platform_build_blueprint/context.go
Colin Cross 0e4607e788 Fix cycle printing
The patch "Fix panic when dependency cycle includes the first
module visited" caused cycles to print incorrectly by initializing
the current module to be the last module in the cycle, when it
should be the first module in the cycle.

Change-Id: Iaf939283a48faa4cc6eeb9b19aed57993575a687
2015-03-24 16:42:56 -07:00

2453 lines
63 KiB
Go

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package blueprint
import (
"bytes"
"errors"
"fmt"
"github.com/google/blueprint/parser"
"github.com/google/blueprint/proptools"
"io"
"os"
"path/filepath"
"reflect"
"runtime"
"sort"
"strconv"
"strings"
"text/scanner"
"text/template"
)
var ErrBuildActionsNotReady = errors.New("build actions are not ready")
const maxErrors = 10
// A Context contains all the state needed to parse a set of Blueprints files
// and generate a Ninja file. The process of generating a Ninja file proceeds
// through a series of four phases. Each phase corresponds with a some methods
// on the Context object
//
// Phase Methods
// ------------ -------------------------------------------
// 1. Registration RegisterModuleType, RegisterSingletonType
//
// 2. Parse ParseBlueprintsFiles, Parse
//
// 3. Generate ResolveDependencies, PrepareBuildActions
//
// 4. Write WriteBuildFile
//
// The registration phase prepares the context to process Blueprints files
// containing various types of modules. The parse phase reads in one or more
// Blueprints files and validates their contents against the module types that
// have been registered. The generate phase then analyzes the parsed Blueprints
// contents to create an internal representation for the build actions that must
// be performed. This phase also performs validation of the module dependencies
// and property values defined in the parsed Blueprints files. Finally, the
// write phase generates the Ninja manifest text based on the generated build
// actions.
type Context struct {
// set at instantiation
moduleFactories map[string]ModuleFactory
moduleGroups map[string]*moduleGroup
moduleInfo map[Module]*moduleInfo
modulesSorted []*moduleInfo
singletonInfo map[string]*singletonInfo
mutatorInfo []*mutatorInfo
earlyMutatorInfo []*earlyMutatorInfo
variantMutatorNames []string
moduleNinjaNames map[string]*moduleGroup
dependenciesReady bool // set to true on a successful ResolveDependencies
buildActionsReady bool // set to true on a successful PrepareBuildActions
// set by SetIgnoreUnknownModuleTypes
ignoreUnknownModuleTypes bool
// set during PrepareBuildActions
pkgNames map[*PackageContext]string
globalVariables map[Variable]*ninjaString
globalPools map[Pool]*poolDef
globalRules map[Rule]*ruleDef
// set during PrepareBuildActions
buildDir *ninjaString // The builddir special Ninja variable
requiredNinjaMajor int // For the ninja_required_version variable
requiredNinjaMinor int // For the ninja_required_version variable
requiredNinjaMicro int // For the ninja_required_version variable
// set lazily by sortedModuleNames
cachedSortedModuleNames []string
}
// An Error describes a problem that was encountered that is related to a
// particular location in a Blueprints file.
type Error struct {
Err error // the error that occurred
Pos scanner.Position // the relevant Blueprints file location
}
type localBuildActions struct {
variables []*localVariable
rules []*localRule
buildDefs []*buildDef
}
type moduleGroup struct {
name string
ninjaName string
modules []*moduleInfo
}
type moduleInfo struct {
// set during Parse
typeName string
relBlueprintsFile string
pos scanner.Position
propertyPos map[string]scanner.Position
properties struct {
Name string
Deps []string
}
variantName string
variant variationMap
dependencyVariant variationMap
logicModule Module
group *moduleGroup
moduleProperties []interface{}
// set during ResolveDependencies
directDeps []*moduleInfo
// set during updateDependencies
reverseDeps []*moduleInfo
depsCount int
// used by parallelVisitAllBottomUp
waitingCount int
// set during each runMutator
splitModules []*moduleInfo
// set during PrepareBuildActions
actionDefs localBuildActions
}
// A Variation is a way that a variant of a module differs from other variants of the same module.
// For example, two variants of the same module might have Variation{"arch","arm"} and
// Variation{"arch","arm64"}
type Variation struct {
// Mutator is the axis on which this variation applies, i.e. "arch" or "link"
Mutator string
// Variation is the name of the variation on the axis, i.e. "arm" or "arm64" for arch, or
// "shared" or "static" for link.
Variation string
}
// A variationMap stores a map of Mutator to Variation to specify a variant of a module.
type variationMap map[string]string
func (vm variationMap) clone() variationMap {
newVm := make(variationMap)
for k, v := range vm {
newVm[k] = v
}
return newVm
}
func (vm variationMap) equal(other variationMap) bool {
return reflect.DeepEqual(vm, other)
}
type singletonInfo struct {
// set during RegisterSingletonType
factory SingletonFactory
singleton Singleton
// set during PrepareBuildActions
actionDefs localBuildActions
}
type mutatorInfo struct {
// set during RegisterMutator
topDownMutator TopDownMutator
bottomUpMutator BottomUpMutator
name string
}
type earlyMutatorInfo struct {
// set during RegisterEarlyMutator
mutator EarlyMutator
name string
}
func (e *Error) Error() string {
return fmt.Sprintf("%s: %s", e.Pos, e.Err)
}
// NewContext creates a new Context object. The created context initially has
// no module or singleton factories registered, so the RegisterModuleFactory and
// RegisterSingletonFactory methods must be called before it can do anything
// useful.
func NewContext() *Context {
return &Context{
moduleFactories: make(map[string]ModuleFactory),
moduleGroups: make(map[string]*moduleGroup),
moduleInfo: make(map[Module]*moduleInfo),
singletonInfo: make(map[string]*singletonInfo),
moduleNinjaNames: make(map[string]*moduleGroup),
}
}
// A ModuleFactory function creates a new Module object. See the
// Context.RegisterModuleType method for details about how a registered
// ModuleFactory is used by a Context.
type ModuleFactory func() (m Module, propertyStructs []interface{})
// RegisterModuleType associates a module type name (which can appear in a
// Blueprints file) with a Module factory function. When the given module type
// name is encountered in a Blueprints file during parsing, the Module factory
// is invoked to instantiate a new Module object to handle the build action
// generation for the module. If a Mutator splits a module into multiple variants,
// the factory is invoked again to create a new Module for each variant.
//
// The module type names given here must be unique for the context. The factory
// function should be a named function so that its package and name can be
// included in the generated Ninja file for debugging purposes.
//
// The factory function returns two values. The first is the newly created
// Module object. The second is a slice of pointers to that Module object's
// properties structs. Each properties struct is examined when parsing a module
// definition of this type in a Blueprints file. Exported fields of the
// properties structs are automatically set to the property values specified in
// the Blueprints file. The properties struct field names determine the name of
// the Blueprints file properties that are used - the Blueprints property name
// matches that of the properties struct field name with the first letter
// converted to lower-case.
//
// The fields of the properties struct must be either []string, a string, or
// bool. The Context will panic if a Module gets instantiated with a properties
// struct containing a field that is not one these supported types.
//
// Any properties that appear in the Blueprints files that are not built-in
// module properties (such as "name" and "deps") and do not have a corresponding
// field in the returned module properties struct result in an error during the
// Context's parse phase.
//
// As an example, the follow code:
//
// type myModule struct {
// properties struct {
// Foo string
// Bar []string
// }
// }
//
// func NewMyModule() (blueprint.Module, []interface{}) {
// module := new(myModule)
// properties := &module.properties
// return module, []interface{}{properties}
// }
//
// func main() {
// ctx := blueprint.NewContext()
// ctx.RegisterModuleType("my_module", NewMyModule)
// // ...
// }
//
// would support parsing a module defined in a Blueprints file as follows:
//
// my_module {
// name: "myName",
// foo: "my foo string",
// bar: ["my", "bar", "strings"],
// }
//
// The factory function may be called from multiple goroutines. Any accesses
// to global variables must be synchronized.
func (c *Context) RegisterModuleType(name string, factory ModuleFactory) {
if _, present := c.moduleFactories[name]; present {
panic(errors.New("module type name is already registered"))
}
c.moduleFactories[name] = factory
}
// A SingletonFactory function creates a new Singleton object. See the
// Context.RegisterSingletonType method for details about how a registered
// SingletonFactory is used by a Context.
type SingletonFactory func() Singleton
// RegisterSingletonType registers a singleton type that will be invoked to
// generate build actions. Each registered singleton type is instantiated and
// and invoked exactly once as part of the generate phase.
//
// The singleton type names given here must be unique for the context. The
// factory function should be a named function so that its package and name can
// be included in the generated Ninja file for debugging purposes.
func (c *Context) RegisterSingletonType(name string, factory SingletonFactory) {
if _, present := c.singletonInfo[name]; present {
panic(errors.New("singleton name is already registered"))
}
c.singletonInfo[name] = &singletonInfo{
factory: factory,
singleton: factory(),
}
}
func singletonPkgPath(singleton Singleton) string {
typ := reflect.TypeOf(singleton)
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
return typ.PkgPath()
}
func singletonTypeName(singleton Singleton) string {
typ := reflect.TypeOf(singleton)
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
return typ.PkgPath() + "." + typ.Name()
}
// RegisterTopDownMutator registers a mutator that will be invoked to propagate
// dependency info top-down between Modules. Each registered mutator
// is invoked in registration order (mixing TopDownMutators and BottomUpMutators)
// once per Module, and is invoked on a module before being invoked on any of its
// dependencies.
//
// The mutator type names given here must be unique to all top down mutators in
// the Context.
func (c *Context) RegisterTopDownMutator(name string, mutator TopDownMutator) {
for _, m := range c.mutatorInfo {
if m.name == name && m.topDownMutator != nil {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
c.mutatorInfo = append(c.mutatorInfo, &mutatorInfo{
topDownMutator: mutator,
name: name,
})
}
// RegisterBottomUpMutator registers a mutator that will be invoked to split
// Modules into variants. Each registered mutator is invoked in registration
// order (mixing TopDownMutators and BottomUpMutators) once per Module, and is
// invoked on dependencies before being invoked on dependers.
//
// The mutator type names given here must be unique to all bottom up or early
// mutators in the Context.
func (c *Context) RegisterBottomUpMutator(name string, mutator BottomUpMutator) {
for _, m := range c.variantMutatorNames {
if m == name {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
c.mutatorInfo = append(c.mutatorInfo, &mutatorInfo{
bottomUpMutator: mutator,
name: name,
})
c.variantMutatorNames = append(c.variantMutatorNames, name)
}
// RegisterEarlyMutator registers a mutator that will be invoked to split
// Modules into multiple variant Modules before any dependencies have been
// created. Each registered mutator is invoked in registration order once
// per Module (including each variant from previous early mutators). Module
// order is unpredictable.
//
// In order for dependencies to be satisifed in a later pass, all dependencies
// of a module either must have an identical variant or must have no variations.
//
// The mutator type names given here must be unique to all bottom up or early
// mutators in the Context.
func (c *Context) RegisterEarlyMutator(name string, mutator EarlyMutator) {
for _, m := range c.variantMutatorNames {
if m == name {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
c.earlyMutatorInfo = append(c.earlyMutatorInfo, &earlyMutatorInfo{
mutator: mutator,
name: name,
})
c.variantMutatorNames = append(c.variantMutatorNames, name)
}
// SetIgnoreUnknownModuleTypes sets the behavior of the context in the case
// where it encounters an unknown module type while parsing Blueprints files. By
// default, the context will report unknown module types as an error. If this
// method is called with ignoreUnknownModuleTypes set to true then the context
// will silently ignore unknown module types.
//
// This method should generally not be used. It exists to facilitate the
// bootstrapping process.
func (c *Context) SetIgnoreUnknownModuleTypes(ignoreUnknownModuleTypes bool) {
c.ignoreUnknownModuleTypes = ignoreUnknownModuleTypes
}
// Parse parses a single Blueprints file from r, creating Module objects for
// each of the module definitions encountered. If the Blueprints file contains
// an assignment to the "subdirs" variable, then the subdirectories listed are
// returned in the subdirs first return value.
//
// rootDir specifies the path to the root directory of the source tree, while
// filename specifies the path to the Blueprints file. These paths are used for
// error reporting and for determining the module's directory.
func (c *Context) parse(rootDir, filename string, r io.Reader,
scope *parser.Scope) (subdirs []string, modules []*moduleInfo, errs []error,
outScope *parser.Scope) {
relBlueprintsFile, err := filepath.Rel(rootDir, filename)
if err != nil {
return nil, nil, []error{err}, nil
}
scope = parser.NewScope(scope)
scope.Remove("subdirs")
file, errs := parser.ParseAndEval(filename, r, scope)
if len(errs) > 0 {
for i, err := range errs {
if parseErr, ok := err.(*parser.ParseError); ok {
err = &Error{
Err: parseErr.Err,
Pos: parseErr.Pos,
}
errs[i] = err
}
}
// If there were any parse errors don't bother trying to interpret the
// result.
return nil, nil, errs, nil
}
for _, def := range file.Defs {
var newErrs []error
var newModule *moduleInfo
switch def := def.(type) {
case *parser.Module:
newModule, newErrs = c.processModuleDef(def, relBlueprintsFile)
case *parser.Assignment:
// Already handled via Scope object
default:
panic("unknown definition type")
}
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
if len(errs) > maxErrors {
break
}
} else if newModule != nil {
modules = append(modules, newModule)
}
}
subdirs, newErrs := c.processSubdirs(scope)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
return subdirs, modules, errs, scope
}
type stringAndScope struct {
string
*parser.Scope
}
// ParseBlueprintsFiles parses a set of Blueprints files starting with the file
// at rootFile. When it encounters a Blueprints file with a set of subdirs
// listed it recursively parses any Blueprints files found in those
// subdirectories.
//
// If no errors are encountered while parsing the files, the list of paths on
// which the future output will depend is returned. This list will include both
// Blueprints file paths as well as directory paths for cases where wildcard
// subdirs are found.
func (c *Context) ParseBlueprintsFiles(rootFile string) (deps []string,
errs []error) {
c.dependenciesReady = false
rootDir := filepath.Dir(rootFile)
blueprintsSet := make(map[string]bool)
// Channels to receive data back from parseBlueprintsFile goroutines
blueprintsCh := make(chan stringAndScope)
errsCh := make(chan []error)
modulesCh := make(chan []*moduleInfo)
depsCh := make(chan string)
// Channel to notify main loop that a parseBlueprintsFile goroutine has finished
doneCh := make(chan struct{})
// Number of outstanding goroutines to wait for
count := 0
startParseBlueprintsFile := func(filename string, scope *parser.Scope) {
count++
go func() {
c.parseBlueprintsFile(filename, scope, rootDir,
errsCh, modulesCh, blueprintsCh, depsCh)
doneCh <- struct{}{}
}()
}
tooManyErrors := false
startParseBlueprintsFile(rootFile, nil)
loop:
for {
if len(errs) > maxErrors {
tooManyErrors = true
}
select {
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case dep := <-depsCh:
deps = append(deps, dep)
case modules := <-modulesCh:
newErrs := c.addModules(modules)
errs = append(errs, newErrs...)
case blueprint := <-blueprintsCh:
if tooManyErrors {
continue
}
if blueprintsSet[blueprint.string] {
continue
}
blueprintsSet[blueprint.string] = true
startParseBlueprintsFile(blueprint.string, blueprint.Scope)
case <-doneCh:
count--
if count == 0 {
break loop
}
}
}
return
}
// parseBlueprintFile parses a single Blueprints file, returning any errors through
// errsCh, any defined modules through modulesCh, any sub-Blueprints files through
// blueprintsCh, and any dependencies on Blueprints files or directories through
// depsCh.
func (c *Context) parseBlueprintsFile(filename string, scope *parser.Scope, rootDir string,
errsCh chan<- []error, modulesCh chan<- []*moduleInfo, blueprintsCh chan<- stringAndScope,
depsCh chan<- string) {
dir := filepath.Dir(filename)
file, err := os.Open(filename)
if err != nil {
errsCh <- []error{err}
return
}
subdirs, modules, errs, subScope := c.parse(rootDir, filename, file, scope)
if len(errs) > 0 {
errsCh <- errs
}
err = file.Close()
if err != nil {
errsCh <- []error{err}
}
modulesCh <- modules
for _, subdir := range subdirs {
subdir = filepath.Join(dir, subdir)
dirPart, filePart := filepath.Split(subdir)
dirPart = filepath.Clean(dirPart)
if filePart == "*" {
foundSubdirs, err := listSubdirs(dirPart)
if err != nil {
errsCh <- []error{err}
return
}
for _, foundSubdir := range foundSubdirs {
subBlueprints := filepath.Join(dirPart, foundSubdir,
"Blueprints")
_, err := os.Stat(subBlueprints)
if os.IsNotExist(err) {
// There is no Blueprints file in this subdirectory. We
// need to add the directory to the list of dependencies
// so that if someone adds a Blueprints file in the
// future we'll pick it up.
depsCh <- filepath.Dir(subBlueprints)
} else {
depsCh <- subBlueprints
blueprintsCh <- stringAndScope{
subBlueprints,
subScope,
}
}
}
// We now depend on the directory itself because if any new
// subdirectories get added or removed we need to rebuild the
// Ninja manifest.
depsCh <- dirPart
} else {
subBlueprints := filepath.Join(subdir, "Blueprints")
depsCh <- subBlueprints
blueprintsCh <- stringAndScope{
subBlueprints,
subScope,
}
}
}
}
func listSubdirs(dir string) ([]string, error) {
d, err := os.Open(dir)
if err != nil {
return nil, err
}
defer d.Close()
infos, err := d.Readdir(-1)
if err != nil {
return nil, err
}
var subdirs []string
for _, info := range infos {
isDotFile := strings.HasPrefix(info.Name(), ".")
if info.IsDir() && !isDotFile {
subdirs = append(subdirs, info.Name())
}
}
return subdirs, nil
}
func (c *Context) processSubdirs(
scope *parser.Scope) (subdirs []string, errs []error) {
if assignment, err := scope.Get("subdirs"); err == nil {
switch assignment.Value.Type {
case parser.List:
subdirs = make([]string, 0, len(assignment.Value.ListValue))
for _, value := range assignment.Value.ListValue {
if value.Type != parser.String {
// The parser should not produce this.
panic("non-string value found in list")
}
dirPart, filePart := filepath.Split(value.StringValue)
if (filePart != "*" && strings.ContainsRune(filePart, '*')) ||
strings.ContainsRune(dirPart, '*') {
errs = append(errs, &Error{
Err: fmt.Errorf("subdirs may only wildcard whole " +
"directories"),
Pos: value.Pos,
})
continue
}
subdirs = append(subdirs, value.StringValue)
}
if len(errs) > 0 {
subdirs = nil
}
return
case parser.Bool, parser.String:
errs = []error{
&Error{
Err: fmt.Errorf("subdirs must be a list of strings"),
Pos: assignment.Pos,
},
}
return
default:
panic(fmt.Errorf("unknown value type: %d", assignment.Value.Type))
}
}
return nil, nil
}
func (c *Context) createVariations(origModule *moduleInfo, mutatorName string,
variationNames []string) ([]*moduleInfo, []error) {
if len(variationNames) == 0 {
panic(fmt.Errorf("mutator %q passed zero-length variation list for module %q",
mutatorName, origModule.properties.Name))
}
newModules := []*moduleInfo{}
var errs []error
for i, variationName := range variationNames {
typeName := origModule.typeName
factory, ok := c.moduleFactories[typeName]
if !ok {
panic(fmt.Sprintf("unrecognized module type %q during cloning", typeName))
}
var newLogicModule Module
var newProperties []interface{}
if i == 0 {
// Reuse the existing module for the first new variant
// This both saves creating a new module, and causes the insertion in c.moduleInfo below
// with logicModule as the key to replace the original entry in c.moduleInfo
newLogicModule = origModule.logicModule
newProperties = origModule.moduleProperties
} else {
props := []interface{}{
&origModule.properties,
}
newLogicModule, newProperties = factory()
newProperties = append(props, newProperties...)
if len(newProperties) != len(origModule.moduleProperties) {
panic("mismatched properties array length in " + origModule.properties.Name)
}
for i := range newProperties {
dst := reflect.ValueOf(newProperties[i]).Elem()
src := reflect.ValueOf(origModule.moduleProperties[i]).Elem()
proptools.CopyProperties(dst, src)
}
}
newVariant := origModule.variant.clone()
newVariant[mutatorName] = variationName
m := *origModule
newModule := &m
newModule.directDeps = append([]*moduleInfo(nil), origModule.directDeps...)
newModule.logicModule = newLogicModule
newModule.variant = newVariant
newModule.dependencyVariant = origModule.dependencyVariant.clone()
newModule.moduleProperties = newProperties
if newModule.variantName == "" {
newModule.variantName = variationName
} else {
newModule.variantName += "_" + variationName
}
newModules = append(newModules, newModule)
// Insert the new variant into the global module map. If this is the first variant then
// it reuses logicModule from the original module, which causes this to replace the
// original module in the global module map.
c.moduleInfo[newModule.logicModule] = newModule
newErrs := c.convertDepsToVariation(newModule, mutatorName, variationName)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
}
// Mark original variant as invalid. Modules that depend on this module will still
// depend on origModule, but we'll fix it when the mutator is called on them.
origModule.logicModule = nil
origModule.splitModules = newModules
return newModules, errs
}
func (c *Context) convertDepsToVariation(module *moduleInfo,
mutatorName, variationName string) (errs []error) {
for i, dep := range module.directDeps {
if dep.logicModule == nil {
var newDep *moduleInfo
for _, m := range dep.splitModules {
if m.variant[mutatorName] == variationName {
newDep = m
break
}
}
if newDep == nil {
errs = append(errs, &Error{
Err: fmt.Errorf("failed to find variation %q for module %q needed by %q",
variationName, dep.properties.Name, module.properties.Name),
Pos: module.pos,
})
continue
}
module.directDeps[i] = newDep
}
}
return errs
}
func (c *Context) prettyPrintVariant(variant variationMap) string {
names := make([]string, 0, len(variant))
for _, m := range c.variantMutatorNames {
if v, ok := variant[m]; ok {
names = append(names, m+":"+v)
}
}
return strings.Join(names, ", ")
}
func (c *Context) processModuleDef(moduleDef *parser.Module,
relBlueprintsFile string) (*moduleInfo, []error) {
typeName := moduleDef.Type.Name
factory, ok := c.moduleFactories[typeName]
if !ok {
if c.ignoreUnknownModuleTypes {
return nil, nil
}
return nil, []error{
&Error{
Err: fmt.Errorf("unrecognized module type %q", typeName),
Pos: moduleDef.Type.Pos,
},
}
}
logicModule, properties := factory()
module := &moduleInfo{
logicModule: logicModule,
typeName: typeName,
relBlueprintsFile: relBlueprintsFile,
}
props := []interface{}{
&module.properties,
}
properties = append(props, properties...)
module.moduleProperties = properties
propertyMap, errs := unpackProperties(moduleDef.Properties, properties...)
if len(errs) > 0 {
return nil, errs
}
module.pos = moduleDef.Type.Pos
module.propertyPos = make(map[string]scanner.Position)
for name, propertyDef := range propertyMap {
module.propertyPos[name] = propertyDef.Pos
}
return module, nil
}
func (c *Context) addModules(modules []*moduleInfo) (errs []error) {
for _, module := range modules {
name := module.properties.Name
c.moduleInfo[module.logicModule] = module
if group, present := c.moduleGroups[name]; present {
errs = append(errs, []error{
&Error{
Err: fmt.Errorf("module %q already defined", name),
Pos: module.pos,
},
&Error{
Err: fmt.Errorf("<-- previous definition here"),
Pos: group.modules[0].pos,
},
}...)
continue
} else {
ninjaName := toNinjaName(module.properties.Name)
// The sanitizing in toNinjaName can result in collisions, uniquify the name if it
// already exists
for i := 0; c.moduleNinjaNames[ninjaName] != nil; i++ {
ninjaName = toNinjaName(module.properties.Name) + strconv.Itoa(i)
}
c.moduleNinjaNames[ninjaName] = group
group := &moduleGroup{
name: module.properties.Name,
ninjaName: ninjaName,
modules: []*moduleInfo{module},
}
module.group = group
c.moduleGroups[name] = group
}
}
return errs
}
// ResolveDependencies checks that the dependencies specified by all of the
// modules defined in the parsed Blueprints files are valid. This means that
// the modules depended upon are defined and that no circular dependencies
// exist.
//
// The config argument is made available to all of the DynamicDependerModule
// objects via the Config method on the DynamicDependerModuleContext objects
// passed to their DynamicDependencies method.
func (c *Context) ResolveDependencies(config interface{}) []error {
errs := c.resolveDependencies(config)
if len(errs) > 0 {
return errs
}
errs = c.updateDependencies()
if len(errs) > 0 {
return errs
}
c.dependenciesReady = true
return nil
}
// moduleDeps adds dependencies to a module. If the module implements the
// DynamicDependerModule interface then this set consists of the union of those
// module names listed in its "deps" property, those returned by its
// DynamicDependencies method, and those added by calling AddDependencies or
// AddVariationDependencies on DynamicDependencyModuleContext. Otherwise it
// is simply those names listed in its "deps" property.
func (c *Context) moduleDeps(module *moduleInfo,
config interface{}) (errs []error) {
depNamesSet := make(map[string]bool)
depNames := []string{}
for _, depName := range module.properties.Deps {
if !depNamesSet[depName] {
depNamesSet[depName] = true
depNames = append(depNames, depName)
}
}
dynamicDepender, ok := module.logicModule.(DynamicDependerModule)
if ok {
ddmctx := &dynamicDependerModuleContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
module: module,
}
dynamicDeps := dynamicDepender.DynamicDependencies(ddmctx)
if len(ddmctx.errs) > 0 {
return ddmctx.errs
}
for _, depName := range dynamicDeps {
if !depNamesSet[depName] {
depNamesSet[depName] = true
depNames = append(depNames, depName)
}
}
}
for _, depName := range depNames {
newErrs := c.addDependency(module, depName)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
}
return errs
}
// resolveDependencies populates the directDeps list for every module. In doing so it checks for
// missing dependencies and self-dependant modules.
func (c *Context) resolveDependencies(config interface{}) (errs []error) {
for _, group := range c.moduleGroups {
for _, module := range group.modules {
module.directDeps = make([]*moduleInfo, 0, len(module.properties.Deps))
newErrs := c.moduleDeps(module, config)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
}
}
return
}
func (c *Context) addDependency(module *moduleInfo, depName string) []error {
depsPos := module.propertyPos["deps"]
if depName == module.properties.Name {
return []error{&Error{
Err: fmt.Errorf("%q depends on itself", depName),
Pos: depsPos,
}}
}
depInfo, ok := c.moduleGroups[depName]
if !ok {
return []error{&Error{
Err: fmt.Errorf("%q depends on undefined module %q",
module.properties.Name, depName),
Pos: depsPos,
}}
}
for _, m := range module.directDeps {
if m.group == depInfo {
return nil
}
}
if len(depInfo.modules) == 1 {
module.directDeps = append(module.directDeps, depInfo.modules[0])
return nil
} else {
for _, m := range depInfo.modules {
if m.variant.equal(module.dependencyVariant) {
module.directDeps = append(module.directDeps, m)
return nil
}
}
}
return []error{&Error{
Err: fmt.Errorf("dependency %q of %q missing variant %q",
depInfo.modules[0].properties.Name, module.properties.Name,
c.prettyPrintVariant(module.dependencyVariant)),
Pos: depsPos,
}}
}
func (c *Context) addVariationDependency(module *moduleInfo, variations []Variation,
depName string) []error {
depsPos := module.propertyPos["deps"]
depInfo, ok := c.moduleGroups[depName]
if !ok {
return []error{&Error{
Err: fmt.Errorf("%q depends on undefined module %q",
module.properties.Name, depName),
Pos: depsPos,
}}
}
// We can't just append variant.Variant to module.dependencyVariants.variantName and
// compare the strings because the result won't be in mutator registration order.
// Create a new map instead, and then deep compare the maps.
newVariant := module.dependencyVariant.clone()
for _, v := range variations {
newVariant[v.Mutator] = v.Variation
}
for _, m := range depInfo.modules {
if newVariant.equal(m.variant) {
// AddVariationDependency allows adding a dependency on itself, but only if
// that module is earlier in the module list than this one, since we always
// run GenerateBuildActions in order for the variants of a module
if depInfo == module.group && beforeInModuleList(module, m, module.group.modules) {
return []error{&Error{
Err: fmt.Errorf("%q depends on later version of itself", depName),
Pos: depsPos,
}}
}
module.directDeps = append(module.directDeps, m)
return nil
}
}
return []error{&Error{
Err: fmt.Errorf("dependency %q of %q missing variant %q",
depInfo.modules[0].properties.Name, module.properties.Name,
c.prettyPrintVariant(newVariant)),
Pos: depsPos,
}}
}
func (c *Context) parallelVisitAllBottomUp(visit func(group *moduleInfo) bool) {
doneCh := make(chan *moduleInfo)
count := 0
cancel := false
for _, module := range c.modulesSorted {
module.waitingCount = module.depsCount
}
visitOne := func(module *moduleInfo) {
count++
go func() {
ret := visit(module)
if ret {
cancel = true
}
doneCh <- module
}()
}
for _, module := range c.modulesSorted {
if module.waitingCount == 0 {
visitOne(module)
}
}
for count > 0 {
select {
case doneModule := <-doneCh:
if !cancel {
for _, parent := range doneModule.reverseDeps {
parent.waitingCount--
if parent.waitingCount == 0 {
visitOne(parent)
}
}
}
count--
}
}
}
// updateDependencies recursively walks the module dependency graph and updates
// additional fields based on the dependencies. It builds a sorted list of modules
// such that dependencies of a module always appear first, and populates reverse
// dependency links and counts of total dependencies. It also reports errors when
// it encounters dependency cycles. This should called after resolveDependencies,
// as well as after any mutator pass has called addDependency
func (c *Context) updateDependencies() (errs []error) {
visited := make(map[*moduleInfo]bool) // modules that were already checked
checking := make(map[*moduleInfo]bool) // modules actively being checked
sorted := make([]*moduleInfo, 0, len(c.moduleInfo))
var check func(group *moduleInfo) []*moduleInfo
cycleError := func(cycle []*moduleInfo) {
// We are the "start" of the cycle, so we're responsible
// for generating the errors. The cycle list is in
// reverse order because all the 'check' calls append
// their own module to the list.
errs = append(errs, &Error{
Err: fmt.Errorf("encountered dependency cycle:"),
Pos: cycle[len(cycle)-1].pos,
})
// Iterate backwards through the cycle list.
curModule := cycle[0]
for i := len(cycle) - 1; i >= 0; i-- {
nextModule := cycle[i]
errs = append(errs, &Error{
Err: fmt.Errorf(" %q depends on %q",
curModule.properties.Name,
nextModule.properties.Name),
Pos: curModule.propertyPos["deps"],
})
curModule = nextModule
}
}
check = func(module *moduleInfo) []*moduleInfo {
visited[module] = true
checking[module] = true
defer delete(checking, module)
deps := make(map[*moduleInfo]bool)
// Add an implicit dependency ordering on all earlier modules in the same module group
for _, dep := range module.group.modules {
if dep == module {
break
}
deps[dep] = true
}
for _, dep := range module.directDeps {
deps[dep] = true
}
module.reverseDeps = []*moduleInfo{}
module.depsCount = len(deps)
for dep := range deps {
if checking[dep] {
// This is a cycle.
return []*moduleInfo{dep, module}
}
if !visited[dep] {
cycle := check(dep)
if cycle != nil {
if cycle[0] == module {
// We are the "start" of the cycle, so we're responsible
// for generating the errors. The cycle list is in
// reverse order because all the 'check' calls append
// their own module to the list.
cycleError(cycle)
// We can continue processing this module's children to
// find more cycles. Since all the modules that were
// part of the found cycle were marked as visited we
// won't run into that cycle again.
} else {
// We're not the "start" of the cycle, so we just append
// our module to the list and return it.
return append(cycle, module)
}
}
}
dep.reverseDeps = append(dep.reverseDeps, module)
}
sorted = append(sorted, module)
return nil
}
for _, module := range c.moduleInfo {
if !visited[module] {
cycle := check(module)
if cycle != nil {
if cycle[len(cycle)-1] != module {
panic("inconceivable!")
}
cycleError(cycle)
}
}
}
c.modulesSorted = sorted
return
}
// PrepareBuildActions generates an internal representation of all the build
// actions that need to be performed. This process involves invoking the
// GenerateBuildActions method on each of the Module objects created during the
// parse phase and then on each of the registered Singleton objects.
//
// If the ResolveDependencies method has not already been called it is called
// automatically by this method.
//
// The config argument is made available to all of the Module and Singleton
// objects via the Config method on the ModuleContext and SingletonContext
// objects passed to GenerateBuildActions. It is also passed to the functions
// specified via PoolFunc, RuleFunc, and VariableFunc so that they can compute
// config-specific values.
//
// The returned deps is a list of the ninja files dependencies that were added
// by the modules and singletons via the ModuleContext.AddNinjaFileDeps() and
// SingletonContext.AddNinjaFileDeps() methods.
func (c *Context) PrepareBuildActions(config interface{}) (deps []string, errs []error) {
c.buildActionsReady = false
errs = c.runEarlyMutators(config)
if len(errs) > 0 {
return nil, errs
}
if !c.dependenciesReady {
errs := c.ResolveDependencies(config)
if len(errs) > 0 {
return nil, errs
}
}
errs = c.runMutators(config)
if len(errs) > 0 {
return nil, errs
}
liveGlobals := newLiveTracker(config)
c.initSpecialVariables()
depsModules, errs := c.generateModuleBuildActions(config, liveGlobals)
if len(errs) > 0 {
return nil, errs
}
depsSingletons, errs := c.generateSingletonBuildActions(config, liveGlobals)
if len(errs) > 0 {
return nil, errs
}
deps = append(depsModules, depsSingletons...)
if c.buildDir != nil {
liveGlobals.addNinjaStringDeps(c.buildDir)
}
pkgNames := c.makeUniquePackageNames(liveGlobals)
// This will panic if it finds a problem since it's a programming error.
c.checkForVariableReferenceCycles(liveGlobals.variables, pkgNames)
c.pkgNames = pkgNames
c.globalVariables = liveGlobals.variables
c.globalPools = liveGlobals.pools
c.globalRules = liveGlobals.rules
c.buildActionsReady = true
return deps, nil
}
func (c *Context) runEarlyMutators(config interface{}) (errs []error) {
for _, mutator := range c.earlyMutatorInfo {
for _, group := range c.moduleGroups {
newModules := make([]*moduleInfo, 0, len(group.modules))
for _, module := range group.modules {
mctx := &mutatorContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
name: mutator.name,
}
mutator.mutator(mctx)
if len(mctx.errs) > 0 {
errs = append(errs, mctx.errs...)
return errs
}
if module.splitModules != nil {
newModules = append(newModules, module.splitModules...)
} else {
newModules = append(newModules, module)
}
}
group.modules = newModules
}
}
return nil
}
func (c *Context) runMutators(config interface{}) (errs []error) {
for _, mutator := range c.mutatorInfo {
if mutator.topDownMutator != nil {
errs = c.runTopDownMutator(config, mutator.name, mutator.topDownMutator)
} else if mutator.bottomUpMutator != nil {
errs = c.runBottomUpMutator(config, mutator.name, mutator.bottomUpMutator)
} else {
panic("no mutator set on " + mutator.name)
}
if len(errs) > 0 {
return errs
}
}
return nil
}
func (c *Context) runTopDownMutator(config interface{},
name string, mutator TopDownMutator) (errs []error) {
for i := 0; i < len(c.modulesSorted); i++ {
module := c.modulesSorted[len(c.modulesSorted)-1-i]
mctx := &mutatorContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
name: name,
}
mutator(mctx)
if len(mctx.errs) > 0 {
errs = append(errs, mctx.errs...)
return errs
}
}
return errs
}
func (c *Context) runBottomUpMutator(config interface{},
name string, mutator BottomUpMutator) (errs []error) {
dependenciesModified := false
for _, module := range c.modulesSorted {
newModules := make([]*moduleInfo, 0, 1)
mctx := &mutatorContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
name: name,
}
mutator(mctx)
if len(mctx.errs) > 0 {
errs = append(errs, mctx.errs...)
return errs
}
// Fix up any remaining dependencies on modules that were split into variants
// by replacing them with the first variant
for i, dep := range module.directDeps {
if dep.logicModule == nil {
module.directDeps[i] = dep.splitModules[0]
}
}
if mctx.dependenciesModified {
dependenciesModified = true
}
if module.splitModules != nil {
newModules = append(newModules, module.splitModules...)
} else {
newModules = append(newModules, module)
}
module.group.modules = spliceModules(module.group.modules, module, newModules)
}
if dependenciesModified {
errs = c.updateDependencies()
if len(errs) > 0 {
return errs
}
}
return errs
}
func spliceModules(modules []*moduleInfo, origModule *moduleInfo,
newModules []*moduleInfo) []*moduleInfo {
for i, m := range modules {
if m == origModule {
return spliceModulesAtIndex(modules, i, newModules)
}
}
panic("failed to find original module to splice")
}
func spliceModulesAtIndex(modules []*moduleInfo, i int, newModules []*moduleInfo) []*moduleInfo {
spliceSize := len(newModules)
newLen := len(modules) + spliceSize - 1
var dest []*moduleInfo
if cap(modules) >= len(modules)-1+len(newModules) {
// We can fit the splice in the existing capacity, do everything in place
dest = modules[:newLen]
} else {
dest = make([]*moduleInfo, newLen)
copy(dest, modules[:i])
}
// Move the end of the slice over by spliceSize-1
copy(dest[i+spliceSize:], modules[i+1:])
// Copy the new modules into the slice
copy(dest[i:], newModules)
return dest
}
func (c *Context) initSpecialVariables() {
c.buildDir = nil
c.requiredNinjaMajor = 1
c.requiredNinjaMinor = 1
c.requiredNinjaMicro = 0
}
func (c *Context) generateModuleBuildActions(config interface{},
liveGlobals *liveTracker) ([]string, []error) {
var deps []string
var errs []error
cancelCh := make(chan struct{})
errsCh := make(chan []error)
depsCh := make(chan []string)
go func() {
for {
select {
case <-cancelCh:
close(cancelCh)
return
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case newDeps := <-depsCh:
deps = append(deps, newDeps...)
}
}
}()
c.parallelVisitAllBottomUp(func(module *moduleInfo) bool {
// The parent scope of the moduleContext's local scope gets overridden to be that of the
// calling Go package on a per-call basis. Since the initial parent scope doesn't matter we
// just set it to nil.
prefix := moduleNamespacePrefix(module.group.ninjaName + "_" + module.variantName)
scope := newLocalScope(nil, prefix)
mctx := &moduleContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
scope: scope,
}
mctx.module.logicModule.GenerateBuildActions(mctx)
if len(mctx.errs) > 0 {
errsCh <- mctx.errs
return true
}
depsCh <- mctx.ninjaFileDeps
newErrs := c.processLocalBuildActions(&module.actionDefs,
&mctx.actionDefs, liveGlobals)
if len(newErrs) > 0 {
errsCh <- newErrs
return true
}
return false
})
cancelCh <- struct{}{}
<-cancelCh
return deps, errs
}
func (c *Context) generateSingletonBuildActions(config interface{},
liveGlobals *liveTracker) ([]string, []error) {
var deps []string
var errs []error
for name, info := range c.singletonInfo {
// The parent scope of the singletonContext's local scope gets overridden to be that of the
// calling Go package on a per-call basis. Since the initial parent scope doesn't matter we
// just set it to nil.
scope := newLocalScope(nil, singletonNamespacePrefix(name))
sctx := &singletonContext{
context: c,
config: config,
scope: scope,
}
info.singleton.GenerateBuildActions(sctx)
if len(sctx.errs) > 0 {
errs = append(errs, sctx.errs...)
if len(errs) > maxErrors {
break
}
continue
}
deps = append(deps, sctx.ninjaFileDeps...)
newErrs := c.processLocalBuildActions(&info.actionDefs,
&sctx.actionDefs, liveGlobals)
errs = append(errs, newErrs...)
if len(errs) > maxErrors {
break
}
}
return deps, errs
}
func (c *Context) processLocalBuildActions(out, in *localBuildActions,
liveGlobals *liveTracker) []error {
var errs []error
// First we go through and add everything referenced by the module's
// buildDefs to the live globals set. This will end up adding the live
// locals to the set as well, but we'll take them out after.
for _, def := range in.buildDefs {
err := liveGlobals.AddBuildDefDeps(def)
if err != nil {
errs = append(errs, err)
}
}
if len(errs) > 0 {
return errs
}
out.buildDefs = append(out.buildDefs, in.buildDefs...)
// We use the now-incorrect set of live "globals" to determine which local
// definitions are live. As we go through copying those live locals to the
// moduleGroup we remove them from the live globals set.
for _, v := range in.variables {
isLive := liveGlobals.RemoveVariableIfLive(v)
if isLive {
out.variables = append(out.variables, v)
}
}
for _, r := range in.rules {
isLive := liveGlobals.RemoveRuleIfLive(r)
if isLive {
out.rules = append(out.rules, r)
}
}
return nil
}
func (c *Context) visitDepsDepthFirst(topModule *moduleInfo, visit func(Module)) {
visited := make(map[*moduleInfo]bool)
var walk func(module *moduleInfo)
walk = func(module *moduleInfo) {
visited[module] = true
for _, moduleDep := range module.directDeps {
if !visited[moduleDep] {
walk(moduleDep)
}
}
if module != topModule {
visit(module.logicModule)
}
}
walk(topModule)
}
func (c *Context) visitDepsDepthFirstIf(topModule *moduleInfo, pred func(Module) bool,
visit func(Module)) {
visited := make(map[*moduleInfo]bool)
var walk func(module *moduleInfo)
walk = func(module *moduleInfo) {
visited[module] = true
for _, moduleDep := range module.directDeps {
if !visited[moduleDep] {
walk(moduleDep)
}
}
if module != topModule {
if pred(module.logicModule) {
visit(module.logicModule)
}
}
}
walk(topModule)
}
func (c *Context) visitDirectDeps(module *moduleInfo, visit func(Module)) {
for _, dep := range module.directDeps {
visit(dep.logicModule)
}
}
func (c *Context) visitDirectDepsIf(module *moduleInfo, pred func(Module) bool,
visit func(Module)) {
for _, dep := range module.directDeps {
if pred(dep.logicModule) {
visit(dep.logicModule)
}
}
}
func (c *Context) sortedModuleNames() []string {
if c.cachedSortedModuleNames == nil {
c.cachedSortedModuleNames = make([]string, 0, len(c.moduleGroups))
for moduleName := range c.moduleGroups {
c.cachedSortedModuleNames = append(c.cachedSortedModuleNames,
moduleName)
}
sort.Strings(c.cachedSortedModuleNames)
}
return c.cachedSortedModuleNames
}
func (c *Context) visitAllModules(visit func(Module)) {
for _, moduleName := range c.sortedModuleNames() {
group := c.moduleGroups[moduleName]
for _, module := range group.modules {
visit(module.logicModule)
}
}
}
func (c *Context) visitAllModulesIf(pred func(Module) bool,
visit func(Module)) {
for _, moduleName := range c.sortedModuleNames() {
group := c.moduleGroups[moduleName]
for _, module := range group.modules {
if pred(module.logicModule) {
visit(module.logicModule)
}
}
}
}
func (c *Context) requireNinjaVersion(major, minor, micro int) {
if major != 1 {
panic("ninja version with major version != 1 not supported")
}
if c.requiredNinjaMinor < minor {
c.requiredNinjaMinor = minor
c.requiredNinjaMicro = micro
}
if c.requiredNinjaMinor == minor && c.requiredNinjaMicro < micro {
c.requiredNinjaMicro = micro
}
}
func (c *Context) setBuildDir(value *ninjaString) {
if c.buildDir != nil {
panic("buildDir set multiple times")
}
c.buildDir = value
}
func (c *Context) makeUniquePackageNames(
liveGlobals *liveTracker) map[*PackageContext]string {
pkgs := make(map[string]*PackageContext)
pkgNames := make(map[*PackageContext]string)
longPkgNames := make(map[*PackageContext]bool)
processPackage := func(pctx *PackageContext) {
if pctx == nil {
// This is a built-in rule and has no package.
return
}
if _, ok := pkgNames[pctx]; ok {
// We've already processed this package.
return
}
otherPkg, present := pkgs[pctx.shortName]
if present {
// Short name collision. Both this package and the one that's
// already there need to use their full names. We leave the short
// name in pkgNames for now so future collisions still get caught.
longPkgNames[pctx] = true
longPkgNames[otherPkg] = true
} else {
// No collision so far. Tentatively set the package's name to be
// its short name.
pkgNames[pctx] = pctx.shortName
}
}
// We try to give all packages their short name, but when we get collisions
// we need to use the full unique package name.
for v, _ := range liveGlobals.variables {
processPackage(v.packageContext())
}
for p, _ := range liveGlobals.pools {
processPackage(p.packageContext())
}
for r, _ := range liveGlobals.rules {
processPackage(r.packageContext())
}
// Add the packages that had collisions using their full unique names. This
// will overwrite any short names that were added in the previous step.
for pctx := range longPkgNames {
pkgNames[pctx] = pctx.fullName
}
return pkgNames
}
func (c *Context) checkForVariableReferenceCycles(
variables map[Variable]*ninjaString, pkgNames map[*PackageContext]string) {
visited := make(map[Variable]bool) // variables that were already checked
checking := make(map[Variable]bool) // variables actively being checked
var check func(v Variable) []Variable
check = func(v Variable) []Variable {
visited[v] = true
checking[v] = true
defer delete(checking, v)
value := variables[v]
for _, dep := range value.variables {
if checking[dep] {
// This is a cycle.
return []Variable{dep, v}
}
if !visited[dep] {
cycle := check(dep)
if cycle != nil {
if cycle[0] == v {
// We are the "start" of the cycle, so we're responsible
// for generating the errors. The cycle list is in
// reverse order because all the 'check' calls append
// their own module to the list.
msgs := []string{"detected variable reference cycle:"}
// Iterate backwards through the cycle list.
curName := v.fullName(pkgNames)
curValue := value.Value(pkgNames)
for i := len(cycle) - 1; i >= 0; i-- {
next := cycle[i]
nextName := next.fullName(pkgNames)
nextValue := variables[next].Value(pkgNames)
msgs = append(msgs, fmt.Sprintf(
" %q depends on %q", curName, nextName))
msgs = append(msgs, fmt.Sprintf(
" [%s = %s]", curName, curValue))
curName = nextName
curValue = nextValue
}
// Variable reference cycles are a programming error,
// not the fault of the Blueprint file authors.
panic(strings.Join(msgs, "\n"))
} else {
// We're not the "start" of the cycle, so we just append
// our module to the list and return it.
return append(cycle, v)
}
}
}
}
return nil
}
for v := range variables {
if !visited[v] {
cycle := check(v)
if cycle != nil {
panic("inconceivable!")
}
}
}
}
// AllTargets returns a map all the build target names to the rule used to build
// them. This is the same information that is output by running 'ninja -t
// targets all'. If this is called before PrepareBuildActions successfully
// completes then ErrbuildActionsNotReady is returned.
func (c *Context) AllTargets() (map[string]string, error) {
if !c.buildActionsReady {
return nil, ErrBuildActionsNotReady
}
targets := map[string]string{}
// Collect all the module build targets.
for _, module := range c.moduleInfo {
for _, buildDef := range module.actionDefs.buildDefs {
ruleName := buildDef.Rule.fullName(c.pkgNames)
for _, output := range buildDef.Outputs {
outputValue, err := output.Eval(c.globalVariables)
if err != nil {
return nil, err
}
targets[outputValue] = ruleName
}
}
}
// Collect all the singleton build targets.
for _, info := range c.singletonInfo {
for _, buildDef := range info.actionDefs.buildDefs {
ruleName := buildDef.Rule.fullName(c.pkgNames)
for _, output := range buildDef.Outputs {
outputValue, err := output.Eval(c.globalVariables)
if err != nil {
return nil, err
}
targets[outputValue] = ruleName
}
}
}
return targets, nil
}
// WriteBuildFile writes the Ninja manifeset text for the generated build
// actions to w. If this is called before PrepareBuildActions successfully
// completes then ErrBuildActionsNotReady is returned.
func (c *Context) WriteBuildFile(w io.Writer) error {
if !c.buildActionsReady {
return ErrBuildActionsNotReady
}
nw := newNinjaWriter(w)
err := c.writeBuildFileHeader(nw)
if err != nil {
return err
}
err = c.writeNinjaRequiredVersion(nw)
if err != nil {
return err
}
// TODO: Group the globals by package.
err = c.writeGlobalVariables(nw)
if err != nil {
return err
}
err = c.writeGlobalPools(nw)
if err != nil {
return err
}
err = c.writeBuildDir(nw)
if err != nil {
return err
}
err = c.writeGlobalRules(nw)
if err != nil {
return err
}
err = c.writeAllModuleActions(nw)
if err != nil {
return err
}
err = c.writeAllSingletonActions(nw)
if err != nil {
return err
}
return nil
}
type pkgAssociation struct {
PkgName string
PkgPath string
}
type pkgAssociationSorter struct {
pkgs []pkgAssociation
}
func (s *pkgAssociationSorter) Len() int {
return len(s.pkgs)
}
func (s *pkgAssociationSorter) Less(i, j int) bool {
iName := s.pkgs[i].PkgName
jName := s.pkgs[j].PkgName
return iName < jName
}
func (s *pkgAssociationSorter) Swap(i, j int) {
s.pkgs[i], s.pkgs[j] = s.pkgs[j], s.pkgs[i]
}
func (c *Context) writeBuildFileHeader(nw *ninjaWriter) error {
headerTemplate := template.New("fileHeader")
_, err := headerTemplate.Parse(fileHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
var pkgs []pkgAssociation
maxNameLen := 0
for pkg, name := range c.pkgNames {
pkgs = append(pkgs, pkgAssociation{
PkgName: name,
PkgPath: pkg.pkgPath,
})
if len(name) > maxNameLen {
maxNameLen = len(name)
}
}
for i := range pkgs {
pkgs[i].PkgName += strings.Repeat(" ", maxNameLen-len(pkgs[i].PkgName))
}
sort.Sort(&pkgAssociationSorter{pkgs})
params := map[string]interface{}{
"Pkgs": pkgs,
}
buf := bytes.NewBuffer(nil)
err = headerTemplate.Execute(buf, params)
if err != nil {
return err
}
return nw.Comment(buf.String())
}
func (c *Context) writeNinjaRequiredVersion(nw *ninjaWriter) error {
value := fmt.Sprintf("%d.%d.%d", c.requiredNinjaMajor, c.requiredNinjaMinor,
c.requiredNinjaMicro)
err := nw.Assign("ninja_required_version", value)
if err != nil {
return err
}
return nw.BlankLine()
}
func (c *Context) writeBuildDir(nw *ninjaWriter) error {
if c.buildDir != nil {
err := nw.Assign("builddir", c.buildDir.Value(c.pkgNames))
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
type globalEntity interface {
fullName(pkgNames map[*PackageContext]string) string
}
type globalEntitySorter struct {
pkgNames map[*PackageContext]string
entities []globalEntity
}
func (s *globalEntitySorter) Len() int {
return len(s.entities)
}
func (s *globalEntitySorter) Less(i, j int) bool {
iName := s.entities[i].fullName(s.pkgNames)
jName := s.entities[j].fullName(s.pkgNames)
return iName < jName
}
func (s *globalEntitySorter) Swap(i, j int) {
s.entities[i], s.entities[j] = s.entities[j], s.entities[i]
}
func (c *Context) writeGlobalVariables(nw *ninjaWriter) error {
visited := make(map[Variable]bool)
var walk func(v Variable) error
walk = func(v Variable) error {
visited[v] = true
// First visit variables on which this variable depends.
value := c.globalVariables[v]
for _, dep := range value.variables {
if !visited[dep] {
err := walk(dep)
if err != nil {
return err
}
}
}
err := nw.Assign(v.fullName(c.pkgNames), value.Value(c.pkgNames))
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
return nil
}
globalVariables := make([]globalEntity, 0, len(c.globalVariables))
for variable := range c.globalVariables {
globalVariables = append(globalVariables, variable)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalVariables})
for _, entity := range globalVariables {
v := entity.(Variable)
if !visited[v] {
err := walk(v)
if err != nil {
return nil
}
}
}
return nil
}
func (c *Context) writeGlobalPools(nw *ninjaWriter) error {
globalPools := make([]globalEntity, 0, len(c.globalPools))
for pool := range c.globalPools {
globalPools = append(globalPools, pool)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalPools})
for _, entity := range globalPools {
pool := entity.(Pool)
name := pool.fullName(c.pkgNames)
def := c.globalPools[pool]
err := def.WriteTo(nw, name)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeGlobalRules(nw *ninjaWriter) error {
globalRules := make([]globalEntity, 0, len(c.globalRules))
for rule := range c.globalRules {
globalRules = append(globalRules, rule)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalRules})
for _, entity := range globalRules {
rule := entity.(Rule)
name := rule.fullName(c.pkgNames)
def := c.globalRules[rule]
err := def.WriteTo(nw, name, c.pkgNames)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
type moduleSorter []*moduleInfo
func (s moduleSorter) Len() int {
return len(s)
}
func (s moduleSorter) Less(i, j int) bool {
iName := s[i].properties.Name
jName := s[j].properties.Name
if iName == jName {
iName = s[i].variantName
jName = s[j].variantName
}
return iName < jName
}
func (s moduleSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (c *Context) writeAllModuleActions(nw *ninjaWriter) error {
headerTemplate := template.New("moduleHeader")
_, err := headerTemplate.Parse(moduleHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
modules := make([]*moduleInfo, 0, len(c.moduleInfo))
for _, module := range c.moduleInfo {
modules = append(modules, module)
}
sort.Sort(moduleSorter(modules))
buf := bytes.NewBuffer(nil)
for _, module := range modules {
buf.Reset()
// In order to make the bootstrap build manifest independent of the
// build dir we need to output the Blueprints file locations in the
// comments as paths relative to the source directory.
relPos := module.pos
relPos.Filename = module.relBlueprintsFile
// Get the name and location of the factory function for the module.
factory := c.moduleFactories[module.typeName]
factoryFunc := runtime.FuncForPC(reflect.ValueOf(factory).Pointer())
factoryName := factoryFunc.Name()
infoMap := map[string]interface{}{
"properties": module.properties,
"typeName": module.typeName,
"goFactory": factoryName,
"pos": relPos,
"variant": module.variantName,
}
err = headerTemplate.Execute(buf, infoMap)
if err != nil {
return err
}
err = nw.Comment(buf.String())
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
err = c.writeLocalBuildActions(nw, &module.actionDefs)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeAllSingletonActions(nw *ninjaWriter) error {
headerTemplate := template.New("singletonHeader")
_, err := headerTemplate.Parse(singletonHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
buf := bytes.NewBuffer(nil)
singletonNames := make([]string, 0, len(c.singletonInfo))
for name := range c.singletonInfo {
singletonNames = append(singletonNames, name)
}
sort.Strings(singletonNames)
for _, name := range singletonNames {
info := c.singletonInfo[name]
// Get the name of the factory function for the module.
factory := info.factory
factoryFunc := runtime.FuncForPC(reflect.ValueOf(factory).Pointer())
factoryName := factoryFunc.Name()
buf.Reset()
infoMap := map[string]interface{}{
"name": name,
"goFactory": factoryName,
}
err = headerTemplate.Execute(buf, infoMap)
if err != nil {
return err
}
err = nw.Comment(buf.String())
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
err = c.writeLocalBuildActions(nw, &info.actionDefs)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeLocalBuildActions(nw *ninjaWriter,
defs *localBuildActions) error {
// Write the local variable assignments.
for _, v := range defs.variables {
// A localVariable doesn't need the package names or config to
// determine its name or value.
name := v.fullName(nil)
value, err := v.value(nil)
if err != nil {
panic(err)
}
err = nw.Assign(name, value.Value(c.pkgNames))
if err != nil {
return err
}
}
if len(defs.variables) > 0 {
err := nw.BlankLine()
if err != nil {
return err
}
}
// Write the local rules.
for _, r := range defs.rules {
// A localRule doesn't need the package names or config to determine
// its name or definition.
name := r.fullName(nil)
def, err := r.def(nil)
if err != nil {
panic(err)
}
err = def.WriteTo(nw, name, c.pkgNames)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
// Write the build definitions.
for _, buildDef := range defs.buildDefs {
err := buildDef.WriteTo(nw, c.pkgNames)
if err != nil {
return err
}
if len(buildDef.Args) > 0 {
err = nw.BlankLine()
if err != nil {
return err
}
}
}
return nil
}
func beforeInModuleList(a, b *moduleInfo, list []*moduleInfo) bool {
found := false
for _, l := range list {
if l == a {
found = true
} else if l == b {
return found
}
}
missing := a
if found {
missing = b
}
panic(fmt.Errorf("element %v not found in list %v", missing, list))
}
var fileHeaderTemplate = `******************************************************************************
*** This file is generated and should not be edited ***
******************************************************************************
{{if .Pkgs}}
This file contains variables, rules, and pools with name prefixes indicating
they were generated by the following Go packages:
{{range .Pkgs}}
{{.PkgName}} [from Go package {{.PkgPath}}]{{end}}{{end}}
`
var moduleHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
Module: {{.properties.Name}}
Variant: {{.variant}}
Type: {{.typeName}}
Factory: {{.goFactory}}
Defined: {{.pos}}
`
var singletonHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
Singleton: {{.name}}
Factory: {{.goFactory}}
`