint(a)
if err != nil {
return false, nil
}
right, err := hackyFingerprint(b)
if err != nil {
return false, nil
}
areEqual := string(left) == string(right)
return areEqual, nil
}
func hackyFingerprint(expression Expression) (fingerprint []byte, err error) {
assignment := &Assignment{"a", noPos, expression, noPos, "=", false}
module := &File{}
module.Defs = append(module.Defs, assignment)
p := newPrinter(module)
return p.Print()
}
type Type int
const (
UnknownType Type = iota
BoolType
StringType
Int64Type
ListType
MapType
UnsetType
)
func (t Type) String() string {
switch t {
case UnknownType:
return "unknown"
case BoolType:
return "bool"
case StringType:
return "string"
case Int64Type:
return "int64"
case ListType:
return "list"
case MapType:
return "map"
case UnsetType:
return "unset"
default:
panic(fmt.Sprintf("Unknown type %d", t))
}
}
type Operator struct {
Args [2]Expression
Operator rune
OperatorPos scanner.Position
}
func (x *Operator) Copy() Expression {
ret := *x
ret.Args[0] = x.Args[0].Copy()
ret.Args[1] = x.Args[1].Copy()
return &ret
}
func (x *Operator) Type() Type {
t1 := x.Args[0].Type()
t2 := x.Args[1].Type()
if t1 == UnknownType {
return t2
}
if t2 == UnknownType {
return t1
}
if t1 != t2 {
return UnknownType
}
return t1
}
func (x *Operator) Eval(scope *Scope) (Expression, error) {
return evaluateOperator(scope, x.Operator, x.Args[0], x.Args[1])
}
func evaluateOperator(scope *Scope, operator rune, left, right Expression) (Expression, error) {
if operator != '+' {
return nil, fmt.Errorf("unknown operator %c", operator)
}
l, err := left.Eval(scope)
if err != nil {
return nil, err
}
r, err := right.Eval(scope)
if err != nil {
return nil, err
}
if _, ok := l.(*Select); !ok {
if _, ok := r.(*Select); ok {
// Promote l to a select so we can add r to it
l = &Select{
Cases: []*SelectCase{{
Value: l,
}},
}
}
}
l = l.Copy()
switch v := l.(type) {
case *String:
if _, ok := r.(*String); !ok {
fmt.Fprintf(os.Stderr, "not ok")
}
v.Value += r.(*String).Value
case *Int64:
v.Value += r.(*Int64).Value
v.Token = ""
case *List:
v.Values = append(v.Values, r.(*List).Values...)
case *Map:
var err error
v.Properties, err = addMaps(scope, v.Properties, r.(*Map).Properties)
if err != nil {
return nil, err
}
case *Select:
v.Append = r
default:
return nil, fmt.Errorf("operator %c not supported on %v", operator, v)
}
return l, nil
}
func addMaps(scope *Scope, map1, map2 []*Property) ([]*Property, error) {
ret := make([]*Property, 0, len(map1))
inMap1 := make(map[string]*Property)
inMap2 := make(map[string]*Property)
inBoth := make(map[string]*Property)
for _, prop1 := range map1 {
inMap1[prop1.Name] = prop1
}
for _, prop2 := range map2 {
inMap2[prop2.Name] = prop2
if _, ok := inMap1[prop2.Name]; ok {
inBoth[prop2.Name] = prop2
}
}
for _, prop1 := range map1 {
if prop2, ok := inBoth[prop1.Name]; ok {
var err error
newProp := *prop1
newProp.Value, err = evaluateOperator(scope, '+', prop1.Value, prop2.Value)
if err != nil {
return nil, err
}
ret = append(ret, &newProp)
} else {
ret = append(ret, prop1)
}
}
for _, prop2 := range map2 {
if _, ok := inBoth[prop2.Name]; !ok {
ret = append(ret, prop2)
}
}
return ret, nil
}
func (x *Operator) PrintfInto(value string) error {
if err := x.Args[0].PrintfInto(value); err != nil {
return err
}
return x.Args[1].PrintfInto(value)
}
func (x *Operator) Pos() scanner.Position { return x.Args[0].Pos() }
func (x *Operator) End() scanner.Position { return x.Args[1].End() }
func (x *Operator) String() string {
return fmt.Sprintf("(%s %c %s)@%s", x.Args[0].String(), x.Operator, x.Args[1].String(),
x.OperatorPos)
}
type Variable struct {
Name string
NamePos scanner.Position
Type_ Type
}
func (x *Variable) Pos() scanner.Position { return x.NamePos }
func (x *Variable) End() scanner.Position { return endPos(x.NamePos, len(x.Name)) }
func (x *Variable) Copy() Expression {
ret := *x
return &ret
}
func (x *Variable) Eval(scope *Scope) (Expression, error) {
if assignment := scope.Get(x.Name); assignment != nil {
assignment.Referenced = true
return assignment.Value, nil
}
return nil, fmt.Errorf("undefined variable %s", x.Name)
}
func (x *Variable) PrintfInto(value string) error {
return nil
}
func (x *Variable) String() string {
return x.Name
}
func (x *Variable) Type() Type {
// Variables do not normally have a type associated with them, this is only
// filled out in the androidmk tool
return x.Type_
}
type Map struct {
LBracePos scanner.Position
RBracePos scanner.Position
Properties []*Property
}
func (x *Map) Pos() scanner.Position { return x.LBracePos }
func (x *Map) End() scanner.Position { return endPos(x.RBracePos, 1) }
func (x *Map) Copy() Expression {
ret := *x
ret.Properties = make([]*Property, len(x.Properties))
for i := range x.Properties {
ret.Properties[i] = x.Properties[i].Copy()
}
return &ret
}
func (x *Map) Eval(scope *Scope) (Expression, error) {
newProps := make([]*Property, len(x.Properties))
for i, prop := range x.Properties {
newVal, err := prop.Value.Eval(scope)
if err != nil {
return nil, err
}
newProps[i] = &Property{
Name: prop.Name,
NamePos: prop.NamePos,
ColonPos: prop.ColonPos,
Value: newVal,
}
}
return &Map{
LBracePos: x.LBracePos,
RBracePos: x.RBracePos,
Properties: newProps,
}, nil
}
func (x *Map) PrintfInto(value string) error {
// We should never reach this because selects cannot hold maps
panic("printfinto() is unsupported on maps")
}
func (x *Map) String() string {
propertyStrings := make([]string, len(x.Properties))
for i, property := range x.Properties {
propertyStrings[i] = property.String()
}
return fmt.Sprintf("@%s-%s{%s}", x.LBracePos, x.RBracePos,
strings.Join(propertyStrings, ", "))
}
func (x *Map) Type() Type { return MapType }
// GetProperty looks for a property with the given name.
// It resembles the bracket operator of a built-in Golang map.
func (x *Map) GetProperty(name string) (Property *Property, found bool) {
prop, found, _ := x.getPropertyImpl(name)
return prop, found // we don't currently expose the index to callers
}
func (x *Map) getPropertyImpl(name string) (Property *Property, found bool, index int) {
for i, prop := range x.Properties {
if prop.Name == name {
return prop, true, i
}
}
return nil, false, -1
}
// RemoveProperty removes the property with the given name, if it exists.
func (x *Map) RemoveProperty(propertyName string) (removed bool) {
_, found, index := x.getPropertyImpl(propertyName)
if found {
x.Properties = append(x.Properties[:index], x.Properties[index+1:]...)
}
return found
}
// MovePropertyContents moves the contents of propertyName into property newLocation
// If property newLocation doesn't exist, MovePropertyContents renames propertyName as newLocation.
// Otherwise, MovePropertyContents only supports moving contents that are a List of String.
func (x *Map) MovePropertyContents(propertyName string, newLocation string) (removed bool) {
oldProp, oldFound, _ := x.getPropertyImpl(propertyName)
newProp, newFound, _ := x.getPropertyImpl(newLocation)
// newLoc doesn't exist, simply renaming property
if oldFound && !newFound {
oldProp.Name = newLocation
return oldFound
}
if oldFound {
old, oldOk := oldProp.Value.(*List)
new, newOk := newProp.Value.(*List)
if oldOk && newOk {
toBeMoved := make([]string, len(old.Values)) //
for i, p := range old.Values {
toBeMoved[i] = p.(*String).Value
}
for _, moved := range toBeMoved {
RemoveStringFromList(old, moved)
AddStringToList(new, moved)
}
// oldProp should now be empty and needs to be deleted
x.RemoveProperty(oldProp.Name)
} else {
print(`MovePropertyContents currently only supports moving PropertyName
with List of Strings into an existing newLocation with List of Strings\n`)
}
}
return oldFound
}
type List struct {
LBracePos scanner.Position
RBracePos scanner.Position
Values []Expression
}
func (x *List) Pos() scanner.Position { return x.LBracePos }
func (x *List) End() scanner.Position { return endPos(x.RBracePos, 1) }
func (x *List) Copy() Expression {
ret := *x
ret.Values = make([]Expression, len(x.Values))
for i := range ret.Values {
ret.Values[i] = x.Values[i].Copy()
}
return &ret
}
func (x *List) Eval(scope *Scope) (Expression, error) {
newValues := make([]Expression, len(x.Values))
for i, val := range x.Values {
newVal, err := val.Eval(scope)
if err != nil {
return nil, err
}
newValues[i] = newVal
}
return &List{
LBracePos: x.LBracePos,
RBracePos: x.RBracePos,
Values: newValues,
}, nil
}
func (x *List) PrintfInto(value string) error {
for _, val := range x.Values {
if err := val.PrintfInto(value); err != nil {
return err
}
}
return nil
}
func (x *List) String() string {
valueStrings := make([]string, len(x.Values))
for i, value := range x.Values {
valueStrings[i] = value.String()
}
return fmt.Sprintf("@%s-%s[%s]", x.LBracePos, x.RBracePos,
strings.Join(valueStrings, ", "))
}
func (x *List) Type() Type { return ListType }
type String struct {
LiteralPos scanner.Position
Value string
}
func (x *String) Pos() scanner.Position { return x.LiteralPos }
func (x *String) End() scanner.Position { return endPos(x.LiteralPos, len(x.Value)+2) }
func (x *String) Copy() Expression {
ret := *x
return &ret
}
func (x *String) Eval(scope *Scope) (Expression, error) {
return x, nil
}
func (x *String) PrintfInto(value string) error {
count := strings.Count(x.Value, "%")
if count == 0 {
return nil
}
if count > 1 {
return fmt.Errorf("list/value variable properties only support a single '%%'")
}
if !strings.Contains(x.Value, "%s") {
return fmt.Errorf("unsupported %% in value variable property")
}
x.Value = fmt.Sprintf(x.Value, value)
return nil
}
func (x *String) String() string {
return fmt.Sprintf("%q@%s", x.Value, x.LiteralPos)
}
func (x *String) Type() Type {
return StringType
}
type Int64 struct {
LiteralPos scanner.Position
Value int64
Token string
}
func (x *Int64) Pos() scanner.Position { return x.LiteralPos }
func (x *Int64) End() scanner.Position { return endPos(x.LiteralPos, len(x.Token)) }
func (x *Int64) Copy() Expression {
ret := *x
return &ret
}
func (x *Int64) Eval(scope *Scope) (Expression, error) {
return x, nil
}
func (x *Int64) PrintfInto(value string) error {
return nil
}
func (x *Int64) String() string {
return fmt.Sprintf("%q@%s", x.Value, x.LiteralPos)
}
func (x *Int64) Type() Type {
return Int64Type
}
type Bool struct {
LiteralPos scanner.Position
Value bool
Token string
}
func (x *Bool) Pos() scanner.Position { return x.LiteralPos }
func (x *Bool) End() scanner.Position { return endPos(x.LiteralPos, len(x.Token)) }
func (x *Bool) Copy() Expression {
ret := *x
return &ret
}
func (x *Bool) Eval(scope *Scope) (Expression, error) {
return x, nil
}
func (x *Bool) PrintfInto(value string) error {
return nil
}
func (x *Bool) String() string {
return fmt.Sprintf("%t@%s", x.Value, x.LiteralPos)
}
func (x *Bool) Type() Type {
return BoolType
}
type CommentGroup struct {
Comments []*Comment
}
func (x *CommentGroup) Pos() scanner.Position { return x.Comments[0].Pos() }
func (x *CommentGroup) End() scanner.Position { return x.Comments[len(x.Comments)-1].End() }
type Comment struct {
Comment []string
Slash scanner.Position
}
func (c Comment) Pos() scanner.Position {
return c.Slash
}
func (c Comment) End() scanner.Position {
pos := c.Slash
for _, comment := range c.Comment {
pos.Offset += len(comment) + 1
pos.Column = len(comment) + 1
}
pos.Line += len(c.Comment) - 1
return pos
}
func (c Comment) String() string {
l := 0
for _, comment := range c.Comment {
l += len(comment) + 1
}
buf := make([]byte, 0, l)
for _, comment := range c.Comment {
buf = append(buf, comment...)
buf = append(buf, '\n')
}
return string(buf) + "@" + c.Slash.String()
}
// Return the text of the comment with // or /* and */ stripped
func (c Comment) Text() string {
l := 0
for _, comment := range c.Comment {
l += len(comment) + 1
}
buf := make([]byte, 0, l)
blockComment := false
if strings.HasPrefix(c.Comment[0], "/*") {
blockComment = true
}
for i, comment := range c.Comment {
if blockComment {
if i == 0 {
comment = strings.TrimPrefix(comment, "/*")
}
if i == len(c.Comment)-1 {
comment = strings.TrimSuffix(comment, "*/")
}
} else {
comment = strings.TrimPrefix(comment, "//")
}
buf = append(buf, comment...)
buf = append(buf, '\n')
}
return string(buf)
}
func endPos(pos scanner.Position, n int) scanner.Position {
pos.Offset += n
pos.Column += n
return pos
}
type ConfigurableCondition struct {
position scanner.Position
FunctionName string
Args []String
}
func (c *ConfigurableCondition) Equals(other ConfigurableCondition) bool {
if c.FunctionName != other.FunctionName {
return false
}
if len(c.Args) != len(other.Args) {
return false
}
for i := range c.Args {
if c.Args[i] != other.Args[i] {
return false
}
}
return true
}
func (c *ConfigurableCondition) String() string {
var sb strings.Builder
sb.WriteString(c.FunctionName)
sb.WriteRune('(')
for i, arg := range c.Args {
sb.WriteRune('"')
sb.WriteString(arg.Value)
sb.WriteRune('"')
if i < len(c.Args)-1 {
sb.WriteString(", ")
}
}
sb.WriteRune(')')
return sb.String()
}
type Select struct {
Scope *Scope // scope used to evaluate the body of the select later on
KeywordPos scanner.Position // the keyword "select"
Conditions []ConfigurableCondition
LBracePos scanner.Position
RBracePos scanner.Position
Cases []*SelectCase // the case statements
Append Expression
}
func (s *Select) Pos() scanner.Position { return s.KeywordPos }
func (s *Select) End() scanner.Position { return endPos(s.RBracePos, 1) }
func (s *Select) Copy() Expression {
ret := *s
ret.Cases = make([]*SelectCase, len(ret.Cases))
for i, selectCase := range s.Cases {
ret.Cases[i] = selectCase.Copy()
}
if s.Append != nil {
ret.Append = s.Append.Copy()
}
return &ret
}
func (s *Select) Eval(scope *Scope) (Expression, error) {
s.Scope = scope
return s, nil
}
func (x *Select) PrintfInto(value string) error {
// PrintfInto will be handled at the Configurable object level
panic("Cannot call PrintfInto on a select expression")
}
func (s *Select) String() string {
return "<select>"
}
func (s *Select) Type() Type {
if len(s.Cases) == 0 {
return UnsetType
}
return UnknownType
}
type SelectCase struct {
Patterns []Expression
ColonPos scanner.Position
Value Expression
}
func (c *SelectCase) Copy() *SelectCase {
ret := *c
ret.Value = c.Value.Copy()
return &ret
}
func (c *SelectCase) String() string {
return "<select case>"
}
func (c *SelectCase) Pos() scanner.Position { return c.Patterns[0].Pos() }
func (c *SelectCase) End() scanner.Position { return c.Value.End() }
// UnsetProperty is the expression type of the "unset" keyword that can be
// used in select statements to make the property unset. For example:
//
// my_module_type {
// name: "foo",
// some_prop: select(soong_config_variable("my_namespace", "my_var"), {
// "foo": unset,
// "default": "bar",
// })
// }
type UnsetProperty struct {
Position scanner.Position
}
func (n *UnsetProperty) Copy() Expression {
return &UnsetProperty{Position: n.Position}
}
func (n *UnsetProperty) String() string {
return "unset"
}
func (n *UnsetProperty) Type() Type {
return UnsetType
}
func (n *UnsetProperty) Eval(scope *Scope) (Expression, error) {
return n, nil
}
func (x *UnsetProperty) PrintfInto(value string) error {
return nil
}
func (n *UnsetProperty) Pos() scanner.Position { return n.Position }
func (n *UnsetProperty) End() scanner.Position { return n.Position }