// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package blueprint import ( "bytes" "context" "crypto/sha256" "encoding/base64" "encoding/json" "errors" "fmt" "io" "io/ioutil" "os" "path/filepath" "reflect" "runtime" "runtime/pprof" "sort" "strings" "sync" "sync/atomic" "text/scanner" "text/template" "github.com/google/blueprint/metrics" "github.com/google/blueprint/parser" "github.com/google/blueprint/pathtools" "github.com/google/blueprint/proptools" ) var ErrBuildActionsNotReady = errors.New("build actions are not ready") const maxErrors = 10 const MockModuleListFile = "bplist" // A Context contains all the state needed to parse a set of Blueprints files // and generate a Ninja file. The process of generating a Ninja file proceeds // through a series of four phases. Each phase corresponds with a some methods // on the Context object // // Phase Methods // ------------ ------------------------------------------- // 1. Registration RegisterModuleType, RegisterSingletonType // // 2. Parse ParseBlueprintsFiles, Parse // // 3. Generate ResolveDependencies, PrepareBuildActions // // 4. Write WriteBuildFile // // The registration phase prepares the context to process Blueprints files // containing various types of modules. The parse phase reads in one or more // Blueprints files and validates their contents against the module types that // have been registered. The generate phase then analyzes the parsed Blueprints // contents to create an internal representation for the build actions that must // be performed. This phase also performs validation of the module dependencies // and property values defined in the parsed Blueprints files. Finally, the // write phase generates the Ninja manifest text based on the generated build // actions. type Context struct { context.Context // Used for metrics-related event logging. EventHandler *metrics.EventHandler BeforePrepareBuildActionsHook func() error moduleFactories map[string]ModuleFactory nameInterface NameInterface moduleGroups []*moduleGroup moduleInfo map[Module]*moduleInfo modulesSorted []*moduleInfo singletonInfo []*singletonInfo mutatorInfo []*mutatorInfo variantMutatorNames []string depsModified uint32 // positive if a mutator modified the dependencies dependenciesReady bool // set to true on a successful ResolveDependencies buildActionsReady bool // set to true on a successful PrepareBuildActions // set by SetIgnoreUnknownModuleTypes ignoreUnknownModuleTypes bool // set by SetAllowMissingDependencies allowMissingDependencies bool // set during PrepareBuildActions pkgNames map[*packageContext]string liveGlobals *liveTracker globalVariables map[Variable]*ninjaString globalPools map[Pool]*poolDef globalRules map[Rule]*ruleDef // set during PrepareBuildActions outDir *ninjaString // The builddir special Ninja variable requiredNinjaMajor int // For the ninja_required_version variable requiredNinjaMinor int // For the ninja_required_version variable requiredNinjaMicro int // For the ninja_required_version variable subninjas []string // set lazily by sortedModuleGroups cachedSortedModuleGroups []*moduleGroup // cache deps modified to determine whether cachedSortedModuleGroups needs to be recalculated cachedDepsModified bool globs map[globKey]pathtools.GlobResult globLock sync.Mutex srcDir string fs pathtools.FileSystem moduleListFile string // Mutators indexed by the ID of the provider associated with them. Not all mutators will // have providers, and not all providers will have a mutator, or if they do the mutator may // not be registered in this Context. providerMutators []*mutatorInfo // The currently running mutator startedMutator *mutatorInfo // True for any mutators that have already run over all modules finishedMutators map[*mutatorInfo]bool // If true, RunBlueprint will skip cloning modules at the end of RunBlueprint. // Cloning modules intentionally invalidates some Module values after // mutators run (to ensure that mutators don't set such Module values in a way // which ruins the integrity of the graph). However, keeping Module values // changed by mutators may be a desirable outcome (such as for tooling or tests). SkipCloneModulesAfterMutators bool // String values that can be used to gate build graph traversal includeTags *IncludeTags sourceRootDirs *SourceRootDirs } // A container for String keys. The keys can be used to gate build graph traversal type SourceRootDirs struct { dirs []string } func (dirs *SourceRootDirs) Add(names ...string) { dirs.dirs = append(dirs.dirs, names...) } func (dirs *SourceRootDirs) SourceRootDirAllowed(path string) (bool, string) { sort.Slice(dirs.dirs, func(i, j int) bool { return len(dirs.dirs[i]) < len(dirs.dirs[j]) }) last := len(dirs.dirs) for i := range dirs.dirs { // iterate from longest paths (most specific) prefix := dirs.dirs[last-i-1] disallowedPrefix := false if len(prefix) >= 1 && prefix[0] == '-' { prefix = prefix[1:] disallowedPrefix = true } if strings.HasPrefix(path, prefix) { if disallowedPrefix { return false, prefix } else { return true, prefix } } } return true, "" } func (c *Context) AddSourceRootDirs(dirs ...string) { c.sourceRootDirs.Add(dirs...) } // A container for String keys. The keys can be used to gate build graph traversal type IncludeTags map[string]bool func (tags *IncludeTags) Add(names ...string) { for _, name := range names { (*tags)[name] = true } } func (tags *IncludeTags) Contains(tag string) bool { _, exists := (*tags)[tag] return exists } func (c *Context) AddIncludeTags(names ...string) { c.includeTags.Add(names...) } func (c *Context) ContainsIncludeTag(name string) bool { return c.includeTags.Contains(name) } // An Error describes a problem that was encountered that is related to a // particular location in a Blueprints file. type BlueprintError struct { Err error // the error that occurred Pos scanner.Position // the relevant Blueprints file location } // A ModuleError describes a problem that was encountered that is related to a // particular module in a Blueprints file type ModuleError struct { BlueprintError module *moduleInfo } // A PropertyError describes a problem that was encountered that is related to a // particular property in a Blueprints file type PropertyError struct { ModuleError property string } func (e *BlueprintError) Error() string { return fmt.Sprintf("%s: %s", e.Pos, e.Err) } func (e *ModuleError) Error() string { return fmt.Sprintf("%s: %s: %s", e.Pos, e.module, e.Err) } func (e *PropertyError) Error() string { return fmt.Sprintf("%s: %s: %s: %s", e.Pos, e.module, e.property, e.Err) } type localBuildActions struct { variables []*localVariable rules []*localRule buildDefs []*buildDef } type moduleAlias struct { variant variant target *moduleInfo } func (m *moduleAlias) alias() *moduleAlias { return m } func (m *moduleAlias) module() *moduleInfo { return nil } func (m *moduleAlias) moduleOrAliasTarget() *moduleInfo { return m.target } func (m *moduleAlias) moduleOrAliasVariant() variant { return m.variant } func (m *moduleInfo) alias() *moduleAlias { return nil } func (m *moduleInfo) module() *moduleInfo { return m } func (m *moduleInfo) moduleOrAliasTarget() *moduleInfo { return m } func (m *moduleInfo) moduleOrAliasVariant() variant { return m.variant } type moduleOrAlias interface { alias() *moduleAlias module() *moduleInfo moduleOrAliasTarget() *moduleInfo moduleOrAliasVariant() variant } type modulesOrAliases []moduleOrAlias func (l modulesOrAliases) firstModule() *moduleInfo { for _, moduleOrAlias := range l { if m := moduleOrAlias.module(); m != nil { return m } } panic(fmt.Errorf("no first module!")) } func (l modulesOrAliases) lastModule() *moduleInfo { for i := range l { if m := l[len(l)-1-i].module(); m != nil { return m } } panic(fmt.Errorf("no last module!")) } type moduleGroup struct { name string ninjaName string modules modulesOrAliases namespace Namespace } func (group *moduleGroup) moduleOrAliasByVariantName(name string) moduleOrAlias { for _, module := range group.modules { if module.moduleOrAliasVariant().name == name { return module } } return nil } func (group *moduleGroup) moduleByVariantName(name string) *moduleInfo { return group.moduleOrAliasByVariantName(name).module() } type moduleInfo struct { // set during Parse typeName string factory ModuleFactory relBlueprintsFile string pos scanner.Position propertyPos map[string]scanner.Position createdBy *moduleInfo variant variant logicModule Module group *moduleGroup properties []interface{} // set during ResolveDependencies missingDeps []string newDirectDeps []depInfo // set during updateDependencies reverseDeps []*moduleInfo forwardDeps []*moduleInfo directDeps []depInfo // used by parallelVisit waitingCount int // set during each runMutator splitModules modulesOrAliases // Used by TransitionMutator implementations transitionVariations []string currentTransitionMutator string requiredVariationsLock sync.Mutex // set during PrepareBuildActions actionDefs localBuildActions providers []interface{} startedMutator *mutatorInfo finishedMutator *mutatorInfo startedGenerateBuildActions bool finishedGenerateBuildActions bool } type variant struct { name string variations variationMap dependencyVariations variationMap } type depInfo struct { module *moduleInfo tag DependencyTag } func (module *moduleInfo) Name() string { // If this is called from a LoadHook (which is run before the module has been registered) // then group will not be set and so the name is retrieved from logicModule.Name(). // Usually, using that method is not safe as it does not track renames (group.name does). // However, when called from LoadHook it is safe as there is no way to rename a module // until after the LoadHook has run and the module has been registered. if module.group != nil { return module.group.name } else { return module.logicModule.Name() } } func (module *moduleInfo) String() string { s := fmt.Sprintf("module %q", module.Name()) if module.variant.name != "" { s += fmt.Sprintf(" variant %q", module.variant.name) } if module.createdBy != nil { s += fmt.Sprintf(" (created by %s)", module.createdBy) } return s } func (module *moduleInfo) namespace() Namespace { return module.group.namespace } // A Variation is a way that a variant of a module differs from other variants of the same module. // For example, two variants of the same module might have Variation{"arch","arm"} and // Variation{"arch","arm64"} type Variation struct { // Mutator is the axis on which this variation applies, i.e. "arch" or "link" Mutator string // Variation is the name of the variation on the axis, i.e. "arm" or "arm64" for arch, or // "shared" or "static" for link. Variation string } // A variationMap stores a map of Mutator to Variation to specify a variant of a module. type variationMap map[string]string func (vm variationMap) clone() variationMap { if vm == nil { return nil } newVm := make(variationMap) for k, v := range vm { newVm[k] = v } return newVm } // Compare this variationMap to another one. Returns true if the every entry in this map // exists and has the same value in the other map. func (vm variationMap) subsetOf(other variationMap) bool { for k, v1 := range vm { if v2, ok := other[k]; !ok || v1 != v2 { return false } } return true } func (vm variationMap) equal(other variationMap) bool { return reflect.DeepEqual(vm, other) } type singletonInfo struct { // set during RegisterSingletonType factory SingletonFactory singleton Singleton name string parallel bool // set during PrepareBuildActions actionDefs localBuildActions } type mutatorInfo struct { // set during RegisterMutator topDownMutator TopDownMutator bottomUpMutator BottomUpMutator name string parallel bool } func newContext() *Context { eventHandler := metrics.EventHandler{} return &Context{ Context: context.Background(), EventHandler: &eventHandler, moduleFactories: make(map[string]ModuleFactory), nameInterface: NewSimpleNameInterface(), moduleInfo: make(map[Module]*moduleInfo), globs: make(map[globKey]pathtools.GlobResult), fs: pathtools.OsFs, finishedMutators: make(map[*mutatorInfo]bool), includeTags: &IncludeTags{}, sourceRootDirs: &SourceRootDirs{}, outDir: nil, requiredNinjaMajor: 1, requiredNinjaMinor: 7, requiredNinjaMicro: 0, } } // NewContext creates a new Context object. The created context initially has // no module or singleton factories registered, so the RegisterModuleFactory and // RegisterSingletonFactory methods must be called before it can do anything // useful. func NewContext() *Context { ctx := newContext() ctx.RegisterBottomUpMutator("blueprint_deps", blueprintDepsMutator) return ctx } // A ModuleFactory function creates a new Module object. See the // Context.RegisterModuleType method for details about how a registered // ModuleFactory is used by a Context. type ModuleFactory func() (m Module, propertyStructs []interface{}) // RegisterModuleType associates a module type name (which can appear in a // Blueprints file) with a Module factory function. When the given module type // name is encountered in a Blueprints file during parsing, the Module factory // is invoked to instantiate a new Module object to handle the build action // generation for the module. If a Mutator splits a module into multiple variants, // the factory is invoked again to create a new Module for each variant. // // The module type names given here must be unique for the context. The factory // function should be a named function so that its package and name can be // included in the generated Ninja file for debugging purposes. // // The factory function returns two values. The first is the newly created // Module object. The second is a slice of pointers to that Module object's // properties structs. Each properties struct is examined when parsing a module // definition of this type in a Blueprints file. Exported fields of the // properties structs are automatically set to the property values specified in // the Blueprints file. The properties struct field names determine the name of // the Blueprints file properties that are used - the Blueprints property name // matches that of the properties struct field name with the first letter // converted to lower-case. // // The fields of the properties struct must be either []string, a string, or // bool. The Context will panic if a Module gets instantiated with a properties // struct containing a field that is not one these supported types. // // Any properties that appear in the Blueprints files that are not built-in // module properties (such as "name" and "deps") and do not have a corresponding // field in the returned module properties struct result in an error during the // Context's parse phase. // // As an example, the follow code: // // type myModule struct { // properties struct { // Foo string // Bar []string // } // } // // func NewMyModule() (blueprint.Module, []interface{}) { // module := new(myModule) // properties := &module.properties // return module, []interface{}{properties} // } // // func main() { // ctx := blueprint.NewContext() // ctx.RegisterModuleType("my_module", NewMyModule) // // ... // } // // would support parsing a module defined in a Blueprints file as follows: // // my_module { // name: "myName", // foo: "my foo string", // bar: ["my", "bar", "strings"], // } // // The factory function may be called from multiple goroutines. Any accesses // to global variables must be synchronized. func (c *Context) RegisterModuleType(name string, factory ModuleFactory) { if _, present := c.moduleFactories[name]; present { panic(fmt.Errorf("module type %q is already registered", name)) } c.moduleFactories[name] = factory } // A SingletonFactory function creates a new Singleton object. See the // Context.RegisterSingletonType method for details about how a registered // SingletonFactory is used by a Context. type SingletonFactory func() Singleton // RegisterSingletonType registers a singleton type that will be invoked to // generate build actions. Each registered singleton type is instantiated // and invoked exactly once as part of the generate phase. // // Those singletons registered with parallel=true are run in parallel, after // which the other registered singletons are run in registration order. // // The singleton type names given here must be unique for the context. The // factory function should be a named function so that its package and name can // be included in the generated Ninja file for debugging purposes. func (c *Context) RegisterSingletonType(name string, factory SingletonFactory, parallel bool) { for _, s := range c.singletonInfo { if s.name == name { panic(fmt.Errorf("singleton %q is already registered", name)) } } c.singletonInfo = append(c.singletonInfo, &singletonInfo{ factory: factory, singleton: factory(), name: name, parallel: parallel, }) } func (c *Context) SetNameInterface(i NameInterface) { c.nameInterface = i } func (c *Context) SetSrcDir(path string) { c.srcDir = path c.fs = pathtools.NewOsFs(path) } func (c *Context) SrcDir() string { return c.srcDir } func singletonPkgPath(singleton Singleton) string { typ := reflect.TypeOf(singleton) for typ.Kind() == reflect.Ptr { typ = typ.Elem() } return typ.PkgPath() } func singletonTypeName(singleton Singleton) string { typ := reflect.TypeOf(singleton) for typ.Kind() == reflect.Ptr { typ = typ.Elem() } return typ.PkgPath() + "." + typ.Name() } // RegisterTopDownMutator registers a mutator that will be invoked to propagate dependency info // top-down between Modules. Each registered mutator is invoked in registration order (mixing // TopDownMutators and BottomUpMutators) once per Module, and the invocation on any module will // have returned before it is in invoked on any of its dependencies. // // The mutator type names given here must be unique to all top down mutators in // the Context. // // Returns a MutatorHandle, on which Parallel can be called to set the mutator to visit modules in // parallel while maintaining ordering. func (c *Context) RegisterTopDownMutator(name string, mutator TopDownMutator) MutatorHandle { for _, m := range c.mutatorInfo { if m.name == name && m.topDownMutator != nil { panic(fmt.Errorf("mutator %q is already registered", name)) } } info := &mutatorInfo{ topDownMutator: mutator, name: name, } c.mutatorInfo = append(c.mutatorInfo, info) return info } // RegisterBottomUpMutator registers a mutator that will be invoked to split Modules into variants. // Each registered mutator is invoked in registration order (mixing TopDownMutators and // BottomUpMutators) once per Module, will not be invoked on a module until the invocations on all // of the modules dependencies have returned. // // The mutator type names given here must be unique to all bottom up or early // mutators in the Context. // // Returns a MutatorHandle, on which Parallel can be called to set the mutator to visit modules in // parallel while maintaining ordering. func (c *Context) RegisterBottomUpMutator(name string, mutator BottomUpMutator) MutatorHandle { for _, m := range c.variantMutatorNames { if m == name { panic(fmt.Errorf("mutator %q is already registered", name)) } } info := &mutatorInfo{ bottomUpMutator: mutator, name: name, } c.mutatorInfo = append(c.mutatorInfo, info) c.variantMutatorNames = append(c.variantMutatorNames, name) return info } type IncomingTransitionContext interface { // Module returns the target of the dependency edge for which the transition // is being computed Module() Module // Config returns the config object that was passed to // Context.PrepareBuildActions. Config() interface{} } type OutgoingTransitionContext interface { // Module returns the target of the dependency edge for which the transition // is being computed Module() Module // DepTag() Returns the dependency tag through which this dependency is // reached DepTag() DependencyTag } // Transition mutators implement a top-down mechanism where a module tells its // direct dependencies what variation they should be built in but the dependency // has the final say. // // When implementing a transition mutator, one needs to implement four methods: // - Split() that tells what variations a module has by itself // - OutgoingTransition() where a module tells what it wants from its // dependency // - IncomingTransition() where a module has the final say about its own // variation // - Mutate() that changes the state of a module depending on its variation // // That the effective variation of module B when depended on by module A is the // composition the outgoing transition of module A and the incoming transition // of module B. // // the outgoing transition should not take the properties of the dependency into // account, only those of the module that depends on it. For this reason, the // dependency is not even passed into it as an argument. Likewise, the incoming // transition should not take the properties of the depending module into // account and is thus not informed about it. This makes for a nice // decomposition of the decision logic. // // A given transition mutator only affects its own variation; other variations // stay unchanged along the dependency edges. // // Soong makes sure that all modules are created in the desired variations and // that dependency edges are set up correctly. This ensures that "missing // variation" errors do not happen and allows for more flexible changes in the // value of the variation among dependency edges (as oppposed to bottom-up // mutators where if module A in variation X depends on module B and module B // has that variation X, A must depend on variation X of B) // // The limited power of the context objects passed to individual mutators // methods also makes it more difficult to shoot oneself in the foot. Complete // safety is not guaranteed because no one prevents individual transition // mutators from mutating modules in illegal ways and for e.g. Split() or // Mutate() to run their own visitations of the transitive dependency of the // module and both of these are bad ideas, but it's better than no guardrails at // all. // // This model is pretty close to Bazel's configuration transitions. The mapping // between concepts in Soong and Bazel is as follows: // - Module == configured target // - Variant == configuration // - Variation name == configuration flag // - Variation == configuration flag value // - Outgoing transition == attribute transition // - Incoming transition == rule transition // // The Split() method does not have a Bazel equivalent and Bazel split // transitions do not have a Soong equivalent. // // Mutate() does not make sense in Bazel due to the different models of the // two systems: when creating new variations, Soong clones the old module and // thus some way is needed to change it state whereas Bazel creates each // configuration of a given configured target anew. type TransitionMutator interface { // Returns the set of variations that should be created for a module no matter // who depends on it. Used when Make depends on a particular variation or when // the module knows its variations just based on information given to it in // the Blueprint file. This method should not mutate the module it is called // on. Split(ctx BaseModuleContext) []string // Called on a module to determine which variation it wants from its direct // dependencies. The dependency itself can override this decision. This method // should not mutate the module itself. OutgoingTransition(ctx OutgoingTransitionContext, sourceVariation string) string // Called on a module to determine which variation it should be in based on // the variation modules that depend on it want. This gives the module a final // say about its own variations. This method should not mutate the module // itself. IncomingTransition(ctx IncomingTransitionContext, incomingVariation string) string // Called after a module was split into multiple variations on each variation. // It should not split the module any further but adding new dependencies is // fine. Unlike all the other methods on TransitionMutator, this method is // allowed to mutate the module. Mutate(ctx BottomUpMutatorContext, variation string) } type transitionMutatorImpl struct { name string mutator TransitionMutator } // Adds each argument in items to l if it's not already there. func addToStringListIfNotPresent(l []string, items ...string) []string { OUTER: for _, i := range items { for _, existing := range l { if existing == i { continue OUTER } } l = append(l, i) } return l } func (t *transitionMutatorImpl) addRequiredVariation(m *moduleInfo, variation string) { m.requiredVariationsLock.Lock() defer m.requiredVariationsLock.Unlock() // This is only a consistency check. Leaking the variations of a transition // mutator to another one could well lead to issues that are difficult to // track down. if m.currentTransitionMutator != "" && m.currentTransitionMutator != t.name { panic(fmt.Errorf("transition mutator is %s in mutator %s", m.currentTransitionMutator, t.name)) } m.currentTransitionMutator = t.name m.transitionVariations = addToStringListIfNotPresent(m.transitionVariations, variation) } func (t *transitionMutatorImpl) topDownMutator(mctx TopDownMutatorContext) { module := mctx.(*mutatorContext).module mutatorSplits := t.mutator.Split(mctx) if mutatorSplits == nil || len(mutatorSplits) == 0 { panic(fmt.Errorf("transition mutator %s returned no splits for module %s", t.name, mctx.ModuleName())) } // transitionVariations for given a module can be mutated by the module itself // and modules that directly depend on it. Since this is a top-down mutator, // all modules that directly depend on this module have already been processed // so no locking is necessary. module.transitionVariations = addToStringListIfNotPresent(module.transitionVariations, mutatorSplits...) sort.Strings(module.transitionVariations) for _, srcVariation := range module.transitionVariations { for _, dep := range module.directDeps { finalVariation := t.transition(mctx)(mctx.Module(), srcVariation, dep.module.logicModule, dep.tag) t.addRequiredVariation(dep.module, finalVariation) } } } type transitionContextImpl struct { module Module depTag DependencyTag config interface{} } func (c *transitionContextImpl) Module() Module { return c.module } func (c *transitionContextImpl) DepTag() DependencyTag { return c.depTag } func (c *transitionContextImpl) Config() interface{} { return c.config } func (t *transitionMutatorImpl) transition(mctx BaseMutatorContext) Transition { return func(source Module, sourceVariation string, dep Module, depTag DependencyTag) string { tc := &transitionContextImpl{module: dep, depTag: depTag, config: mctx.Config()} outgoingVariation := t.mutator.OutgoingTransition(tc, sourceVariation) finalVariation := t.mutator.IncomingTransition(tc, outgoingVariation) return finalVariation } } func (t *transitionMutatorImpl) bottomUpMutator(mctx BottomUpMutatorContext) { mc := mctx.(*mutatorContext) // Fetch and clean up transition mutator state. No locking needed since the // only time interaction between multiple modules is required is during the // computation of the variations required by a given module. variations := mc.module.transitionVariations mc.module.transitionVariations = nil mc.module.currentTransitionMutator = "" if len(variations) < 1 { panic(fmt.Errorf("no variations found for module %s by mutator %s", mctx.ModuleName(), t.name)) } if len(variations) == 1 && variations[0] == "" { // Module is not split, just apply the transition mc.applyTransition(t.transition(mctx)) } else { mc.createVariationsWithTransition(t.transition(mctx), variations...) } } func (t *transitionMutatorImpl) mutateMutator(mctx BottomUpMutatorContext) { module := mctx.(*mutatorContext).module currentVariation := module.variant.variations[t.name] t.mutator.Mutate(mctx, currentVariation) } func (c *Context) RegisterTransitionMutator(name string, mutator TransitionMutator) { impl := &transitionMutatorImpl{name: name, mutator: mutator} c.RegisterTopDownMutator(name+"_deps", impl.topDownMutator).Parallel() c.RegisterBottomUpMutator(name, impl.bottomUpMutator).Parallel() c.RegisterBottomUpMutator(name+"_mutate", impl.mutateMutator).Parallel() } type MutatorHandle interface { // Set the mutator to visit modules in parallel while maintaining ordering. Calling any // method on the mutator context is thread-safe, but the mutator must handle synchronization // for any modifications to global state or any modules outside the one it was invoked on. Parallel() MutatorHandle } func (mutator *mutatorInfo) Parallel() MutatorHandle { mutator.parallel = true return mutator } // SetIgnoreUnknownModuleTypes sets the behavior of the context in the case // where it encounters an unknown module type while parsing Blueprints files. By // default, the context will report unknown module types as an error. If this // method is called with ignoreUnknownModuleTypes set to true then the context // will silently ignore unknown module types. // // This method should generally not be used. It exists to facilitate the // bootstrapping process. func (c *Context) SetIgnoreUnknownModuleTypes(ignoreUnknownModuleTypes bool) { c.ignoreUnknownModuleTypes = ignoreUnknownModuleTypes } // SetAllowMissingDependencies changes the behavior of Blueprint to ignore // unresolved dependencies. If the module's GenerateBuildActions calls // ModuleContext.GetMissingDependencies Blueprint will not emit any errors // for missing dependencies. func (c *Context) SetAllowMissingDependencies(allowMissingDependencies bool) { c.allowMissingDependencies = allowMissingDependencies } func (c *Context) SetModuleListFile(listFile string) { c.moduleListFile = listFile } func (c *Context) ListModulePaths(baseDir string) (paths []string, err error) { reader, err := c.fs.Open(c.moduleListFile) if err != nil { return nil, err } defer reader.Close() bytes, err := ioutil.ReadAll(reader) if err != nil { return nil, err } text := string(bytes) text = strings.Trim(text, "\n") lines := strings.Split(text, "\n") for i := range lines { lines[i] = filepath.Join(baseDir, lines[i]) } return lines, nil } // a fileParseContext tells the status of parsing a particular file type fileParseContext struct { // name of file fileName string // scope to use when resolving variables Scope *parser.Scope // pointer to the one in the parent directory parent *fileParseContext // is closed once FileHandler has completed for this file doneVisiting chan struct{} } // ParseBlueprintsFiles parses a set of Blueprints files starting with the file // at rootFile. When it encounters a Blueprints file with a set of subdirs // listed it recursively parses any Blueprints files found in those // subdirectories. // // If no errors are encountered while parsing the files, the list of paths on // which the future output will depend is returned. This list will include both // Blueprints file paths as well as directory paths for cases where wildcard // subdirs are found. func (c *Context) ParseBlueprintsFiles(rootFile string, config interface{}) (deps []string, errs []error) { baseDir := filepath.Dir(rootFile) pathsToParse, err := c.ListModulePaths(baseDir) if err != nil { return nil, []error{err} } return c.ParseFileList(baseDir, pathsToParse, config) } type shouldVisitFileInfo struct { shouldVisitFile bool skippedModules []string reasonForSkip string errs []error } // Returns a boolean for whether this file should be analyzed // Evaluates to true if the file either // 1. does not contain a blueprint_package_includes // 2. contains a blueprint_package_includes and all requested tags are set // This should be processed before adding any modules to the build graph func shouldVisitFile(c *Context, file *parser.File) shouldVisitFileInfo { skippedModules := []string{} var blueprintPackageIncludes *PackageIncludes for _, def := range file.Defs { switch def := def.(type) { case *parser.Module: skippedModules = append(skippedModules, def.Name()) if def.Type != "blueprint_package_includes" { continue } module, errs := processModuleDef(def, file.Name, c.moduleFactories, nil, c.ignoreUnknownModuleTypes) if len(errs) > 0 { // This file contains errors in blueprint_package_includes // Visit anyways so that we can report errors on other modules in the file return shouldVisitFileInfo{ shouldVisitFile: true, errs: errs, } } logicModule, _ := c.cloneLogicModule(module) blueprintPackageIncludes = logicModule.(*PackageIncludes) } } if blueprintPackageIncludes != nil { packageMatches := blueprintPackageIncludes.MatchesIncludeTags(c) if !packageMatches { return shouldVisitFileInfo{ shouldVisitFile: false, skippedModules: skippedModules, reasonForSkip: fmt.Sprintf( "module is defined in %q which contains a blueprint_package_includes module with unsatisfied tags", file.Name, ), } } } shouldVisit, invalidatingPrefix := c.sourceRootDirs.SourceRootDirAllowed(file.Name) if !shouldVisit { return shouldVisitFileInfo{ shouldVisitFile: shouldVisit, skippedModules: skippedModules, reasonForSkip: fmt.Sprintf( "%q is a descendant of %q, and that path prefix was not included in PRODUCT_SOURCE_ROOT_DIRS", file.Name, invalidatingPrefix, ), } } return shouldVisitFileInfo{shouldVisitFile: true} } func (c *Context) ParseFileList(rootDir string, filePaths []string, config interface{}) (deps []string, errs []error) { if len(filePaths) < 1 { return nil, []error{fmt.Errorf("no paths provided to parse")} } c.dependenciesReady = false type newModuleInfo struct { *moduleInfo deps []string added chan<- struct{} } type newSkipInfo struct { shouldVisitFileInfo file string } moduleCh := make(chan newModuleInfo) errsCh := make(chan []error) doneCh := make(chan struct{}) skipCh := make(chan newSkipInfo) var numErrs uint32 var numGoroutines int32 // handler must be reentrant handleOneFile := func(file *parser.File) { if atomic.LoadUint32(&numErrs) > maxErrors { return } addedCh := make(chan struct{}) var scopedModuleFactories map[string]ModuleFactory var addModule func(module *moduleInfo) []error addModule = func(module *moduleInfo) []error { // Run any load hooks immediately before it is sent to the moduleCh and is // registered by name. This allows load hooks to set and/or modify any aspect // of the module (including names) using information that is not available when // the module factory is called. newModules, newDeps, errs := runAndRemoveLoadHooks(c, config, module, &scopedModuleFactories) if len(errs) > 0 { return errs } moduleCh <- newModuleInfo{module, newDeps, addedCh} <-addedCh for _, n := range newModules { errs = addModule(n) if len(errs) > 0 { return errs } } return nil } shouldVisitInfo := shouldVisitFile(c, file) errs := shouldVisitInfo.errs if len(errs) > 0 { atomic.AddUint32(&numErrs, uint32(len(errs))) errsCh <- errs } if !shouldVisitInfo.shouldVisitFile { skipCh <- newSkipInfo{ file: file.Name, shouldVisitFileInfo: shouldVisitInfo, } // TODO: Write a file that lists the skipped bp files return } for _, def := range file.Defs { switch def := def.(type) { case *parser.Module: module, errs := processModuleDef(def, file.Name, c.moduleFactories, scopedModuleFactories, c.ignoreUnknownModuleTypes) if len(errs) == 0 && module != nil { errs = addModule(module) } if len(errs) > 0 { atomic.AddUint32(&numErrs, uint32(len(errs))) errsCh <- errs } case *parser.Assignment: // Already handled via Scope object default: panic("unknown definition type") } } } atomic.AddInt32(&numGoroutines, 1) go func() { var errs []error deps, errs = c.WalkBlueprintsFiles(rootDir, filePaths, handleOneFile) if len(errs) > 0 { errsCh <- errs } doneCh <- struct{}{} }() var hookDeps []string loop: for { select { case newErrs := <-errsCh: errs = append(errs, newErrs...) case module := <-moduleCh: newErrs := c.addModule(module.moduleInfo) hookDeps = append(hookDeps, module.deps...) if module.added != nil { module.added <- struct{}{} } if len(newErrs) > 0 { errs = append(errs, newErrs...) } case <-doneCh: n := atomic.AddInt32(&numGoroutines, -1) if n == 0 { break loop } case skipped := <-skipCh: nctx := newNamespaceContextFromFilename(skipped.file) for _, name := range skipped.skippedModules { c.nameInterface.NewSkippedModule(nctx, name, SkippedModuleInfo{ filename: skipped.file, reason: skipped.reasonForSkip, }) } } } deps = append(deps, hookDeps...) return deps, errs } type FileHandler func(*parser.File) // WalkBlueprintsFiles walks a set of Blueprints files starting with the given filepaths, // calling the given file handler on each // // When WalkBlueprintsFiles encounters a Blueprints file with a set of subdirs listed, // it recursively parses any Blueprints files found in those subdirectories. // // If any of the file paths is an ancestor directory of any other of file path, the ancestor // will be parsed and visited first. // // the file handler will be called from a goroutine, so it must be reentrant. // // If no errors are encountered while parsing the files, the list of paths on // which the future output will depend is returned. This list will include both // Blueprints file paths as well as directory paths for cases where wildcard // subdirs are found. // // visitor will be called asynchronously, and will only be called once visitor for each // ancestor directory has completed. // // WalkBlueprintsFiles will not return until all calls to visitor have returned. func (c *Context) WalkBlueprintsFiles(rootDir string, filePaths []string, visitor FileHandler) (deps []string, errs []error) { // make a mapping from ancestors to their descendants to facilitate parsing ancestors first descendantsMap, err := findBlueprintDescendants(filePaths) if err != nil { panic(err.Error()) } blueprintsSet := make(map[string]bool) // Channels to receive data back from openAndParse goroutines blueprintsCh := make(chan fileParseContext) errsCh := make(chan []error) depsCh := make(chan string) // Channel to notify main loop that a openAndParse goroutine has finished doneParsingCh := make(chan fileParseContext) // Number of outstanding goroutines to wait for activeCount := 0 var pending []fileParseContext tooManyErrors := false // Limit concurrent calls to parseBlueprintFiles to 200 // Darwin has a default limit of 256 open files maxActiveCount := 200 // count the number of pending calls to visitor() visitorWaitGroup := sync.WaitGroup{} startParseBlueprintsFile := func(blueprint fileParseContext) { if blueprintsSet[blueprint.fileName] { return } blueprintsSet[blueprint.fileName] = true activeCount++ deps = append(deps, blueprint.fileName) visitorWaitGroup.Add(1) go func() { file, blueprints, deps, errs := c.openAndParse(blueprint.fileName, blueprint.Scope, rootDir, &blueprint) if len(errs) > 0 { errsCh <- errs } for _, blueprint := range blueprints { blueprintsCh <- blueprint } for _, dep := range deps { depsCh <- dep } doneParsingCh <- blueprint if blueprint.parent != nil && blueprint.parent.doneVisiting != nil { // wait for visitor() of parent to complete <-blueprint.parent.doneVisiting } if len(errs) == 0 { // process this file visitor(file) } if blueprint.doneVisiting != nil { close(blueprint.doneVisiting) } visitorWaitGroup.Done() }() } foundParseableBlueprint := func(blueprint fileParseContext) { if activeCount >= maxActiveCount { pending = append(pending, blueprint) } else { startParseBlueprintsFile(blueprint) } } startParseDescendants := func(blueprint fileParseContext) { descendants, hasDescendants := descendantsMap[blueprint.fileName] if hasDescendants { for _, descendant := range descendants { foundParseableBlueprint(fileParseContext{descendant, parser.NewScope(blueprint.Scope), &blueprint, make(chan struct{})}) } } } // begin parsing any files that have no ancestors startParseDescendants(fileParseContext{"", parser.NewScope(nil), nil, nil}) loop: for { if len(errs) > maxErrors { tooManyErrors = true } select { case newErrs := <-errsCh: errs = append(errs, newErrs...) case dep := <-depsCh: deps = append(deps, dep) case blueprint := <-blueprintsCh: if tooManyErrors { continue } foundParseableBlueprint(blueprint) case blueprint := <-doneParsingCh: activeCount-- if !tooManyErrors { startParseDescendants(blueprint) } if activeCount < maxActiveCount && len(pending) > 0 { // start to process the next one from the queue next := pending[len(pending)-1] pending = pending[:len(pending)-1] startParseBlueprintsFile(next) } if activeCount == 0 { break loop } } } sort.Strings(deps) // wait for every visitor() to complete visitorWaitGroup.Wait() return } // MockFileSystem causes the Context to replace all reads with accesses to the provided map of // filenames to contents stored as a byte slice. func (c *Context) MockFileSystem(files map[string][]byte) { // look for a module list file _, ok := files[MockModuleListFile] if !ok { // no module list file specified; find every file named Blueprints pathsToParse := []string{} for candidate := range files { if filepath.Base(candidate) == "Android.bp" { pathsToParse = append(pathsToParse, candidate) } } if len(pathsToParse) < 1 { panic(fmt.Sprintf("No Blueprints files found in mock filesystem: %v\n", files)) } // put the list of Blueprints files into a list file files[MockModuleListFile] = []byte(strings.Join(pathsToParse, "\n")) } c.SetModuleListFile(MockModuleListFile) // mock the filesystem c.fs = pathtools.MockFs(files) } func (c *Context) SetFs(fs pathtools.FileSystem) { c.fs = fs } // openAndParse opens and parses a single Blueprints file, and returns the results func (c *Context) openAndParse(filename string, scope *parser.Scope, rootDir string, parent *fileParseContext) (file *parser.File, subBlueprints []fileParseContext, deps []string, errs []error) { f, err := c.fs.Open(filename) if err != nil { // couldn't open the file; see if we can provide a clearer error than "could not open file" stats, statErr := c.fs.Lstat(filename) if statErr == nil { isSymlink := stats.Mode()&os.ModeSymlink != 0 if isSymlink { err = fmt.Errorf("could not open symlink %v : %v", filename, err) target, readlinkErr := os.Readlink(filename) if readlinkErr == nil { _, targetStatsErr := c.fs.Lstat(target) if targetStatsErr != nil { err = fmt.Errorf("could not open symlink %v; its target (%v) cannot be opened", filename, target) } } } else { err = fmt.Errorf("%v exists but could not be opened: %v", filename, err) } } return nil, nil, nil, []error{err} } func() { defer func() { err = f.Close() if err != nil { errs = append(errs, err) } }() file, subBlueprints, errs = c.parseOne(rootDir, filename, f, scope, parent) }() if len(errs) > 0 { return nil, nil, nil, errs } for _, b := range subBlueprints { deps = append(deps, b.fileName) } return file, subBlueprints, deps, nil } // parseOne parses a single Blueprints file from the given reader, creating Module // objects for each of the module definitions encountered. If the Blueprints // file contains an assignment to the "subdirs" variable, then the // subdirectories listed are searched for Blueprints files returned in the // subBlueprints return value. If the Blueprints file contains an assignment // to the "build" variable, then the file listed are returned in the // subBlueprints return value. // // rootDir specifies the path to the root directory of the source tree, while // filename specifies the path to the Blueprints file. These paths are used for // error reporting and for determining the module's directory. func (c *Context) parseOne(rootDir, filename string, reader io.Reader, scope *parser.Scope, parent *fileParseContext) (file *parser.File, subBlueprints []fileParseContext, errs []error) { relBlueprintsFile, err := filepath.Rel(rootDir, filename) if err != nil { return nil, nil, []error{err} } scope.Remove("subdirs") scope.Remove("optional_subdirs") scope.Remove("build") file, errs = parser.ParseAndEval(filename, reader, scope) if len(errs) > 0 { for i, err := range errs { if parseErr, ok := err.(*parser.ParseError); ok { err = &BlueprintError{ Err: parseErr.Err, Pos: parseErr.Pos, } errs[i] = err } } // If there were any parse errors don't bother trying to interpret the // result. return nil, nil, errs } file.Name = relBlueprintsFile build, buildPos, err := getLocalStringListFromScope(scope, "build") if err != nil { errs = append(errs, err) } for _, buildEntry := range build { if strings.Contains(buildEntry, "/") { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("illegal value %v. The '/' character is not permitted", buildEntry), Pos: buildPos, }) } } if err != nil { errs = append(errs, err) } var blueprints []string newBlueprints, newErrs := c.findBuildBlueprints(filepath.Dir(filename), build, buildPos) blueprints = append(blueprints, newBlueprints...) errs = append(errs, newErrs...) subBlueprintsAndScope := make([]fileParseContext, len(blueprints)) for i, b := range blueprints { subBlueprintsAndScope[i] = fileParseContext{b, parser.NewScope(scope), parent, make(chan struct{})} } return file, subBlueprintsAndScope, errs } func (c *Context) findBuildBlueprints(dir string, build []string, buildPos scanner.Position) ([]string, []error) { var blueprints []string var errs []error for _, file := range build { pattern := filepath.Join(dir, file) var matches []string var err error matches, err = c.glob(pattern, nil) if err != nil { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("%q: %s", pattern, err.Error()), Pos: buildPos, }) continue } if len(matches) == 0 { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("%q: not found", pattern), Pos: buildPos, }) } for _, foundBlueprints := range matches { if strings.HasSuffix(foundBlueprints, "/") { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("%q: is a directory", foundBlueprints), Pos: buildPos, }) } blueprints = append(blueprints, foundBlueprints) } } return blueprints, errs } func (c *Context) findSubdirBlueprints(dir string, subdirs []string, subdirsPos scanner.Position, subBlueprintsName string, optional bool) ([]string, []error) { var blueprints []string var errs []error for _, subdir := range subdirs { pattern := filepath.Join(dir, subdir, subBlueprintsName) var matches []string var err error matches, err = c.glob(pattern, nil) if err != nil { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("%q: %s", pattern, err.Error()), Pos: subdirsPos, }) continue } if len(matches) == 0 && !optional { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("%q: not found", pattern), Pos: subdirsPos, }) } for _, subBlueprints := range matches { if strings.HasSuffix(subBlueprints, "/") { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("%q: is a directory", subBlueprints), Pos: subdirsPos, }) } blueprints = append(blueprints, subBlueprints) } } return blueprints, errs } func getLocalStringListFromScope(scope *parser.Scope, v string) ([]string, scanner.Position, error) { if assignment, local := scope.Get(v); assignment == nil || !local { return nil, scanner.Position{}, nil } else { switch value := assignment.Value.Eval().(type) { case *parser.List: ret := make([]string, 0, len(value.Values)) for _, listValue := range value.Values { s, ok := listValue.(*parser.String) if !ok { // The parser should not produce this. panic("non-string value found in list") } ret = append(ret, s.Value) } return ret, assignment.EqualsPos, nil case *parser.Bool, *parser.String: return nil, scanner.Position{}, &BlueprintError{ Err: fmt.Errorf("%q must be a list of strings", v), Pos: assignment.EqualsPos, } default: panic(fmt.Errorf("unknown value type: %d", assignment.Value.Type())) } } } func getStringFromScope(scope *parser.Scope, v string) (string, scanner.Position, error) { if assignment, _ := scope.Get(v); assignment == nil { return "", scanner.Position{}, nil } else { switch value := assignment.Value.Eval().(type) { case *parser.String: return value.Value, assignment.EqualsPos, nil case *parser.Bool, *parser.List: return "", scanner.Position{}, &BlueprintError{ Err: fmt.Errorf("%q must be a string", v), Pos: assignment.EqualsPos, } default: panic(fmt.Errorf("unknown value type: %d", assignment.Value.Type())) } } } // Clones a build logic module by calling the factory method for its module type, and then cloning // property values. Any values stored in the module object that are not stored in properties // structs will be lost. func (c *Context) cloneLogicModule(origModule *moduleInfo) (Module, []interface{}) { newLogicModule, newProperties := origModule.factory() if len(newProperties) != len(origModule.properties) { panic("mismatched properties array length in " + origModule.Name()) } for i := range newProperties { dst := reflect.ValueOf(newProperties[i]) src := reflect.ValueOf(origModule.properties[i]) proptools.CopyProperties(dst, src) } return newLogicModule, newProperties } func newVariant(module *moduleInfo, mutatorName string, variationName string, local bool) variant { newVariantName := module.variant.name if variationName != "" { if newVariantName == "" { newVariantName = variationName } else { newVariantName += "_" + variationName } } newVariations := module.variant.variations.clone() if newVariations == nil { newVariations = make(variationMap) } newVariations[mutatorName] = variationName newDependencyVariations := module.variant.dependencyVariations.clone() if !local { if newDependencyVariations == nil { newDependencyVariations = make(variationMap) } newDependencyVariations[mutatorName] = variationName } return variant{newVariantName, newVariations, newDependencyVariations} } func (c *Context) createVariations(origModule *moduleInfo, mutatorName string, depChooser depChooser, variationNames []string, local bool) (modulesOrAliases, []error) { if len(variationNames) == 0 { panic(fmt.Errorf("mutator %q passed zero-length variation list for module %q", mutatorName, origModule.Name())) } var newModules modulesOrAliases var errs []error for i, variationName := range variationNames { var newLogicModule Module var newProperties []interface{} if i == 0 { // Reuse the existing module for the first new variant // This both saves creating a new module, and causes the insertion in c.moduleInfo below // with logicModule as the key to replace the original entry in c.moduleInfo newLogicModule, newProperties = origModule.logicModule, origModule.properties } else { newLogicModule, newProperties = c.cloneLogicModule(origModule) } m := *origModule newModule := &m newModule.directDeps = append([]depInfo(nil), origModule.directDeps...) newModule.reverseDeps = nil newModule.forwardDeps = nil newModule.logicModule = newLogicModule newModule.variant = newVariant(origModule, mutatorName, variationName, local) newModule.properties = newProperties newModule.providers = append([]interface{}(nil), origModule.providers...) newModules = append(newModules, newModule) newErrs := c.convertDepsToVariation(newModule, depChooser) if len(newErrs) > 0 { errs = append(errs, newErrs...) } } // Mark original variant as invalid. Modules that depend on this module will still // depend on origModule, but we'll fix it when the mutator is called on them. origModule.logicModule = nil origModule.splitModules = newModules atomic.AddUint32(&c.depsModified, 1) return newModules, errs } type depChooser func(source *moduleInfo, dep depInfo) (*moduleInfo, string) // This function is called for every dependency edge to determine which // variation of the dependency is needed. Its inputs are the depending module, // its variation, the dependency and the dependency tag. type Transition func(source Module, sourceVariation string, dep Module, depTag DependencyTag) string func chooseDepByTransition(mutatorName string, transition Transition) depChooser { return func(source *moduleInfo, dep depInfo) (*moduleInfo, string) { sourceVariation := source.variant.variations[mutatorName] depLogicModule := dep.module.logicModule if depLogicModule == nil { // This is really a lie because the original dependency before the split // went away when it was split. We choose an arbitrary split module // instead and hope that whatever information the transition wants from it // is the same as in the original one // TODO(lberki): this can be fixed by calling transition() once and saving // its results somewhere depLogicModule = dep.module.splitModules[0].moduleOrAliasTarget().logicModule } desiredVariation := transition(source.logicModule, sourceVariation, depLogicModule, dep.tag) for _, m := range dep.module.splitModules { if m.moduleOrAliasVariant().variations[mutatorName] == desiredVariation { return m.moduleOrAliasTarget(), "" } } return nil, desiredVariation } } func chooseDep(candidates modulesOrAliases, mutatorName, variationName string, defaultVariationName *string) (*moduleInfo, string) { for _, m := range candidates { if m.moduleOrAliasVariant().variations[mutatorName] == variationName { return m.moduleOrAliasTarget(), "" } } if defaultVariationName != nil { // give it a second chance; match with defaultVariationName for _, m := range candidates { if m.moduleOrAliasVariant().variations[mutatorName] == *defaultVariationName { return m.moduleOrAliasTarget(), "" } } } return nil, variationName } func chooseDepExplicit(mutatorName string, variationName string, defaultVariationName *string) depChooser { return func(source *moduleInfo, dep depInfo) (*moduleInfo, string) { return chooseDep(dep.module.splitModules, mutatorName, variationName, defaultVariationName) } } func chooseDepInherit(mutatorName string, defaultVariationName *string) depChooser { return func(source *moduleInfo, dep depInfo) (*moduleInfo, string) { sourceVariation := source.variant.variations[mutatorName] return chooseDep(dep.module.splitModules, mutatorName, sourceVariation, defaultVariationName) } } func (c *Context) convertDepsToVariation(module *moduleInfo, depChooser depChooser) (errs []error) { for i, dep := range module.directDeps { if dep.module.logicModule == nil { newDep, missingVariation := depChooser(module, dep) if newDep == nil { errs = append(errs, &BlueprintError{ Err: fmt.Errorf("failed to find variation %q for module %q needed by %q", missingVariation, dep.module.Name(), module.Name()), Pos: module.pos, }) continue } module.directDeps[i].module = newDep } } return errs } func (c *Context) prettyPrintVariant(variations variationMap) string { names := make([]string, 0, len(variations)) for _, m := range c.variantMutatorNames { if v, ok := variations[m]; ok { names = append(names, m+":"+v) } } return strings.Join(names, ",") } func (c *Context) prettyPrintGroupVariants(group *moduleGroup) string { var variants []string for _, moduleOrAlias := range group.modules { if mod := moduleOrAlias.module(); mod != nil { variants = append(variants, c.prettyPrintVariant(mod.variant.variations)) } else if alias := moduleOrAlias.alias(); alias != nil { variants = append(variants, c.prettyPrintVariant(alias.variant.variations)+ " (alias to "+c.prettyPrintVariant(alias.target.variant.variations)+")") } } return strings.Join(variants, "\n ") } func newModule(factory ModuleFactory) *moduleInfo { logicModule, properties := factory() return &moduleInfo{ logicModule: logicModule, factory: factory, properties: properties, } } func processModuleDef(moduleDef *parser.Module, relBlueprintsFile string, moduleFactories, scopedModuleFactories map[string]ModuleFactory, ignoreUnknownModuleTypes bool) (*moduleInfo, []error) { factory, ok := moduleFactories[moduleDef.Type] if !ok && scopedModuleFactories != nil { factory, ok = scopedModuleFactories[moduleDef.Type] } if !ok { if ignoreUnknownModuleTypes { return nil, nil } return nil, []error{ &BlueprintError{ Err: fmt.Errorf("unrecognized module type %q", moduleDef.Type), Pos: moduleDef.TypePos, }, } } module := newModule(factory) module.typeName = moduleDef.Type module.relBlueprintsFile = relBlueprintsFile propertyMap, errs := proptools.UnpackProperties(moduleDef.Properties, module.properties...) if len(errs) > 0 { for i, err := range errs { if unpackErr, ok := err.(*proptools.UnpackError); ok { err = &BlueprintError{ Err: unpackErr.Err, Pos: unpackErr.Pos, } errs[i] = err } } return nil, errs } module.pos = moduleDef.TypePos module.propertyPos = make(map[string]scanner.Position) for name, propertyDef := range propertyMap { module.propertyPos[name] = propertyDef.ColonPos } return module, nil } func (c *Context) addModule(module *moduleInfo) []error { name := module.logicModule.Name() if name == "" { return []error{ &BlueprintError{ Err: fmt.Errorf("property 'name' is missing from a module"), Pos: module.pos, }, } } c.moduleInfo[module.logicModule] = module group := &moduleGroup{ name: name, modules: modulesOrAliases{module}, } module.group = group namespace, errs := c.nameInterface.NewModule( newNamespaceContext(module), ModuleGroup{moduleGroup: group}, module.logicModule) if len(errs) > 0 { for i := range errs { errs[i] = &BlueprintError{Err: errs[i], Pos: module.pos} } return errs } group.namespace = namespace c.moduleGroups = append(c.moduleGroups, group) return nil } // ResolveDependencies checks that the dependencies specified by all of the // modules defined in the parsed Blueprints files are valid. This means that // the modules depended upon are defined and that no circular dependencies // exist. func (c *Context) ResolveDependencies(config interface{}) (deps []string, errs []error) { c.BeginEvent("resolve_deps") defer c.EndEvent("resolve_deps") return c.resolveDependencies(c.Context, config) } func (c *Context) resolveDependencies(ctx context.Context, config interface{}) (deps []string, errs []error) { pprof.Do(ctx, pprof.Labels("blueprint", "ResolveDependencies"), func(ctx context.Context) { c.initProviders() c.liveGlobals = newLiveTracker(c, config) errs = c.updateDependencies() if len(errs) > 0 { return } deps, errs = c.runMutators(ctx, config) if len(errs) > 0 { return } c.BeginEvent("clone_modules") if !c.SkipCloneModulesAfterMutators { c.cloneModules() } defer c.EndEvent("clone_modules") c.dependenciesReady = true }) if len(errs) > 0 { return nil, errs } return deps, nil } // Default dependencies handling. If the module implements the (deprecated) // DynamicDependerModule interface then this set consists of the union of those // module names returned by its DynamicDependencies method and those added by calling // AddDependencies or AddVariationDependencies on DynamicDependencyModuleContext. func blueprintDepsMutator(ctx BottomUpMutatorContext) { if dynamicDepender, ok := ctx.Module().(DynamicDependerModule); ok { func() { defer func() { if r := recover(); r != nil { ctx.error(newPanicErrorf(r, "DynamicDependencies for %s", ctx.moduleInfo())) } }() dynamicDeps := dynamicDepender.DynamicDependencies(ctx) if ctx.Failed() { return } ctx.AddDependency(ctx.Module(), nil, dynamicDeps...) }() } } // findExactVariantOrSingle searches the moduleGroup for a module with the same variant as module, // and returns the matching module, or nil if one is not found. A group with exactly one module // is always considered matching. func findExactVariantOrSingle(module *moduleInfo, possible *moduleGroup, reverse bool) *moduleInfo { found, _ := findVariant(module, possible, nil, false, reverse) if found == nil { for _, moduleOrAlias := range possible.modules { if m := moduleOrAlias.module(); m != nil { if found != nil { // more than one possible match, give up return nil } found = m } } } return found } func (c *Context) addDependency(module *moduleInfo, tag DependencyTag, depName string) (*moduleInfo, []error) { if _, ok := tag.(BaseDependencyTag); ok { panic("BaseDependencyTag is not allowed to be used directly!") } if depName == module.Name() { return nil, []error{&BlueprintError{ Err: fmt.Errorf("%q depends on itself", depName), Pos: module.pos, }} } possibleDeps := c.moduleGroupFromName(depName, module.namespace()) if possibleDeps == nil { return nil, c.discoveredMissingDependencies(module, depName, nil) } if m := findExactVariantOrSingle(module, possibleDeps, false); m != nil { module.newDirectDeps = append(module.newDirectDeps, depInfo{m, tag}) atomic.AddUint32(&c.depsModified, 1) return m, nil } if c.allowMissingDependencies { // Allow missing variants. return nil, c.discoveredMissingDependencies(module, depName, module.variant.dependencyVariations) } return nil, []error{&BlueprintError{ Err: fmt.Errorf("dependency %q of %q missing variant:\n %s\navailable variants:\n %s", depName, module.Name(), c.prettyPrintVariant(module.variant.dependencyVariations), c.prettyPrintGroupVariants(possibleDeps)), Pos: module.pos, }} } func (c *Context) findReverseDependency(module *moduleInfo, destName string) (*moduleInfo, []error) { if destName == module.Name() { return nil, []error{&BlueprintError{ Err: fmt.Errorf("%q depends on itself", destName), Pos: module.pos, }} } possibleDeps := c.moduleGroupFromName(destName, module.namespace()) if possibleDeps == nil { return nil, []error{&BlueprintError{ Err: fmt.Errorf("%q has a reverse dependency on undefined module %q", module.Name(), destName), Pos: module.pos, }} } if m := findExactVariantOrSingle(module, possibleDeps, true); m != nil { return m, nil } if c.allowMissingDependencies { // Allow missing variants. return module, c.discoveredMissingDependencies(module, destName, module.variant.dependencyVariations) } return nil, []error{&BlueprintError{ Err: fmt.Errorf("reverse dependency %q of %q missing variant:\n %s\navailable variants:\n %s", destName, module.Name(), c.prettyPrintVariant(module.variant.dependencyVariations), c.prettyPrintGroupVariants(possibleDeps)), Pos: module.pos, }} } func findVariant(module *moduleInfo, possibleDeps *moduleGroup, variations []Variation, far bool, reverse bool) (*moduleInfo, variationMap) { // We can't just append variant.Variant to module.dependencyVariant.variantName and // compare the strings because the result won't be in mutator registration order. // Create a new map instead, and then deep compare the maps. var newVariant variationMap if !far { if !reverse { // For forward dependency, ignore local variants by matching against // dependencyVariant which doesn't have the local variants newVariant = module.variant.dependencyVariations.clone() } else { // For reverse dependency, use all the variants newVariant = module.variant.variations.clone() } } for _, v := range variations { if newVariant == nil { newVariant = make(variationMap) } newVariant[v.Mutator] = v.Variation } check := func(variant variationMap) bool { if far { return newVariant.subsetOf(variant) } else { return variant.equal(newVariant) } } var foundDep *moduleInfo for _, m := range possibleDeps.modules { if check(m.moduleOrAliasVariant().variations) { foundDep = m.moduleOrAliasTarget() break } } return foundDep, newVariant } func (c *Context) addVariationDependency(module *moduleInfo, variations []Variation, tag DependencyTag, depName string, far bool) (*moduleInfo, []error) { if _, ok := tag.(BaseDependencyTag); ok { panic("BaseDependencyTag is not allowed to be used directly!") } possibleDeps := c.moduleGroupFromName(depName, module.namespace()) if possibleDeps == nil { return nil, c.discoveredMissingDependencies(module, depName, nil) } foundDep, newVariant := findVariant(module, possibleDeps, variations, far, false) if foundDep == nil { if c.allowMissingDependencies { // Allow missing variants. return nil, c.discoveredMissingDependencies(module, depName, newVariant) } return nil, []error{&BlueprintError{ Err: fmt.Errorf("dependency %q of %q missing variant:\n %s\navailable variants:\n %s", depName, module.Name(), c.prettyPrintVariant(newVariant), c.prettyPrintGroupVariants(possibleDeps)), Pos: module.pos, }} } if module == foundDep { return nil, []error{&BlueprintError{ Err: fmt.Errorf("%q depends on itself", depName), Pos: module.pos, }} } // AddVariationDependency allows adding a dependency on itself, but only if // that module is earlier in the module list than this one, since we always // run GenerateBuildActions in order for the variants of a module if foundDep.group == module.group && beforeInModuleList(module, foundDep, module.group.modules) { return nil, []error{&BlueprintError{ Err: fmt.Errorf("%q depends on later version of itself", depName), Pos: module.pos, }} } module.newDirectDeps = append(module.newDirectDeps, depInfo{foundDep, tag}) atomic.AddUint32(&c.depsModified, 1) return foundDep, nil } func (c *Context) addInterVariantDependency(origModule *moduleInfo, tag DependencyTag, from, to Module) *moduleInfo { if _, ok := tag.(BaseDependencyTag); ok { panic("BaseDependencyTag is not allowed to be used directly!") } var fromInfo, toInfo *moduleInfo for _, moduleOrAlias := range origModule.splitModules { if m := moduleOrAlias.module(); m != nil { if m.logicModule == from { fromInfo = m } if m.logicModule == to { toInfo = m if fromInfo != nil { panic(fmt.Errorf("%q depends on later version of itself", origModule.Name())) } } } } if fromInfo == nil || toInfo == nil { panic(fmt.Errorf("AddInterVariantDependency called for module %q on invalid variant", origModule.Name())) } fromInfo.newDirectDeps = append(fromInfo.newDirectDeps, depInfo{toInfo, tag}) atomic.AddUint32(&c.depsModified, 1) return toInfo } // findBlueprintDescendants returns a map linking parent Blueprint files to child Blueprints files // For example, if paths = []string{"a/b/c/Android.bp", "a/Android.bp"}, // then descendants = {"":[]string{"a/Android.bp"}, "a/Android.bp":[]string{"a/b/c/Android.bp"}} func findBlueprintDescendants(paths []string) (descendants map[string][]string, err error) { // make mapping from dir path to file path filesByDir := make(map[string]string, len(paths)) for _, path := range paths { dir := filepath.Dir(path) _, alreadyFound := filesByDir[dir] if alreadyFound { return nil, fmt.Errorf("Found two Blueprint files in directory %v : %v and %v", dir, filesByDir[dir], path) } filesByDir[dir] = path } findAncestor := func(childFile string) (ancestor string) { prevAncestorDir := filepath.Dir(childFile) for { ancestorDir := filepath.Dir(prevAncestorDir) if ancestorDir == prevAncestorDir { // reached the root dir without any matches; assign this as a descendant of "" return "" } ancestorFile, ancestorExists := filesByDir[ancestorDir] if ancestorExists { return ancestorFile } prevAncestorDir = ancestorDir } } // generate the descendants map descendants = make(map[string][]string, len(filesByDir)) for _, childFile := range filesByDir { ancestorFile := findAncestor(childFile) descendants[ancestorFile] = append(descendants[ancestorFile], childFile) } return descendants, nil } type visitOrderer interface { // returns the number of modules that this module needs to wait for waitCount(module *moduleInfo) int // returns the list of modules that are waiting for this module propagate(module *moduleInfo) []*moduleInfo // visit modules in order visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool) } type unorderedVisitorImpl struct{} func (unorderedVisitorImpl) waitCount(module *moduleInfo) int { return 0 } func (unorderedVisitorImpl) propagate(module *moduleInfo) []*moduleInfo { return nil } func (unorderedVisitorImpl) visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool) { for _, module := range modules { if visit(module, nil) { return } } } type bottomUpVisitorImpl struct{} func (bottomUpVisitorImpl) waitCount(module *moduleInfo) int { return len(module.forwardDeps) } func (bottomUpVisitorImpl) propagate(module *moduleInfo) []*moduleInfo { return module.reverseDeps } func (bottomUpVisitorImpl) visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool) { for _, module := range modules { if visit(module, nil) { return } } } type topDownVisitorImpl struct{} func (topDownVisitorImpl) waitCount(module *moduleInfo) int { return len(module.reverseDeps) } func (topDownVisitorImpl) propagate(module *moduleInfo) []*moduleInfo { return module.forwardDeps } func (topDownVisitorImpl) visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool) { for i := 0; i < len(modules); i++ { module := modules[len(modules)-1-i] if visit(module, nil) { return } } } var ( bottomUpVisitor bottomUpVisitorImpl topDownVisitor topDownVisitorImpl ) // pauseSpec describes a pause that a module needs to occur until another module has been visited, // at which point the unpause channel will be closed. type pauseSpec struct { paused *moduleInfo until *moduleInfo unpause unpause } type unpause chan struct{} const parallelVisitLimit = 1000 // Calls visit on each module, guaranteeing that visit is not called on a module until visit on all // of its dependencies has finished. A visit function can write a pauseSpec to the pause channel // to wait for another dependency to be visited. If a visit function returns true to cancel // while another visitor is paused, the paused visitor will never be resumed and its goroutine // will stay paused forever. func parallelVisit(modules []*moduleInfo, order visitOrderer, limit int, visit func(module *moduleInfo, pause chan<- pauseSpec) bool) []error { doneCh := make(chan *moduleInfo) cancelCh := make(chan bool) pauseCh := make(chan pauseSpec) cancel := false var backlog []*moduleInfo // Visitors that are ready to start but backlogged due to limit. var unpauseBacklog []pauseSpec // Visitors that are ready to unpause but backlogged due to limit. active := 0 // Number of visitors running, not counting paused visitors. visited := 0 // Number of finished visitors. pauseMap := make(map[*moduleInfo][]pauseSpec) for _, module := range modules { module.waitingCount = order.waitCount(module) } // Call the visitor on a module if there are fewer active visitors than the parallelism // limit, otherwise add it to the backlog. startOrBacklog := func(module *moduleInfo) { if active < limit { active++ go func() { ret := visit(module, pauseCh) if ret { cancelCh <- true } doneCh <- module }() } else { backlog = append(backlog, module) } } // Unpause the already-started but paused visitor on a module if there are fewer active // visitors than the parallelism limit, otherwise add it to the backlog. unpauseOrBacklog := func(pauseSpec pauseSpec) { if active < limit { active++ close(pauseSpec.unpause) } else { unpauseBacklog = append(unpauseBacklog, pauseSpec) } } // Start any modules in the backlog up to the parallelism limit. Unpause paused modules first // since they may already be holding resources. unpauseOrStartFromBacklog := func() { for active < limit && len(unpauseBacklog) > 0 { unpause := unpauseBacklog[0] unpauseBacklog = unpauseBacklog[1:] unpauseOrBacklog(unpause) } for active < limit && len(backlog) > 0 { toVisit := backlog[0] backlog = backlog[1:] startOrBacklog(toVisit) } } toVisit := len(modules) // Start or backlog any modules that are not waiting for any other modules. for _, module := range modules { if module.waitingCount == 0 { startOrBacklog(module) } } for active > 0 { select { case <-cancelCh: cancel = true backlog = nil case doneModule := <-doneCh: active-- if !cancel { // Mark this module as done. doneModule.waitingCount = -1 visited++ // Unpause or backlog any modules that were waiting for this one. if unpauses, ok := pauseMap[doneModule]; ok { delete(pauseMap, doneModule) for _, unpause := range unpauses { unpauseOrBacklog(unpause) } } // Start any backlogged modules up to limit. unpauseOrStartFromBacklog() // Decrement waitingCount on the next modules in the tree based // on propagation order, and start or backlog them if they are // ready to start. for _, module := range order.propagate(doneModule) { module.waitingCount-- if module.waitingCount == 0 { startOrBacklog(module) } } } case pauseSpec := <-pauseCh: if pauseSpec.until.waitingCount == -1 { // Module being paused for is already finished, resume immediately. close(pauseSpec.unpause) } else { // Register for unpausing. pauseMap[pauseSpec.until] = append(pauseMap[pauseSpec.until], pauseSpec) // Don't count paused visitors as active so that this can't deadlock // if 1000 visitors are paused simultaneously. active-- unpauseOrStartFromBacklog() } } } if !cancel { // Invariant check: no backlogged modules, these weren't waiting on anything except // the parallelism limit so they should have run. if len(backlog) > 0 { panic(fmt.Errorf("parallelVisit finished with %d backlogged visitors", len(backlog))) } // Invariant check: no backlogged paused modules, these weren't waiting on anything // except the parallelism limit so they should have run. if len(unpauseBacklog) > 0 { panic(fmt.Errorf("parallelVisit finished with %d backlogged unpaused visitors", len(unpauseBacklog))) } if len(pauseMap) > 0 { // Probably a deadlock due to a newly added dependency cycle. Start from each module in // the order of the input modules list and perform a depth-first search for the module // it is paused on, ignoring modules that are marked as done. Note this traverses from // modules to the modules that would have been unblocked when that module finished, i.e // the reverse of the visitOrderer. // In order to reduce duplicated work, once a module has been checked and determined // not to be part of a cycle add it and everything that depends on it to the checked // map. checked := make(map[*moduleInfo]struct{}) var check func(module, end *moduleInfo) []*moduleInfo check = func(module, end *moduleInfo) []*moduleInfo { if module.waitingCount == -1 { // This module was finished, it can't be part of a loop. return nil } if module == end { // This module is the end of the loop, start rolling up the cycle. return []*moduleInfo{module} } if _, alreadyChecked := checked[module]; alreadyChecked { return nil } for _, dep := range order.propagate(module) { cycle := check(dep, end) if cycle != nil { return append([]*moduleInfo{module}, cycle...) } } for _, depPauseSpec := range pauseMap[module] { cycle := check(depPauseSpec.paused, end) if cycle != nil { return append([]*moduleInfo{module}, cycle...) } } checked[module] = struct{}{} return nil } // Iterate over the modules list instead of pauseMap to provide deterministic ordering. for _, module := range modules { for _, pauseSpec := range pauseMap[module] { cycle := check(pauseSpec.paused, pauseSpec.until) if len(cycle) > 0 { return cycleError(cycle) } } } } // Invariant check: if there was no deadlock and no cancellation every module // should have been visited. if visited != toVisit { panic(fmt.Errorf("parallelVisit ran %d visitors, expected %d", visited, toVisit)) } // Invariant check: if there was no deadlock and no cancellation every module // should have been visited, so there is nothing left to be paused on. if len(pauseMap) > 0 { panic(fmt.Errorf("parallelVisit finished with %d paused visitors", len(pauseMap))) } } return nil } func cycleError(cycle []*moduleInfo) (errs []error) { // The cycle list is in reverse order because all the 'check' calls append // their own module to the list. errs = append(errs, &BlueprintError{ Err: fmt.Errorf("encountered dependency cycle:"), Pos: cycle[len(cycle)-1].pos, }) // Iterate backwards through the cycle list. curModule := cycle[0] for i := len(cycle) - 1; i >= 0; i-- { nextModule := cycle[i] errs = append(errs, &BlueprintError{ Err: fmt.Errorf(" %s depends on %s", curModule, nextModule), Pos: curModule.pos, }) curModule = nextModule } return errs } // updateDependencies recursively walks the module dependency graph and updates // additional fields based on the dependencies. It builds a sorted list of modules // such that dependencies of a module always appear first, and populates reverse // dependency links and counts of total dependencies. It also reports errors when // it encounters dependency cycles. This should be called after resolveDependencies, // as well as after any mutator pass has called addDependency func (c *Context) updateDependencies() (errs []error) { c.cachedDepsModified = true visited := make(map[*moduleInfo]bool) // modules that were already checked checking := make(map[*moduleInfo]bool) // modules actively being checked sorted := make([]*moduleInfo, 0, len(c.moduleInfo)) var check func(group *moduleInfo) []*moduleInfo check = func(module *moduleInfo) []*moduleInfo { visited[module] = true checking[module] = true defer delete(checking, module) // Reset the forward and reverse deps without reducing their capacity to avoid reallocation. module.reverseDeps = module.reverseDeps[:0] module.forwardDeps = module.forwardDeps[:0] // Add an implicit dependency ordering on all earlier modules in the same module group for _, dep := range module.group.modules { if dep == module { break } if depModule := dep.module(); depModule != nil { module.forwardDeps = append(module.forwardDeps, depModule) } } outer: for _, dep := range module.directDeps { // use a loop to check for duplicates, average number of directDeps measured to be 9.5. for _, exists := range module.forwardDeps { if dep.module == exists { continue outer } } module.forwardDeps = append(module.forwardDeps, dep.module) } for _, dep := range module.forwardDeps { if checking[dep] { // This is a cycle. return []*moduleInfo{dep, module} } if !visited[dep] { cycle := check(dep) if cycle != nil { if cycle[0] == module { // We are the "start" of the cycle, so we're responsible // for generating the errors. errs = append(errs, cycleError(cycle)...) // We can continue processing this module's children to // find more cycles. Since all the modules that were // part of the found cycle were marked as visited we // won't run into that cycle again. } else { // We're not the "start" of the cycle, so we just append // our module to the list and return it. return append(cycle, module) } } } dep.reverseDeps = append(dep.reverseDeps, module) } sorted = append(sorted, module) return nil } for _, module := range c.moduleInfo { if !visited[module] { cycle := check(module) if cycle != nil { if cycle[len(cycle)-1] != module { panic("inconceivable!") } errs = append(errs, cycleError(cycle)...) } } } c.modulesSorted = sorted return } type jsonVariations []Variation type jsonModuleName struct { Name string Variant string Variations jsonVariations DependencyVariations jsonVariations } type jsonDep struct { jsonModuleName Tag string } type JsonModule struct { jsonModuleName Deps []jsonDep Type string Blueprint string CreatedBy *string Module map[string]interface{} } func toJsonVariationMap(vm variationMap) jsonVariations { m := make(jsonVariations, 0, len(vm)) for k, v := range vm { m = append(m, Variation{k, v}) } sort.Slice(m, func(i, j int) bool { if m[i].Mutator != m[j].Mutator { return m[i].Mutator < m[j].Mutator } return m[i].Variation < m[j].Variation }) return m } func jsonModuleNameFromModuleInfo(m *moduleInfo) *jsonModuleName { return &jsonModuleName{ Name: m.Name(), Variant: m.variant.name, Variations: toJsonVariationMap(m.variant.variations), DependencyVariations: toJsonVariationMap(m.variant.dependencyVariations), } } type JSONDataSupplier interface { AddJSONData(d *map[string]interface{}) } // JSONAction contains the action-related info we expose to json module graph type JSONAction struct { Inputs []string Outputs []string Desc string } // JSONActionSupplier allows JSON representation of additional actions that are not registered in // Ninja type JSONActionSupplier interface { JSONActions() []JSONAction } func jsonModuleFromModuleInfo(m *moduleInfo) *JsonModule { result := &JsonModule{ jsonModuleName: *jsonModuleNameFromModuleInfo(m), Deps: make([]jsonDep, 0), Type: m.typeName, Blueprint: m.relBlueprintsFile, Module: make(map[string]interface{}), } if m.createdBy != nil { n := m.createdBy.Name() result.CreatedBy = &n } if j, ok := m.logicModule.(JSONDataSupplier); ok { j.AddJSONData(&result.Module) } for _, p := range m.providers { if j, ok := p.(JSONDataSupplier); ok { j.AddJSONData(&result.Module) } } return result } func jsonModuleWithActionsFromModuleInfo(m *moduleInfo) *JsonModule { result := &JsonModule{ jsonModuleName: jsonModuleName{ Name: m.Name(), Variant: m.variant.name, }, Deps: make([]jsonDep, 0), Type: m.typeName, Blueprint: m.relBlueprintsFile, Module: make(map[string]interface{}), } var actions []JSONAction for _, bDef := range m.actionDefs.buildDefs { a := JSONAction{ Inputs: append(append(append( bDef.InputStrings, bDef.ImplicitStrings...), getNinjaStringsWithNilPkgNames(bDef.Inputs)...), getNinjaStringsWithNilPkgNames(bDef.Implicits)...), Outputs: append(append(append( bDef.OutputStrings, bDef.ImplicitOutputStrings...), getNinjaStringsWithNilPkgNames(bDef.Outputs)...), getNinjaStringsWithNilPkgNames(bDef.ImplicitOutputs)...), } if d, ok := bDef.Variables["description"]; ok { a.Desc = d.Value(nil) } actions = append(actions, a) } if j, ok := m.logicModule.(JSONActionSupplier); ok { actions = append(actions, j.JSONActions()...) } for _, p := range m.providers { if j, ok := p.(JSONActionSupplier); ok { actions = append(actions, j.JSONActions()...) } } result.Module["Actions"] = actions return result } // Gets a list of strings from the given list of ninjaStrings by invoking ninjaString.Value with // nil pkgNames on each of the input ninjaStrings. func getNinjaStringsWithNilPkgNames(nStrs []*ninjaString) []string { var strs []string for _, nstr := range nStrs { strs = append(strs, nstr.Value(nil)) } return strs } func (c *Context) GetWeightedOutputsFromPredicate(predicate func(*JsonModule) (bool, int)) map[string]int { outputToWeight := make(map[string]int) for _, m := range c.modulesSorted { jmWithActions := jsonModuleWithActionsFromModuleInfo(m) if ok, weight := predicate(jmWithActions); ok { for _, a := range jmWithActions.Module["Actions"].([]JSONAction) { for _, o := range a.Outputs { if val, ok := outputToWeight[o]; ok { if val > weight { continue } } outputToWeight[o] = weight } } } } return outputToWeight } func inList(s string, l []string) bool { for _, element := range l { if s == element { return true } } return false } // PrintJSONGraph prints info of modules in a JSON file. func (c *Context) PrintJSONGraphAndActions(wGraph io.Writer, wActions io.Writer) { modulesToGraph := make([]*JsonModule, 0) modulesToActions := make([]*JsonModule, 0) for _, m := range c.modulesSorted { jm := jsonModuleFromModuleInfo(m) jmWithActions := jsonModuleWithActionsFromModuleInfo(m) for _, d := range m.directDeps { jm.Deps = append(jm.Deps, jsonDep{ jsonModuleName: *jsonModuleNameFromModuleInfo(d.module), Tag: fmt.Sprintf("%T %+v", d.tag, d.tag), }) jmWithActions.Deps = append(jmWithActions.Deps, jsonDep{ jsonModuleName: jsonModuleName{ Name: d.module.Name(), }, }) } modulesToGraph = append(modulesToGraph, jm) modulesToActions = append(modulesToActions, jmWithActions) } writeJson(wGraph, modulesToGraph) writeJson(wActions, modulesToActions) } func writeJson(w io.Writer, modules []*JsonModule) { e := json.NewEncoder(w) e.SetIndent("", "\t") e.Encode(modules) } // PrepareBuildActions generates an internal representation of all the build // actions that need to be performed. This process involves invoking the // GenerateBuildActions method on each of the Module objects created during the // parse phase and then on each of the registered Singleton objects. // // If the ResolveDependencies method has not already been called it is called // automatically by this method. // // The config argument is made available to all of the Module and Singleton // objects via the Config method on the ModuleContext and SingletonContext // objects passed to GenerateBuildActions. It is also passed to the functions // specified via PoolFunc, RuleFunc, and VariableFunc so that they can compute // config-specific values. // // The returned deps is a list of the ninja files dependencies that were added // by the modules and singletons via the ModuleContext.AddNinjaFileDeps(), // SingletonContext.AddNinjaFileDeps(), and PackageContext.AddNinjaFileDeps() // methods. func (c *Context) PrepareBuildActions(config interface{}) (deps []string, errs []error) { c.BeginEvent("prepare_build_actions") defer c.EndEvent("prepare_build_actions") pprof.Do(c.Context, pprof.Labels("blueprint", "PrepareBuildActions"), func(ctx context.Context) { c.buildActionsReady = false if !c.dependenciesReady { var extraDeps []string extraDeps, errs = c.resolveDependencies(ctx, config) if len(errs) > 0 { return } deps = append(deps, extraDeps...) } var depsModules []string depsModules, errs = c.generateModuleBuildActions(config, c.liveGlobals) if len(errs) > 0 { return } var depsSingletons []string depsSingletons, errs = c.generateSingletonBuildActions(config, c.singletonInfo, c.liveGlobals) if len(errs) > 0 { return } deps = append(deps, depsModules...) deps = append(deps, depsSingletons...) if c.outDir != nil { err := c.liveGlobals.addNinjaStringDeps(c.outDir) if err != nil { errs = []error{err} return } } pkgNames, depsPackages := c.makeUniquePackageNames(c.liveGlobals) deps = append(deps, depsPackages...) c.memoizeFullNames(c.liveGlobals, pkgNames) // This will panic if it finds a problem since it's a programming error. c.checkForVariableReferenceCycles(c.liveGlobals.variables, pkgNames) c.pkgNames = pkgNames c.globalVariables = c.liveGlobals.variables c.globalPools = c.liveGlobals.pools c.globalRules = c.liveGlobals.rules c.buildActionsReady = true }) if len(errs) > 0 { return nil, errs } return deps, nil } func (c *Context) runMutators(ctx context.Context, config interface{}) (deps []string, errs []error) { pprof.Do(ctx, pprof.Labels("blueprint", "runMutators"), func(ctx context.Context) { for _, mutator := range c.mutatorInfo { pprof.Do(ctx, pprof.Labels("mutator", mutator.name), func(context.Context) { c.BeginEvent(mutator.name) defer c.EndEvent(mutator.name) var newDeps []string if mutator.topDownMutator != nil { newDeps, errs = c.runMutator(config, mutator, topDownMutator) } else if mutator.bottomUpMutator != nil { newDeps, errs = c.runMutator(config, mutator, bottomUpMutator) } else { panic("no mutator set on " + mutator.name) } if len(errs) > 0 { return } deps = append(deps, newDeps...) }) if len(errs) > 0 { return } } }) if len(errs) > 0 { return nil, errs } return deps, nil } type mutatorDirection interface { run(mutator *mutatorInfo, ctx *mutatorContext) orderer() visitOrderer fmt.Stringer } type bottomUpMutatorImpl struct{} func (bottomUpMutatorImpl) run(mutator *mutatorInfo, ctx *mutatorContext) { mutator.bottomUpMutator(ctx) } func (bottomUpMutatorImpl) orderer() visitOrderer { return bottomUpVisitor } func (bottomUpMutatorImpl) String() string { return "bottom up mutator" } type topDownMutatorImpl struct{} func (topDownMutatorImpl) run(mutator *mutatorInfo, ctx *mutatorContext) { mutator.topDownMutator(ctx) } func (topDownMutatorImpl) orderer() visitOrderer { return topDownVisitor } func (topDownMutatorImpl) String() string { return "top down mutator" } var ( topDownMutator topDownMutatorImpl bottomUpMutator bottomUpMutatorImpl ) type reverseDep struct { module *moduleInfo dep depInfo } func (c *Context) runMutator(config interface{}, mutator *mutatorInfo, direction mutatorDirection) (deps []string, errs []error) { newModuleInfo := make(map[Module]*moduleInfo) for k, v := range c.moduleInfo { newModuleInfo[k] = v } type globalStateChange struct { reverse []reverseDep rename []rename replace []replace newModules []*moduleInfo deps []string } reverseDeps := make(map[*moduleInfo][]depInfo) var rename []rename var replace []replace var newModules []*moduleInfo errsCh := make(chan []error) globalStateCh := make(chan globalStateChange) newVariationsCh := make(chan modulesOrAliases) done := make(chan bool) c.depsModified = 0 visit := func(module *moduleInfo, pause chan<- pauseSpec) bool { if module.splitModules != nil { panic("split module found in sorted module list") } mctx := &mutatorContext{ baseModuleContext: baseModuleContext{ context: c, config: config, module: module, }, name: mutator.name, pauseCh: pause, } module.startedMutator = mutator func() { defer func() { if r := recover(); r != nil { in := fmt.Sprintf("%s %q for %s", direction, mutator.name, module) if err, ok := r.(panicError); ok { err.addIn(in) mctx.error(err) } else { mctx.error(newPanicErrorf(r, in)) } } }() direction.run(mutator, mctx) }() module.finishedMutator = mutator if len(mctx.errs) > 0 { errsCh <- mctx.errs return true } if len(mctx.newVariations) > 0 { newVariationsCh <- mctx.newVariations } if len(mctx.reverseDeps) > 0 || len(mctx.replace) > 0 || len(mctx.rename) > 0 || len(mctx.newModules) > 0 || len(mctx.ninjaFileDeps) > 0 { globalStateCh <- globalStateChange{ reverse: mctx.reverseDeps, replace: mctx.replace, rename: mctx.rename, newModules: mctx.newModules, deps: mctx.ninjaFileDeps, } } return false } // Process errs and reverseDeps in a single goroutine go func() { for { select { case newErrs := <-errsCh: errs = append(errs, newErrs...) case globalStateChange := <-globalStateCh: for _, r := range globalStateChange.reverse { reverseDeps[r.module] = append(reverseDeps[r.module], r.dep) } replace = append(replace, globalStateChange.replace...) rename = append(rename, globalStateChange.rename...) newModules = append(newModules, globalStateChange.newModules...) deps = append(deps, globalStateChange.deps...) case newVariations := <-newVariationsCh: for _, moduleOrAlias := range newVariations { if m := moduleOrAlias.module(); m != nil { newModuleInfo[m.logicModule] = m } } case <-done: return } } }() c.startedMutator = mutator var visitErrs []error if mutator.parallel { visitErrs = parallelVisit(c.modulesSorted, direction.orderer(), parallelVisitLimit, visit) } else { direction.orderer().visit(c.modulesSorted, visit) } if len(visitErrs) > 0 { return nil, visitErrs } c.finishedMutators[mutator] = true done <- true if len(errs) > 0 { return nil, errs } c.moduleInfo = newModuleInfo for _, group := range c.moduleGroups { for i := 0; i < len(group.modules); i++ { module := group.modules[i].module() if module == nil { // Existing alias, skip it continue } // Update module group to contain newly split variants if module.splitModules != nil { group.modules, i = spliceModules(group.modules, i, module.splitModules) } // Fix up any remaining dependencies on modules that were split into variants // by replacing them with the first variant for j, dep := range module.directDeps { if dep.module.logicModule == nil { module.directDeps[j].module = dep.module.splitModules.firstModule() } } if module.createdBy != nil && module.createdBy.logicModule == nil { module.createdBy = module.createdBy.splitModules.firstModule() } // Add in any new direct dependencies that were added by the mutator module.directDeps = append(module.directDeps, module.newDirectDeps...) module.newDirectDeps = nil } findAliasTarget := func(variant variant) *moduleInfo { for _, moduleOrAlias := range group.modules { if alias := moduleOrAlias.alias(); alias != nil { if alias.variant.variations.equal(variant.variations) { return alias.target } } } return nil } // Forward or delete any dangling aliases. // Use a manual loop instead of range because len(group.modules) can // change inside the loop for i := 0; i < len(group.modules); i++ { if alias := group.modules[i].alias(); alias != nil { if alias.target.logicModule == nil { newTarget := findAliasTarget(alias.target.variant) if newTarget != nil { alias.target = newTarget } else { // The alias was left dangling, remove it. group.modules = append(group.modules[:i], group.modules[i+1:]...) i-- } } } } } // Add in any new reverse dependencies that were added by the mutator for module, deps := range reverseDeps { sort.Sort(depSorter(deps)) module.directDeps = append(module.directDeps, deps...) c.depsModified++ } for _, module := range newModules { errs = c.addModule(module) if len(errs) > 0 { return nil, errs } atomic.AddUint32(&c.depsModified, 1) } errs = c.handleRenames(rename) if len(errs) > 0 { return nil, errs } errs = c.handleReplacements(replace) if len(errs) > 0 { return nil, errs } if c.depsModified > 0 { errs = c.updateDependencies() if len(errs) > 0 { return nil, errs } } return deps, errs } // Replaces every build logic module with a clone of itself. Prevents introducing problems where // a mutator sets a non-property member variable on a module, which works until a later mutator // creates variants of that module. func (c *Context) cloneModules() { type update struct { orig Module clone *moduleInfo } ch := make(chan update) doneCh := make(chan bool) go func() { errs := parallelVisit(c.modulesSorted, unorderedVisitorImpl{}, parallelVisitLimit, func(m *moduleInfo, pause chan<- pauseSpec) bool { origLogicModule := m.logicModule m.logicModule, m.properties = c.cloneLogicModule(m) ch <- update{origLogicModule, m} return false }) if len(errs) > 0 { panic(errs) } doneCh <- true }() done := false for !done { select { case <-doneCh: done = true case update := <-ch: delete(c.moduleInfo, update.orig) c.moduleInfo[update.clone.logicModule] = update.clone } } } // Removes modules[i] from the list and inserts newModules... where it was located, returning // the new slice and the index of the last inserted element func spliceModules(modules modulesOrAliases, i int, newModules modulesOrAliases) (modulesOrAliases, int) { spliceSize := len(newModules) newLen := len(modules) + spliceSize - 1 var dest modulesOrAliases if cap(modules) >= len(modules)-1+len(newModules) { // We can fit the splice in the existing capacity, do everything in place dest = modules[:newLen] } else { dest = make(modulesOrAliases, newLen) copy(dest, modules[:i]) } // Move the end of the slice over by spliceSize-1 copy(dest[i+spliceSize:], modules[i+1:]) // Copy the new modules into the slice copy(dest[i:], newModules) return dest, i + spliceSize - 1 } func (c *Context) generateModuleBuildActions(config interface{}, liveGlobals *liveTracker) ([]string, []error) { c.BeginEvent("generateModuleBuildActions") defer c.EndEvent("generateModuleBuildActions") var deps []string var errs []error cancelCh := make(chan struct{}) errsCh := make(chan []error) depsCh := make(chan []string) go func() { for { select { case <-cancelCh: close(cancelCh) return case newErrs := <-errsCh: errs = append(errs, newErrs...) case newDeps := <-depsCh: deps = append(deps, newDeps...) } } }() visitErrs := parallelVisit(c.modulesSorted, bottomUpVisitor, parallelVisitLimit, func(module *moduleInfo, pause chan<- pauseSpec) bool { uniqueName := c.nameInterface.UniqueName(newNamespaceContext(module), module.group.name) sanitizedName := toNinjaName(uniqueName) sanitizedVariant := toNinjaName(module.variant.name) prefix := moduleNamespacePrefix(sanitizedName + "_" + sanitizedVariant) // The parent scope of the moduleContext's local scope gets overridden to be that of the // calling Go package on a per-call basis. Since the initial parent scope doesn't matter we // just set it to nil. scope := newLocalScope(nil, prefix) mctx := &moduleContext{ baseModuleContext: baseModuleContext{ context: c, config: config, module: module, }, scope: scope, handledMissingDeps: module.missingDeps == nil, } mctx.module.startedGenerateBuildActions = true func() { defer func() { if r := recover(); r != nil { in := fmt.Sprintf("GenerateBuildActions for %s", module) if err, ok := r.(panicError); ok { err.addIn(in) mctx.error(err) } else { mctx.error(newPanicErrorf(r, in)) } } }() mctx.module.logicModule.GenerateBuildActions(mctx) }() mctx.module.finishedGenerateBuildActions = true if len(mctx.errs) > 0 { errsCh <- mctx.errs return true } if module.missingDeps != nil && !mctx.handledMissingDeps { var errs []error for _, depName := range module.missingDeps { errs = append(errs, c.missingDependencyError(module, depName)) } errsCh <- errs return true } depsCh <- mctx.ninjaFileDeps newErrs := c.processLocalBuildActions(&module.actionDefs, &mctx.actionDefs, liveGlobals) if len(newErrs) > 0 { errsCh <- newErrs return true } return false }) cancelCh <- struct{}{} <-cancelCh errs = append(errs, visitErrs...) return deps, errs } func (c *Context) generateOneSingletonBuildActions(config interface{}, info *singletonInfo, liveGlobals *liveTracker) ([]string, []error) { var deps []string var errs []error // The parent scope of the singletonContext's local scope gets overridden to be that of the // calling Go package on a per-call basis. Since the initial parent scope doesn't matter we // just set it to nil. scope := newLocalScope(nil, singletonNamespacePrefix(info.name)) sctx := &singletonContext{ name: info.name, context: c, config: config, scope: scope, globals: liveGlobals, } func() { defer func() { if r := recover(); r != nil { in := fmt.Sprintf("GenerateBuildActions for singleton %s", info.name) if err, ok := r.(panicError); ok { err.addIn(in) sctx.error(err) } else { sctx.error(newPanicErrorf(r, in)) } } }() info.singleton.GenerateBuildActions(sctx) }() if len(sctx.errs) > 0 { errs = append(errs, sctx.errs...) return deps, errs } deps = append(deps, sctx.ninjaFileDeps...) newErrs := c.processLocalBuildActions(&info.actionDefs, &sctx.actionDefs, liveGlobals) errs = append(errs, newErrs...) return deps, errs } func (c *Context) generateParallelSingletonBuildActions(config interface{}, singletons []*singletonInfo, liveGlobals *liveTracker) ([]string, []error) { c.BeginEvent("generateParallelSingletonBuildActions") defer c.EndEvent("generateParallelSingletonBuildActions") var deps []string var errs []error wg := sync.WaitGroup{} cancelCh := make(chan struct{}) depsCh := make(chan []string) errsCh := make(chan []error) go func() { for { select { case <-cancelCh: close(cancelCh) return case dep := <-depsCh: deps = append(deps, dep...) case newErrs := <-errsCh: if len(errs) <= maxErrors { errs = append(errs, newErrs...) } } } }() for _, info := range singletons { if !info.parallel { // Skip any singletons registered with parallel=false. continue } wg.Add(1) go func(inf *singletonInfo) { defer wg.Done() newDeps, newErrs := c.generateOneSingletonBuildActions(config, inf, liveGlobals) depsCh <- newDeps errsCh <- newErrs }(info) } wg.Wait() cancelCh <- struct{}{} <-cancelCh return deps, errs } func (c *Context) generateSingletonBuildActions(config interface{}, singletons []*singletonInfo, liveGlobals *liveTracker) ([]string, []error) { c.BeginEvent("generateSingletonBuildActions") defer c.EndEvent("generateSingletonBuildActions") var deps []string var errs []error // Run one singleton. Use a variable to simplify manual validation testing. var runSingleton = func(info *singletonInfo) { c.BeginEvent("singleton:" + info.name) defer c.EndEvent("singleton:" + info.name) newDeps, newErrs := c.generateOneSingletonBuildActions(config, info, liveGlobals) deps = append(deps, newDeps...) errs = append(errs, newErrs...) } // First, take care of any singletons that want to run in parallel. deps, errs = c.generateParallelSingletonBuildActions(config, singletons, liveGlobals) for _, info := range singletons { if !info.parallel { runSingleton(info) if len(errs) > maxErrors { break } } } return deps, errs } func (c *Context) processLocalBuildActions(out, in *localBuildActions, liveGlobals *liveTracker) []error { var errs []error // First we go through and add everything referenced by the module's // buildDefs to the live globals set. This will end up adding the live // locals to the set as well, but we'll take them out after. for _, def := range in.buildDefs { err := liveGlobals.AddBuildDefDeps(def) if err != nil { errs = append(errs, err) } } if len(errs) > 0 { return errs } out.buildDefs = append(out.buildDefs, in.buildDefs...) // We use the now-incorrect set of live "globals" to determine which local // definitions are live. As we go through copying those live locals to the // moduleGroup we remove them from the live globals set. for _, v := range in.variables { isLive := liveGlobals.RemoveVariableIfLive(v) if isLive { out.variables = append(out.variables, v) } } for _, r := range in.rules { isLive := liveGlobals.RemoveRuleIfLive(r) if isLive { out.rules = append(out.rules, r) } } return nil } func (c *Context) walkDeps(topModule *moduleInfo, allowDuplicates bool, visitDown func(depInfo, *moduleInfo) bool, visitUp func(depInfo, *moduleInfo)) { visited := make(map[*moduleInfo]bool) var visiting *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "WalkDeps(%s, %s, %s) for dependency %s", topModule, funcName(visitDown), funcName(visitUp), visiting)) } }() var walk func(module *moduleInfo) walk = func(module *moduleInfo) { for _, dep := range module.directDeps { if allowDuplicates || !visited[dep.module] { visiting = dep.module recurse := true if visitDown != nil { recurse = visitDown(dep, module) } if recurse && !visited[dep.module] { walk(dep.module) visited[dep.module] = true } if visitUp != nil { visitUp(dep, module) } } } } walk(topModule) } type replace struct { from, to *moduleInfo predicate ReplaceDependencyPredicate } type rename struct { group *moduleGroup name string } func (c *Context) moduleMatchingVariant(module *moduleInfo, name string) *moduleInfo { group := c.moduleGroupFromName(name, module.namespace()) if group == nil { return nil } for _, m := range group.modules { if module.variant.name == m.moduleOrAliasVariant().name { return m.moduleOrAliasTarget() } } return nil } func (c *Context) handleRenames(renames []rename) []error { var errs []error for _, rename := range renames { group, name := rename.group, rename.name if name == group.name || len(group.modules) < 1 { continue } errs = append(errs, c.nameInterface.Rename(group.name, rename.name, group.namespace)...) } return errs } func (c *Context) handleReplacements(replacements []replace) []error { var errs []error changedDeps := false for _, replace := range replacements { for _, m := range replace.from.reverseDeps { for i, d := range m.directDeps { if d.module == replace.from { // If the replacement has a predicate then check it. if replace.predicate == nil || replace.predicate(m.logicModule, d.tag, d.module.logicModule) { m.directDeps[i].module = replace.to changedDeps = true } } } } } if changedDeps { atomic.AddUint32(&c.depsModified, 1) } return errs } func (c *Context) discoveredMissingDependencies(module *moduleInfo, depName string, depVariations variationMap) (errs []error) { if depVariations != nil { depName = depName + "{" + c.prettyPrintVariant(depVariations) + "}" } if c.allowMissingDependencies { module.missingDeps = append(module.missingDeps, depName) return nil } return []error{c.missingDependencyError(module, depName)} } func (c *Context) missingDependencyError(module *moduleInfo, depName string) (errs error) { guess := namesLike(depName, module.Name(), c.moduleGroups) err := c.nameInterface.MissingDependencyError(module.Name(), module.namespace(), depName, guess) return &BlueprintError{ Err: err, Pos: module.pos, } } func (c *Context) moduleGroupFromName(name string, namespace Namespace) *moduleGroup { group, exists := c.nameInterface.ModuleFromName(name, namespace) if exists { return group.moduleGroup } return nil } func (c *Context) sortedModuleGroups() []*moduleGroup { if c.cachedSortedModuleGroups == nil || c.cachedDepsModified { unwrap := func(wrappers []ModuleGroup) []*moduleGroup { result := make([]*moduleGroup, 0, len(wrappers)) for _, group := range wrappers { result = append(result, group.moduleGroup) } return result } c.cachedSortedModuleGroups = unwrap(c.nameInterface.AllModules()) c.cachedDepsModified = false } return c.cachedSortedModuleGroups } func (c *Context) visitAllModules(visit func(Module)) { var module *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "VisitAllModules(%s) for %s", funcName(visit), module)) } }() for _, moduleGroup := range c.sortedModuleGroups() { for _, moduleOrAlias := range moduleGroup.modules { if module = moduleOrAlias.module(); module != nil { visit(module.logicModule) } } } } func (c *Context) visitAllModulesIf(pred func(Module) bool, visit func(Module)) { var module *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "VisitAllModulesIf(%s, %s) for %s", funcName(pred), funcName(visit), module)) } }() for _, moduleGroup := range c.sortedModuleGroups() { for _, moduleOrAlias := range moduleGroup.modules { if module = moduleOrAlias.module(); module != nil { if pred(module.logicModule) { visit(module.logicModule) } } } } } func (c *Context) visitAllModuleVariants(module *moduleInfo, visit func(Module)) { var variant *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "VisitAllModuleVariants(%s, %s) for %s", module, funcName(visit), variant)) } }() for _, moduleOrAlias := range module.group.modules { if variant = moduleOrAlias.module(); variant != nil { visit(variant.logicModule) } } } func (c *Context) requireNinjaVersion(major, minor, micro int) { if major != 1 { panic("ninja version with major version != 1 not supported") } if c.requiredNinjaMinor < minor { c.requiredNinjaMinor = minor c.requiredNinjaMicro = micro } if c.requiredNinjaMinor == minor && c.requiredNinjaMicro < micro { c.requiredNinjaMicro = micro } } func (c *Context) setOutDir(value *ninjaString) { if c.outDir == nil { c.outDir = value } } func (c *Context) makeUniquePackageNames( liveGlobals *liveTracker) (map[*packageContext]string, []string) { pkgs := make(map[string]*packageContext) pkgNames := make(map[*packageContext]string) longPkgNames := make(map[*packageContext]bool) processPackage := func(pctx *packageContext) { if pctx == nil { // This is a built-in rule and has no package. return } if _, ok := pkgNames[pctx]; ok { // We've already processed this package. return } otherPkg, present := pkgs[pctx.shortName] if present { // Short name collision. Both this package and the one that's // already there need to use their full names. We leave the short // name in pkgNames for now so future collisions still get caught. longPkgNames[pctx] = true longPkgNames[otherPkg] = true } else { // No collision so far. Tentatively set the package's name to be // its short name. pkgNames[pctx] = pctx.shortName pkgs[pctx.shortName] = pctx } } // We try to give all packages their short name, but when we get collisions // we need to use the full unique package name. for v, _ := range liveGlobals.variables { processPackage(v.packageContext()) } for p, _ := range liveGlobals.pools { processPackage(p.packageContext()) } for r, _ := range liveGlobals.rules { processPackage(r.packageContext()) } // Add the packages that had collisions using their full unique names. This // will overwrite any short names that were added in the previous step. for pctx := range longPkgNames { pkgNames[pctx] = pctx.fullName } // Create deps list from calls to PackageContext.AddNinjaFileDeps deps := []string{} for _, pkg := range pkgs { deps = append(deps, pkg.ninjaFileDeps...) } return pkgNames, deps } // memoizeFullNames stores the full name of each live global variable, rule and pool since each is // guaranteed to be used at least twice, once in the definition and once for each usage, and many // are used much more than once. func (c *Context) memoizeFullNames(liveGlobals *liveTracker, pkgNames map[*packageContext]string) { for v := range liveGlobals.variables { v.memoizeFullName(pkgNames) } for r := range liveGlobals.rules { r.memoizeFullName(pkgNames) } for p := range liveGlobals.pools { p.memoizeFullName(pkgNames) } } func (c *Context) checkForVariableReferenceCycles( variables map[Variable]*ninjaString, pkgNames map[*packageContext]string) { visited := make(map[Variable]bool) // variables that were already checked checking := make(map[Variable]bool) // variables actively being checked var check func(v Variable) []Variable check = func(v Variable) []Variable { visited[v] = true checking[v] = true defer delete(checking, v) value := variables[v] for _, dep := range value.Variables() { if checking[dep] { // This is a cycle. return []Variable{dep, v} } if !visited[dep] { cycle := check(dep) if cycle != nil { if cycle[0] == v { // We are the "start" of the cycle, so we're responsible // for generating the errors. The cycle list is in // reverse order because all the 'check' calls append // their own module to the list. msgs := []string{"detected variable reference cycle:"} // Iterate backwards through the cycle list. curName := v.fullName(pkgNames) curValue := value.Value(pkgNames) for i := len(cycle) - 1; i >= 0; i-- { next := cycle[i] nextName := next.fullName(pkgNames) nextValue := variables[next].Value(pkgNames) msgs = append(msgs, fmt.Sprintf( " %q depends on %q", curName, nextName)) msgs = append(msgs, fmt.Sprintf( " [%s = %s]", curName, curValue)) curName = nextName curValue = nextValue } // Variable reference cycles are a programming error, // not the fault of the Blueprint file authors. panic(strings.Join(msgs, "\n")) } else { // We're not the "start" of the cycle, so we just append // our module to the list and return it. return append(cycle, v) } } } } return nil } for v := range variables { if !visited[v] { cycle := check(v) if cycle != nil { panic("inconceivable!") } } } } // AllTargets returns a map all the build target names to the rule used to build // them. This is the same information that is output by running 'ninja -t // targets all'. If this is called before PrepareBuildActions successfully // completes then ErrbuildActionsNotReady is returned. func (c *Context) AllTargets() (map[string]string, error) { if !c.buildActionsReady { return nil, ErrBuildActionsNotReady } targets := map[string]string{} var collectTargets = func(actionDefs localBuildActions) error { for _, buildDef := range actionDefs.buildDefs { ruleName := buildDef.Rule.fullName(c.pkgNames) for _, output := range append(buildDef.Outputs, buildDef.ImplicitOutputs...) { outputValue, err := output.Eval(c.globalVariables) if err != nil { return err } targets[outputValue] = ruleName } for _, output := range append(buildDef.OutputStrings, buildDef.ImplicitOutputStrings...) { targets[output] = ruleName } } return nil } // Collect all the module build targets. for _, module := range c.moduleInfo { if err := collectTargets(module.actionDefs); err != nil { return nil, err } } // Collect all the singleton build targets. for _, info := range c.singletonInfo { if err := collectTargets(info.actionDefs); err != nil { return nil, err } } return targets, nil } func (c *Context) OutDir() (string, error) { if c.outDir != nil { return c.outDir.Eval(c.globalVariables) } else { return "", nil } } // ModuleTypePropertyStructs returns a mapping from module type name to a list of pointers to // property structs returned by the factory for that module type. func (c *Context) ModuleTypePropertyStructs() map[string][]interface{} { ret := make(map[string][]interface{}) for moduleType, factory := range c.moduleFactories { _, ret[moduleType] = factory() } return ret } func (c *Context) ModuleTypeFactories() map[string]ModuleFactory { ret := make(map[string]ModuleFactory) for k, v := range c.moduleFactories { ret[k] = v } return ret } func (c *Context) ModuleName(logicModule Module) string { module := c.moduleInfo[logicModule] return module.Name() } func (c *Context) ModuleDir(logicModule Module) string { return filepath.Dir(c.BlueprintFile(logicModule)) } func (c *Context) ModuleSubDir(logicModule Module) string { module := c.moduleInfo[logicModule] return module.variant.name } func (c *Context) ModuleType(logicModule Module) string { module := c.moduleInfo[logicModule] return module.typeName } // ModuleProvider returns the value, if any, for the provider for a module. If the value for the // provider was not set it returns the zero value of the type of the provider, which means the // return value can always be type-asserted to the type of the provider. The return value should // always be considered read-only. It panics if called before the appropriate mutator or // GenerateBuildActions pass for the provider on the module. The value returned may be a deep // copy of the value originally passed to SetProvider. func (c *Context) ModuleProvider(logicModule Module, provider AnyProviderKey) (any, bool) { module := c.moduleInfo[logicModule] value, ok := c.provider(module, provider.provider()) if value == nil { value = provider.provider().zero } return value, ok } func (c *Context) BlueprintFile(logicModule Module) string { module := c.moduleInfo[logicModule] return module.relBlueprintsFile } func (c *Context) ModuleErrorf(logicModule Module, format string, args ...interface{}) error { module := c.moduleInfo[logicModule] return &BlueprintError{ Err: fmt.Errorf(format, args...), Pos: module.pos, } } func (c *Context) VisitAllModules(visit func(Module)) { c.visitAllModules(visit) } func (c *Context) VisitAllModulesIf(pred func(Module) bool, visit func(Module)) { c.visitAllModulesIf(pred, visit) } func (c *Context) VisitDirectDeps(module Module, visit func(Module)) { topModule := c.moduleInfo[module] var visiting *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "VisitDirectDeps(%s, %s) for dependency %s", topModule, funcName(visit), visiting)) } }() for _, dep := range topModule.directDeps { visiting = dep.module visit(dep.module.logicModule) } } func (c *Context) VisitDirectDepsIf(module Module, pred func(Module) bool, visit func(Module)) { topModule := c.moduleInfo[module] var visiting *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "VisitDirectDepsIf(%s, %s, %s) for dependency %s", topModule, funcName(pred), funcName(visit), visiting)) } }() for _, dep := range topModule.directDeps { visiting = dep.module if pred(dep.module.logicModule) { visit(dep.module.logicModule) } } } func (c *Context) VisitDepsDepthFirst(module Module, visit func(Module)) { topModule := c.moduleInfo[module] var visiting *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "VisitDepsDepthFirst(%s, %s) for dependency %s", topModule, funcName(visit), visiting)) } }() c.walkDeps(topModule, false, nil, func(dep depInfo, parent *moduleInfo) { visiting = dep.module visit(dep.module.logicModule) }) } func (c *Context) VisitDepsDepthFirstIf(module Module, pred func(Module) bool, visit func(Module)) { topModule := c.moduleInfo[module] var visiting *moduleInfo defer func() { if r := recover(); r != nil { panic(newPanicErrorf(r, "VisitDepsDepthFirstIf(%s, %s, %s) for dependency %s", topModule, funcName(pred), funcName(visit), visiting)) } }() c.walkDeps(topModule, false, nil, func(dep depInfo, parent *moduleInfo) { if pred(dep.module.logicModule) { visiting = dep.module visit(dep.module.logicModule) } }) } func (c *Context) PrimaryModule(module Module) Module { return c.moduleInfo[module].group.modules.firstModule().logicModule } func (c *Context) FinalModule(module Module) Module { return c.moduleInfo[module].group.modules.lastModule().logicModule } func (c *Context) VisitAllModuleVariants(module Module, visit func(Module)) { c.visitAllModuleVariants(c.moduleInfo[module], visit) } // Singletons returns a list of all registered Singletons. func (c *Context) Singletons() []Singleton { var ret []Singleton for _, s := range c.singletonInfo { ret = append(ret, s.singleton) } return ret } // SingletonName returns the name that the given singleton was registered with. func (c *Context) SingletonName(singleton Singleton) string { for _, s := range c.singletonInfo { if s.singleton == singleton { return s.name } } return "" } // WriteBuildFile writes the Ninja manifest text for the generated build // actions to w. If this is called before PrepareBuildActions successfully // completes then ErrBuildActionsNotReady is returned. func (c *Context) WriteBuildFile(w StringWriterWriter) error { var err error pprof.Do(c.Context, pprof.Labels("blueprint", "WriteBuildFile"), func(ctx context.Context) { if !c.buildActionsReady { err = ErrBuildActionsNotReady return } nw := newNinjaWriter(w) if err = c.writeBuildFileHeader(nw); err != nil { return } if err = c.writeNinjaRequiredVersion(nw); err != nil { return } if err = c.writeSubninjas(nw); err != nil { return } // TODO: Group the globals by package. if err = c.writeGlobalVariables(nw); err != nil { return } if err = c.writeGlobalPools(nw); err != nil { return } if err = c.writeBuildDir(nw); err != nil { return } if err = c.writeGlobalRules(nw); err != nil { return } if err = c.writeAllModuleActions(nw); err != nil { return } if err = c.writeAllSingletonActions(nw); err != nil { return } }) return err } type pkgAssociation struct { PkgName string PkgPath string } type pkgAssociationSorter struct { pkgs []pkgAssociation } func (s *pkgAssociationSorter) Len() int { return len(s.pkgs) } func (s *pkgAssociationSorter) Less(i, j int) bool { iName := s.pkgs[i].PkgName jName := s.pkgs[j].PkgName return iName < jName } func (s *pkgAssociationSorter) Swap(i, j int) { s.pkgs[i], s.pkgs[j] = s.pkgs[j], s.pkgs[i] } func (c *Context) writeBuildFileHeader(nw *ninjaWriter) error { headerTemplate := template.New("fileHeader") _, err := headerTemplate.Parse(fileHeaderTemplate) if err != nil { // This is a programming error. panic(err) } var pkgs []pkgAssociation maxNameLen := 0 for pkg, name := range c.pkgNames { pkgs = append(pkgs, pkgAssociation{ PkgName: name, PkgPath: pkg.pkgPath, }) if len(name) > maxNameLen { maxNameLen = len(name) } } for i := range pkgs { pkgs[i].PkgName += strings.Repeat(" ", maxNameLen-len(pkgs[i].PkgName)) } sort.Sort(&pkgAssociationSorter{pkgs}) params := map[string]interface{}{ "Pkgs": pkgs, } buf := bytes.NewBuffer(nil) err = headerTemplate.Execute(buf, params) if err != nil { return err } return nw.Comment(buf.String()) } func (c *Context) writeNinjaRequiredVersion(nw *ninjaWriter) error { value := fmt.Sprintf("%d.%d.%d", c.requiredNinjaMajor, c.requiredNinjaMinor, c.requiredNinjaMicro) err := nw.Assign("ninja_required_version", value) if err != nil { return err } return nw.BlankLine() } func (c *Context) writeSubninjas(nw *ninjaWriter) error { for _, subninja := range c.subninjas { err := nw.Subninja(subninja) if err != nil { return err } } return nw.BlankLine() } func (c *Context) writeBuildDir(nw *ninjaWriter) error { if c.outDir != nil { err := nw.Assign("builddir", c.outDir.Value(c.pkgNames)) if err != nil { return err } err = nw.BlankLine() if err != nil { return err } } return nil } type globalEntity interface { fullName(pkgNames map[*packageContext]string) string } type globalEntitySorter struct { pkgNames map[*packageContext]string entities []globalEntity } func (s *globalEntitySorter) Len() int { return len(s.entities) } func (s *globalEntitySorter) Less(i, j int) bool { iName := s.entities[i].fullName(s.pkgNames) jName := s.entities[j].fullName(s.pkgNames) return iName < jName } func (s *globalEntitySorter) Swap(i, j int) { s.entities[i], s.entities[j] = s.entities[j], s.entities[i] } func (c *Context) writeGlobalVariables(nw *ninjaWriter) error { visited := make(map[Variable]bool) var walk func(v Variable) error walk = func(v Variable) error { visited[v] = true // First visit variables on which this variable depends. value := c.globalVariables[v] for _, dep := range value.Variables() { if !visited[dep] { err := walk(dep) if err != nil { return err } } } err := nw.Assign(v.fullName(c.pkgNames), value.Value(c.pkgNames)) if err != nil { return err } err = nw.BlankLine() if err != nil { return err } return nil } globalVariables := make([]globalEntity, 0, len(c.globalVariables)) for variable := range c.globalVariables { globalVariables = append(globalVariables, variable) } sort.Sort(&globalEntitySorter{c.pkgNames, globalVariables}) for _, entity := range globalVariables { v := entity.(Variable) if !visited[v] { err := walk(v) if err != nil { return nil } } } return nil } func (c *Context) writeGlobalPools(nw *ninjaWriter) error { globalPools := make([]globalEntity, 0, len(c.globalPools)) for pool := range c.globalPools { globalPools = append(globalPools, pool) } sort.Sort(&globalEntitySorter{c.pkgNames, globalPools}) for _, entity := range globalPools { pool := entity.(Pool) name := pool.fullName(c.pkgNames) def := c.globalPools[pool] err := def.WriteTo(nw, name) if err != nil { return err } err = nw.BlankLine() if err != nil { return err } } return nil } func (c *Context) writeGlobalRules(nw *ninjaWriter) error { globalRules := make([]globalEntity, 0, len(c.globalRules)) for rule := range c.globalRules { globalRules = append(globalRules, rule) } sort.Sort(&globalEntitySorter{c.pkgNames, globalRules}) for _, entity := range globalRules { rule := entity.(Rule) name := rule.fullName(c.pkgNames) def := c.globalRules[rule] err := def.WriteTo(nw, name, c.pkgNames) if err != nil { return err } err = nw.BlankLine() if err != nil { return err } } return nil } type depSorter []depInfo func (s depSorter) Len() int { return len(s) } func (s depSorter) Less(i, j int) bool { iName := s[i].module.Name() jName := s[j].module.Name() if iName == jName { iName = s[i].module.variant.name jName = s[j].module.variant.name } return iName < jName } func (s depSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] } type moduleSorter struct { modules []*moduleInfo nameInterface NameInterface } func (s moduleSorter) Len() int { return len(s.modules) } func (s moduleSorter) Less(i, j int) bool { iMod := s.modules[i] jMod := s.modules[j] iName := s.nameInterface.UniqueName(newNamespaceContext(iMod), iMod.group.name) jName := s.nameInterface.UniqueName(newNamespaceContext(jMod), jMod.group.name) if iName == jName { iVariantName := s.modules[i].variant.name jVariantName := s.modules[j].variant.name if iVariantName == jVariantName { panic(fmt.Sprintf("duplicate module name: %s %s: %#v and %#v\n", iName, iVariantName, iMod.variant.variations, jMod.variant.variations)) } else { return iVariantName < jVariantName } } else { return iName < jName } } func (s moduleSorter) Swap(i, j int) { s.modules[i], s.modules[j] = s.modules[j], s.modules[i] } func (c *Context) writeAllModuleActions(nw *ninjaWriter) error { c.BeginEvent("modules") defer c.EndEvent("modules") headerTemplate := template.New("moduleHeader") if _, err := headerTemplate.Parse(moduleHeaderTemplate); err != nil { // This is a programming error. panic(err) } modules := make([]*moduleInfo, 0, len(c.moduleInfo)) for _, module := range c.moduleInfo { modules = append(modules, module) } sort.Sort(moduleSorter{modules, c.nameInterface}) phonys := c.deduplicateOrderOnlyDeps(modules) if err := c.writeLocalBuildActions(nw, phonys); err != nil { return err } buf := bytes.NewBuffer(nil) for _, module := range modules { if len(module.actionDefs.variables)+len(module.actionDefs.rules)+len(module.actionDefs.buildDefs) == 0 { continue } buf.Reset() // In order to make the bootstrap build manifest independent of the // build dir we need to output the Blueprints file locations in the // comments as paths relative to the source directory. relPos := module.pos relPos.Filename = module.relBlueprintsFile // Get the name and location of the factory function for the module. factoryFunc := runtime.FuncForPC(reflect.ValueOf(module.factory).Pointer()) factoryName := factoryFunc.Name() infoMap := map[string]interface{}{ "name": module.Name(), "typeName": module.typeName, "goFactory": factoryName, "pos": relPos, "variant": module.variant.name, } if err := headerTemplate.Execute(buf, infoMap); err != nil { return err } if err := nw.Comment(buf.String()); err != nil { return err } if err := nw.BlankLine(); err != nil { return err } if err := c.writeLocalBuildActions(nw, &module.actionDefs); err != nil { return err } if err := nw.BlankLine(); err != nil { return err } } return nil } func (c *Context) writeAllSingletonActions(nw *ninjaWriter) error { c.BeginEvent("singletons") defer c.EndEvent("singletons") headerTemplate := template.New("singletonHeader") _, err := headerTemplate.Parse(singletonHeaderTemplate) if err != nil { // This is a programming error. panic(err) } buf := bytes.NewBuffer(nil) for _, info := range c.singletonInfo { if len(info.actionDefs.variables)+len(info.actionDefs.rules)+len(info.actionDefs.buildDefs) == 0 { continue } // Get the name of the factory function for the module. factory := info.factory factoryFunc := runtime.FuncForPC(reflect.ValueOf(factory).Pointer()) factoryName := factoryFunc.Name() buf.Reset() infoMap := map[string]interface{}{ "name": info.name, "goFactory": factoryName, } err = headerTemplate.Execute(buf, infoMap) if err != nil { return err } err = nw.Comment(buf.String()) if err != nil { return err } err = nw.BlankLine() if err != nil { return err } err = c.writeLocalBuildActions(nw, &info.actionDefs) if err != nil { return err } err = nw.BlankLine() if err != nil { return err } } return nil } func (c *Context) GetEventHandler() *metrics.EventHandler { return c.EventHandler } func (c *Context) BeginEvent(name string) { c.EventHandler.Begin(name) } func (c *Context) EndEvent(name string) { c.EventHandler.End(name) } func (c *Context) SetBeforePrepareBuildActionsHook(hookFn func() error) { c.BeforePrepareBuildActionsHook = hookFn } // phonyCandidate represents the state of a set of deps that decides its eligibility // to be extracted as a phony output type phonyCandidate struct { sync.Once phony *buildDef // the phony buildDef that wraps the set first *buildDef // the first buildDef that uses this set } // keyForPhonyCandidate gives a unique identifier for a set of deps. // If any of the deps use a variable, we return an empty string to signal // that this set of deps is ineligible for extraction. func keyForPhonyCandidate(deps []*ninjaString, stringDeps []string) string { hasher := sha256.New() for _, d := range deps { if len(d.Variables()) != 0 { return "" } io.WriteString(hasher, d.Value(nil)) } for _, d := range stringDeps { io.WriteString(hasher, d) } return base64.RawURLEncoding.EncodeToString(hasher.Sum(nil)) } // scanBuildDef is called for every known buildDef `b` that has a non-empty `b.OrderOnly`. // If `b.OrderOnly` is not present in `candidates`, it gets stored. // But if `b.OrderOnly` already exists in `candidates`, then `b.OrderOnly` // (and phonyCandidate#first.OrderOnly) will be replaced with phonyCandidate#phony.Outputs func scanBuildDef(wg *sync.WaitGroup, candidates *sync.Map, phonyCount *atomic.Uint32, b *buildDef) { defer wg.Done() key := keyForPhonyCandidate(b.OrderOnly, b.OrderOnlyStrings) if key == "" { return } if v, loaded := candidates.LoadOrStore(key, &phonyCandidate{ first: b, }); loaded { m := v.(*phonyCandidate) m.Do(func() { // this is the second occurrence and hence it makes sense to // extract it as a phony output phonyCount.Add(1) m.phony = &buildDef{ Rule: Phony, OutputStrings: []string{"dedup-" + key}, Inputs: m.first.OrderOnly, //we could also use b.OrderOnly InputStrings: m.first.OrderOnlyStrings, Optional: true, } // the previously recorded build-def, which first had these deps as its // order-only deps, should now use this phony output instead m.first.OrderOnlyStrings = m.phony.OutputStrings m.first.OrderOnly = nil m.first = nil }) b.OrderOnlyStrings = m.phony.OutputStrings b.OrderOnly = nil } } // deduplicateOrderOnlyDeps searches for common sets of order-only dependencies across all // buildDef instances in the provided moduleInfo instances. Each such // common set forms a new buildDef representing a phony output that then becomes // the sole order-only dependency of those buildDef instances func (c *Context) deduplicateOrderOnlyDeps(infos []*moduleInfo) *localBuildActions { c.BeginEvent("deduplicate_order_only_deps") defer c.EndEvent("deduplicate_order_only_deps") candidates := sync.Map{} //used as map[key]*candidate phonyCount := atomic.Uint32{} wg := sync.WaitGroup{} for _, info := range infos { for _, b := range info.actionDefs.buildDefs { if len(b.OrderOnly) > 0 || len(b.OrderOnlyStrings) > 0 { wg.Add(1) go scanBuildDef(&wg, &candidates, &phonyCount, b) } } } wg.Wait() // now collect all created phonys to return phonys := make([]*buildDef, 0, phonyCount.Load()) candidates.Range(func(_ any, v any) bool { candidate := v.(*phonyCandidate) if candidate.phony != nil { phonys = append(phonys, candidate.phony) } return true }) c.EventHandler.Do("sort_phony_builddefs", func() { // sorting for determinism, the phony output names are stable sort.Slice(phonys, func(i int, j int) bool { return phonys[i].OutputStrings[0] < phonys[j].OutputStrings[0] }) }) return &localBuildActions{buildDefs: phonys} } func (c *Context) writeLocalBuildActions(nw *ninjaWriter, defs *localBuildActions) error { // Write the local variable assignments. for _, v := range defs.variables { // A localVariable doesn't need the package names or config to // determine its name or value. name := v.fullName(nil) value, err := v.value(nil, nil) if err != nil { panic(err) } err = nw.Assign(name, value.Value(c.pkgNames)) if err != nil { return err } } if len(defs.variables) > 0 { err := nw.BlankLine() if err != nil { return err } } // Write the local rules. for _, r := range defs.rules { // A localRule doesn't need the package names or config to determine // its name or definition. name := r.fullName(nil) def, err := r.def(nil) if err != nil { panic(err) } err = def.WriteTo(nw, name, c.pkgNames) if err != nil { return err } err = nw.BlankLine() if err != nil { return err } } // Write the build definitions. for _, buildDef := range defs.buildDefs { err := buildDef.WriteTo(nw, c.pkgNames) if err != nil { return err } if len(buildDef.Args) > 0 { err = nw.BlankLine() if err != nil { return err } } } return nil } func beforeInModuleList(a, b *moduleInfo, list modulesOrAliases) bool { found := false if a == b { return false } for _, l := range list { if l.module() == a { found = true } else if l.module() == b { return found } } missing := a if found { missing = b } panic(fmt.Errorf("element %v not found in list %v", missing, list)) } type panicError struct { panic interface{} stack []byte in string } func newPanicErrorf(panic interface{}, in string, a ...interface{}) error { buf := make([]byte, 4096) count := runtime.Stack(buf, false) return panicError{ panic: panic, in: fmt.Sprintf(in, a...), stack: buf[:count], } } func (p panicError) Error() string { return fmt.Sprintf("panic in %s\n%s\n%s\n", p.in, p.panic, p.stack) } func (p *panicError) addIn(in string) { p.in += " in " + in } func funcName(f interface{}) string { return runtime.FuncForPC(reflect.ValueOf(f).Pointer()).Name() } var fileHeaderTemplate = `****************************************************************************** *** This file is generated and should not be edited *** ****************************************************************************** {{if .Pkgs}} This file contains variables, rules, and pools with name prefixes indicating they were generated by the following Go packages: {{range .Pkgs}} {{.PkgName}} [from Go package {{.PkgPath}}]{{end}}{{end}} ` var moduleHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Module: {{.name}} Variant: {{.variant}} Type: {{.typeName}} Factory: {{.goFactory}} Defined: {{.pos}} ` var singletonHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Singleton: {{.name}} Factory: {{.goFactory}} ` // Blueprint module type that can be used to gate blueprint files beneath this directory type PackageIncludes struct { properties struct { // Package will be included if all include tags in this list are set Match_all []string } name *string `blueprint:"mutated"` } func (pi *PackageIncludes) Name() string { return proptools.String(pi.name) } // This module type does not have any build actions func (pi *PackageIncludes) GenerateBuildActions(ctx ModuleContext) { } func newPackageIncludesFactory() (Module, []interface{}) { module := &PackageIncludes{} AddLoadHook(module, func(ctx LoadHookContext) { module.name = proptools.StringPtr(ctx.ModuleDir() + "_includes") // Generate a synthetic name }) return module, []interface{}{&module.properties} } func RegisterPackageIncludesModuleType(ctx *Context) { ctx.RegisterModuleType("blueprint_package_includes", newPackageIncludesFactory) } func (pi *PackageIncludes) MatchAll() []string { return pi.properties.Match_all } // Returns true if all requested include tags are set in the Context object func (pi *PackageIncludes) MatchesIncludeTags(ctx *Context) bool { if len(pi.MatchAll()) == 0 { ctx.ModuleErrorf(pi, "Match_all must be a non-empty list") } for _, includeTag := range pi.MatchAll() { if !ctx.ContainsIncludeTag(includeTag) { return false } } return true }