platform_build_soong/android/arch.go

1503 lines
38 KiB
Go
Raw Normal View History

// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package android
import (
"fmt"
"reflect"
"runtime"
"strings"
"github.com/google/blueprint/proptools"
)
var (
archTypeList []ArchType
Arm = newArch("arm", "lib32")
Arm64 = newArch("arm64", "lib64")
Mips = newArch("mips", "lib32")
Mips64 = newArch("mips64", "lib64")
X86 = newArch("x86", "lib32")
X86_64 = newArch("x86_64", "lib64")
Common = ArchType{
Name: "common",
}
)
var archTypeMap = map[string]ArchType{
"arm": Arm,
"arm64": Arm64,
"mips": Mips,
"mips64": Mips64,
"x86": X86,
"x86_64": X86_64,
}
/*
Example blueprints file containing all variant property groups, with comment listing what type
of variants get properties in that group:
module {
arch: {
arm: {
// Host or device variants with arm architecture
},
arm64: {
// Host or device variants with arm64 architecture
},
mips: {
// Host or device variants with mips architecture
},
mips64: {
// Host or device variants with mips64 architecture
},
x86: {
// Host or device variants with x86 architecture
},
x86_64: {
// Host or device variants with x86_64 architecture
},
},
multilib: {
lib32: {
// Host or device variants for 32-bit architectures
},
lib64: {
// Host or device variants for 64-bit architectures
},
},
target: {
android: {
// Device variants
},
host: {
// Host variants
},
linux_glibc: {
// Linux host variants
},
darwin: {
// Darwin host variants
},
windows: {
// Windows host variants
},
not_windows: {
// Non-windows host variants
},
},
}
*/
var archVariants = map[ArchType][]string{
Arm: {
"armv7-a-neon",
"armv8-a",
"armv8-2a",
"cortex-a7",
"cortex-a8",
"cortex-a9",
"cortex-a15",
"cortex-a53",
"cortex-a53-a57",
"cortex-a55",
"cortex-a72",
"cortex-a73",
"cortex-a75",
"cortex-a76",
"krait",
"kryo",
"kryo385",
"exynos-m1",
"exynos-m2",
},
Arm64: {
"armv8_a",
"armv8_2a",
"cortex-a53",
"cortex-a55",
"cortex-a72",
"cortex-a73",
"cortex-a75",
"cortex-a76",
"kryo",
"kryo385",
"exynos-m1",
"exynos-m2",
},
Mips: {
"mips32_fp",
"mips32r2_fp",
"mips32r2_fp_xburst",
"mips32r2dsp_fp",
"mips32r2dspr2_fp",
"mips32r6",
},
Mips64: {
"mips64r2",
"mips64r6",
},
X86: {
"atom",
"haswell",
"ivybridge",
"sandybridge",
"silvermont",
"x86_64",
},
X86_64: {
"haswell",
"ivybridge",
"sandybridge",
"silvermont",
},
}
var archFeatures = map[ArchType][]string{
Arm: {
"neon",
},
Mips: {
"dspr2",
"rev6",
"msa",
},
Mips64: {
"rev6",
"msa",
},
X86: {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"avx",
"popcnt",
"movbe",
},
X86_64: {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"avx",
"popcnt",
},
}
var archFeatureMap = map[ArchType]map[string][]string{
Arm: {
"armv7-a-neon": {
"neon",
},
"armv8-a": {
"neon",
},
"armv8-2a": {
"neon",
},
},
Mips: {
"mips32r2dspr2_fp": {
"dspr2",
},
"mips32r6": {
"rev6",
},
},
Mips64: {
"mips64r6": {
"rev6",
},
},
X86: {
"atom": {
"ssse3",
"movbe",
},
"haswell": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"avx",
"popcnt",
"movbe",
},
"ivybridge": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"avx",
"popcnt",
},
"sandybridge": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"popcnt",
},
"silvermont": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"popcnt",
"movbe",
},
"x86_64": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"popcnt",
},
},
X86_64: {
"haswell": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"avx",
"popcnt",
},
"ivybridge": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"avx",
"popcnt",
},
"sandybridge": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"popcnt",
},
"silvermont": {
"ssse3",
"sse4",
"sse4_1",
"sse4_2",
"aes_ni",
"popcnt",
},
},
}
var defaultArchFeatureMap = map[OsType]map[ArchType][]string{}
func RegisterDefaultArchVariantFeatures(os OsType, arch ArchType, features ...string) {
checkCalledFromInit()
for _, feature := range features {
if !InList(feature, archFeatures[arch]) {
panic(fmt.Errorf("Invalid feature %q for arch %q variant \"\"", feature, arch))
}
}
if defaultArchFeatureMap[os] == nil {
defaultArchFeatureMap[os] = make(map[ArchType][]string)
}
defaultArchFeatureMap[os][arch] = features
}
// An Arch indicates a single CPU architecture.
type Arch struct {
ArchType ArchType
ArchVariant string
CpuVariant string
Abi []string
ArchFeatures []string
Native bool
}
func (a Arch) String() string {
s := a.ArchType.String()
if a.ArchVariant != "" {
s += "_" + a.ArchVariant
}
if a.CpuVariant != "" {
s += "_" + a.CpuVariant
}
return s
}
type ArchType struct {
Name string
Field string
Multilib string
}
func newArch(name, multilib string) ArchType {
archType := ArchType{
Name: name,
Field: proptools.FieldNameForProperty(name),
Multilib: multilib,
}
archTypeList = append(archTypeList, archType)
return archType
}
func (a ArchType) String() string {
return a.Name
}
var BuildOs = func() OsType {
switch runtime.GOOS {
case "linux":
return Linux
case "darwin":
return Darwin
default:
panic(fmt.Sprintf("unsupported OS: %s", runtime.GOOS))
}
}()
var (
osTypeList []OsType
commonTargetMap = make(map[string]Target)
NoOsType OsType
Linux = NewOsType("linux_glibc", Host, false)
Darwin = NewOsType("darwin", Host, false)
LinuxBionic = NewOsType("linux_bionic", Host, false)
Windows = NewOsType("windows", HostCross, true)
Android = NewOsType("android", Device, false)
Fuchsia = NewOsType("fuchsia", Device, false)
osArchTypeMap = map[OsType][]ArchType{
Linux: []ArchType{X86, X86_64},
LinuxBionic: []ArchType{X86_64},
Darwin: []ArchType{X86_64},
Windows: []ArchType{X86, X86_64},
Android: []ArchType{Arm, Arm64, Mips, Mips64, X86, X86_64},
Fuchsia: []ArchType{Arm64, X86_64},
}
)
type OsType struct {
Name, Field string
Class OsClass
DefaultDisabled bool
}
type OsClass int
const (
Generic OsClass = iota
Device
Host
HostCross
)
func (class OsClass) String() string {
switch class {
case Generic:
return "generic"
case Device:
return "device"
case Host:
return "host"
case HostCross:
return "host cross"
default:
panic(fmt.Errorf("unknown class %d", class))
}
}
func (os OsType) String() string {
return os.Name
}
func (os OsType) Bionic() bool {
return os == Android || os == LinuxBionic
}
func (os OsType) Linux() bool {
return os == Android || os == Linux || os == LinuxBionic
}
func NewOsType(name string, class OsClass, defDisabled bool) OsType {
os := OsType{
Name: name,
Field: strings.Title(name),
Class: class,
DefaultDisabled: defDisabled,
}
osTypeList = append(osTypeList, os)
if _, found := commonTargetMap[name]; found {
panic(fmt.Errorf("Found Os type duplicate during OsType registration: %q", name))
} else {
commonTargetMap[name] = Target{Os: os, Arch: Arch{ArchType: Common}}
}
return os
}
func osByName(name string) OsType {
for _, os := range osTypeList {
if os.Name == name {
return os
}
}
return NoOsType
}
type Target struct {
Os OsType
Arch Arch
}
func (target Target) String() string {
return target.Os.String() + "_" + target.Arch.String()
}
// archMutator splits a module into a variant for each Target requested by the module. Target selection
// for a module is in three levels, OsClass, mulitlib, and then Target.
// OsClass selection is determined by:
// - The HostOrDeviceSupported value passed in to InitAndroidArchModule by the module type factory, which selects
// whether the module type can compile for host, device or both.
// - The host_supported and device_supported properties on the module.
// If host is supported for the module, the Host and HostCross OsClasses are are selected. If device is supported
// for the module, the Device OsClass is selected.
// Within each selected OsClass, the multilib selection is determined by:
// - The compile_multilib property if it set (which may be overriden by target.android.compile_multlib or
// target.host.compile_multilib).
// - The default multilib passed to InitAndroidArchModule if compile_multilib was not set.
// Valid multilib values include:
// "both": compile for all Targets supported by the OsClass (generally x86_64 and x86, or arm64 and arm).
// "first": compile for only a single preferred Target supported by the OsClass. This is generally x86_64 or arm64,
// but may be arm for a 32-bit only build or a build with TARGET_PREFER_32_BIT=true set.
// "32": compile for only a single 32-bit Target supported by the OsClass.
// "64": compile for only a single 64-bit Target supported by the OsClass.
// "common": compile a for a single Target that will work on all Targets suported by the OsClass (for example Java).
//
// Once the list of Targets is determined, the module is split into a variant for each Target.
//
// Modules can be initialized with InitAndroidMultiTargetsArchModule, in which case they will be split by OsClass,
// but will have a common Target that is expected to handle all other selected Targets via ctx.MultiTargets().
func archMutator(mctx BottomUpMutatorContext) {
var module Module
var ok bool
if module, ok = mctx.Module().(Module); !ok {
return
}
base := module.base()
if !base.ArchSpecific() {
return
}
var moduleTargets []Target
moduleMultiTargets := make(map[int][]Target)
primaryModules := make(map[int]bool)
osClasses := base.OsClassSupported()
for _, os := range osTypeList {
supportedClass := false
for _, osClass := range osClasses {
if os.Class == osClass {
supportedClass = true
}
}
if !supportedClass {
continue
}
osTargets := mctx.Config().Targets[os]
if len(osTargets) == 0 {
continue
}
// only the primary arch in the recovery partition
if os == Android && module.InstallInRecovery() {
osTargets = []Target{osTargets[0]}
}
prefer32 := false
if base.prefer32 != nil {
prefer32 = base.prefer32(mctx, base, os.Class)
}
multilib, extraMultilib := decodeMultilib(base, os.Class)
targets, err := decodeMultilibTargets(multilib, osTargets, prefer32)
if err != nil {
mctx.ModuleErrorf("%s", err.Error())
}
var multiTargets []Target
if extraMultilib != "" {
multiTargets, err = decodeMultilibTargets(extraMultilib, osTargets, prefer32)
if err != nil {
mctx.ModuleErrorf("%s", err.Error())
}
}
if len(targets) > 0 {
primaryModules[len(moduleTargets)] = true
moduleMultiTargets[len(moduleTargets)] = multiTargets
moduleTargets = append(moduleTargets, targets...)
}
}
if len(moduleTargets) == 0 {
base.commonProperties.Enabled = boolPtr(false)
return
}
targetNames := make([]string, len(moduleTargets))
for i, target := range moduleTargets {
targetNames[i] = target.String()
}
modules := mctx.CreateVariations(targetNames...)
for i, m := range modules {
m.(Module).base().SetTarget(moduleTargets[i], moduleMultiTargets[i], primaryModules[i])
m.(Module).base().setArchProperties(mctx)
}
}
func decodeMultilib(base *ModuleBase, class OsClass) (multilib, extraMultilib string) {
switch class {
case Device:
multilib = String(base.commonProperties.Target.Android.Compile_multilib)
case Host, HostCross:
multilib = String(base.commonProperties.Target.Host.Compile_multilib)
}
if multilib == "" {
multilib = String(base.commonProperties.Compile_multilib)
}
if multilib == "" {
multilib = base.commonProperties.Default_multilib
}
if base.commonProperties.UseTargetVariants {
return multilib, ""
} else {
// For app modules a single arch variant will be created per OS class which is expected to handle all the
// selected arches. Return the common-type as multilib and any Android.bp provided multilib as extraMultilib
if multilib == base.commonProperties.Default_multilib {
multilib = "first"
}
return base.commonProperties.Default_multilib, multilib
}
}
func filterArchStructFields(fields []reflect.StructField) (filteredFields []reflect.StructField, filtered bool) {
for _, field := range fields {
if !proptools.HasTag(field, "android", "arch_variant") {
filtered = true
continue
}
// The arch_variant field isn't necessary past this point
// Instead of wasting space, just remove it. Go also has a
// 16-bit limit on structure name length. The name is constructed
// based on the Go source representation of the structure, so
// the tag names count towards that length.
//
// TODO: handle the uncommon case of other tags being involved
if field.Tag == `android:"arch_variant"` {
field.Tag = ""
}
// Recurse into structs
switch field.Type.Kind() {
case reflect.Struct:
var subFiltered bool
field.Type, subFiltered = filterArchStruct(field.Type)
filtered = filtered || subFiltered
if field.Type == nil {
continue
}
case reflect.Ptr:
if field.Type.Elem().Kind() == reflect.Struct {
nestedType, subFiltered := filterArchStruct(field.Type.Elem())
filtered = filtered || subFiltered
if nestedType == nil {
continue
}
field.Type = reflect.PtrTo(nestedType)
}
case reflect.Interface:
panic("Interfaces are not supported in arch_variant properties")
}
filteredFields = append(filteredFields, field)
}
return filteredFields, filtered
}
// filterArchStruct takes a reflect.Type that is either a sturct or a pointer to a struct, and returns a reflect.Type
// that only contains the fields in the original type that have an `android:"arch_variant"` struct tag, and a bool
// that is true if the new struct type has fewer fields than the original type. If there are no fields in the
// original type with the struct tag it returns nil and true.
func filterArchStruct(prop reflect.Type) (filteredProp reflect.Type, filtered bool) {
var fields []reflect.StructField
ptr := prop.Kind() == reflect.Ptr
if ptr {
prop = prop.Elem()
}
for i := 0; i < prop.NumField(); i++ {
fields = append(fields, prop.Field(i))
}
filteredFields, filtered := filterArchStructFields(fields)
if len(filteredFields) == 0 {
return nil, true
}
if !filtered {
if ptr {
return reflect.PtrTo(prop), false
}
return prop, false
}
ret := reflect.StructOf(filteredFields)
if ptr {
ret = reflect.PtrTo(ret)
}
return ret, true
}
// filterArchStruct takes a reflect.Type that is either a sturct or a pointer to a struct, and returns a list of
// reflect.Type that only contains the fields in the original type that have an `android:"arch_variant"` struct tag,
// and a bool that is true if the new struct type has fewer fields than the original type. If there are no fields in
// the original type with the struct tag it returns nil and true. Each returned struct type will have a maximum of
// 10 top level fields in it to attempt to avoid hitting the reflect.StructOf name length limit, although the limit
// can still be reached with a single struct field with many fields in it.
func filterArchStructSharded(prop reflect.Type) (filteredProp []reflect.Type, filtered bool) {
var fields []reflect.StructField
ptr := prop.Kind() == reflect.Ptr
if ptr {
prop = prop.Elem()
}
for i := 0; i < prop.NumField(); i++ {
fields = append(fields, prop.Field(i))
}
fields, filtered = filterArchStructFields(fields)
if !filtered {
if ptr {
return []reflect.Type{reflect.PtrTo(prop)}, false
}
return []reflect.Type{prop}, false
}
if len(fields) == 0 {
return nil, true
}
shards := shardFields(fields, 10)
for _, shard := range shards {
s := reflect.StructOf(shard)
if ptr {
s = reflect.PtrTo(s)
}
filteredProp = append(filteredProp, s)
}
return filteredProp, true
}
func shardFields(fields []reflect.StructField, shardSize int) [][]reflect.StructField {
ret := make([][]reflect.StructField, 0, (len(fields)+shardSize-1)/shardSize)
for len(fields) > shardSize {
ret = append(ret, fields[0:shardSize])
fields = fields[shardSize:]
}
if len(fields) > 0 {
ret = append(ret, fields)
}
return ret
}
// createArchType takes a reflect.Type that is either a struct or a pointer to a struct, and returns a list of
// reflect.Type that contains the arch-variant properties inside structs for each architecture, os, target, multilib,
// etc.
func createArchType(props reflect.Type) []reflect.Type {
propShards, _ := filterArchStructSharded(props)
if len(propShards) == 0 {
return nil
}
var ret []reflect.Type
for _, props := range propShards {
variantFields := func(names []string) []reflect.StructField {
ret := make([]reflect.StructField, len(names))
for i, name := range names {
ret[i].Name = name
ret[i].Type = props
}
return ret
}
archFields := make([]reflect.StructField, len(archTypeList))
for i, arch := range archTypeList {
variants := []string{}
for _, archVariant := range archVariants[arch] {
archVariant := variantReplacer.Replace(archVariant)
variants = append(variants, proptools.FieldNameForProperty(archVariant))
}
for _, feature := range archFeatures[arch] {
feature := variantReplacer.Replace(feature)
variants = append(variants, proptools.FieldNameForProperty(feature))
}
fields := variantFields(variants)
fields = append([]reflect.StructField{{
Name: "BlueprintEmbed",
Type: props,
Anonymous: true,
}}, fields...)
archFields[i] = reflect.StructField{
Name: arch.Field,
Type: reflect.StructOf(fields),
}
}
archType := reflect.StructOf(archFields)
multilibType := reflect.StructOf(variantFields([]string{"Lib32", "Lib64"}))
targets := []string{
"Host",
"Android64",
"Android32",
"Bionic",
"Linux",
"Not_windows",
"Arm_on_x86",
"Arm_on_x86_64",
}
for _, os := range osTypeList {
targets = append(targets, os.Field)
for _, archType := range osArchTypeMap[os] {
targets = append(targets, os.Field+"_"+archType.Name)
if os.Linux() {
target := "Linux_" + archType.Name
if !InList(target, targets) {
targets = append(targets, target)
}
}
if os.Bionic() {
target := "Bionic_" + archType.Name
if !InList(target, targets) {
targets = append(targets, target)
}
}
}
}
targetType := reflect.StructOf(variantFields(targets))
ret = append(ret, reflect.StructOf([]reflect.StructField{
{
Name: "Arch",
Type: archType,
},
{
Name: "Multilib",
Type: multilibType,
},
{
Name: "Target",
Type: targetType,
},
}))
}
return ret
}
var archPropTypeMap OncePer
func InitArchModule(m Module) {
base := m.base()
base.generalProperties = m.GetProperties()
for _, properties := range base.generalProperties {
propertiesValue := reflect.ValueOf(properties)
t := propertiesValue.Type()
if propertiesValue.Kind() != reflect.Ptr {
panic(fmt.Errorf("properties must be a pointer to a struct, got %T",
propertiesValue.Interface()))
}
propertiesValue = propertiesValue.Elem()
if propertiesValue.Kind() != reflect.Struct {
panic(fmt.Errorf("properties must be a pointer to a struct, got %T",
propertiesValue.Interface()))
}
archPropTypes := archPropTypeMap.Once(NewCustomOnceKey(t), func() interface{} {
return createArchType(t)
}).([]reflect.Type)
var archProperties []interface{}
for _, t := range archPropTypes {
archProperties = append(archProperties, reflect.New(t).Interface())
}
base.archProperties = append(base.archProperties, archProperties)
m.AddProperties(archProperties...)
}
base.customizableProperties = m.GetProperties()
}
var variantReplacer = strings.NewReplacer("-", "_", ".", "_")
func (a *ModuleBase) appendProperties(ctx BottomUpMutatorContext,
dst interface{}, src reflect.Value, field, srcPrefix string) reflect.Value {
src = src.FieldByName(field)
if !src.IsValid() {
ctx.ModuleErrorf("field %q does not exist", srcPrefix)
return src
}
ret := src
if src.Kind() == reflect.Struct {
src = src.FieldByName("BlueprintEmbed")
}
order := func(property string,
dstField, srcField reflect.StructField,
dstValue, srcValue interface{}) (proptools.Order, error) {
if proptools.HasTag(dstField, "android", "variant_prepend") {
return proptools.Prepend, nil
} else {
return proptools.Append, nil
}
}
err := proptools.ExtendMatchingProperties([]interface{}{dst}, src.Interface(), nil, order)
if err != nil {
if propertyErr, ok := err.(*proptools.ExtendPropertyError); ok {
ctx.PropertyErrorf(propertyErr.Property, "%s", propertyErr.Err.Error())
} else {
panic(err)
}
}
return ret
}
// Rewrite the module's properties structs to contain arch-specific values.
func (a *ModuleBase) setArchProperties(ctx BottomUpMutatorContext) {
arch := a.Arch()
os := a.Os()
for i := range a.generalProperties {
genProps := a.generalProperties[i]
if a.archProperties[i] == nil {
continue
}
for _, archProperties := range a.archProperties[i] {
archPropValues := reflect.ValueOf(archProperties).Elem()
archProp := archPropValues.FieldByName("Arch")
multilibProp := archPropValues.FieldByName("Multilib")
targetProp := archPropValues.FieldByName("Target")
var field string
var prefix string
// Handle arch-specific properties in the form:
// arch: {
// arm64: {
// key: value,
// },
// },
t := arch.ArchType
if arch.ArchType != Common {
field := proptools.FieldNameForProperty(t.Name)
prefix := "arch." + t.Name
archStruct := a.appendProperties(ctx, genProps, archProp, field, prefix)
// Handle arch-variant-specific properties in the form:
// arch: {
// variant: {
// key: value,
// },
// },
v := variantReplacer.Replace(arch.ArchVariant)
if v != "" {
field := proptools.FieldNameForProperty(v)
prefix := "arch." + t.Name + "." + v
a.appendProperties(ctx, genProps, archStruct, field, prefix)
}
// Handle cpu-variant-specific properties in the form:
// arch: {
// variant: {
// key: value,
// },
// },
if arch.CpuVariant != arch.ArchVariant {
c := variantReplacer.Replace(arch.CpuVariant)
if c != "" {
field := proptools.FieldNameForProperty(c)
prefix := "arch." + t.Name + "." + c
a.appendProperties(ctx, genProps, archStruct, field, prefix)
}
}
// Handle arch-feature-specific properties in the form:
// arch: {
// feature: {
// key: value,
// },
// },
for _, feature := range arch.ArchFeatures {
field := proptools.FieldNameForProperty(feature)
prefix := "arch." + t.Name + "." + feature
a.appendProperties(ctx, genProps, archStruct, field, prefix)
}
// Handle multilib-specific properties in the form:
// multilib: {
// lib32: {
// key: value,
// },
// },
field = proptools.FieldNameForProperty(t.Multilib)
prefix = "multilib." + t.Multilib
a.appendProperties(ctx, genProps, multilibProp, field, prefix)
}
// Handle host-specific properties in the form:
// target: {
// host: {
// key: value,
// },
// },
if os.Class == Host || os.Class == HostCross {
field = "Host"
prefix = "target.host"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
// Handle target OS generalities of the form:
// target: {
// bionic: {
// key: value,
// },
// bionic_x86: {
// key: value,
// },
// }
if os.Linux() {
field = "Linux"
prefix = "target.linux"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
if arch.ArchType != Common {
field = "Linux_" + arch.ArchType.Name
prefix = "target.linux_" + arch.ArchType.Name
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
}
if os.Bionic() {
field = "Bionic"
prefix = "target.bionic"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
if arch.ArchType != Common {
field = "Bionic_" + t.Name
prefix = "target.bionic_" + t.Name
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
}
// Handle target OS properties in the form:
// target: {
// linux_glibc: {
// key: value,
// },
// not_windows: {
// key: value,
// },
// linux_glibc_x86: {
// key: value,
// },
// linux_glibc_arm: {
// key: value,
// },
// android {
// key: value,
// },
// android_arm {
// key: value,
// },
// android_x86 {
// key: value,
// },
// },
field = os.Field
prefix = "target." + os.Name
a.appendProperties(ctx, genProps, targetProp, field, prefix)
if arch.ArchType != Common {
field = os.Field + "_" + t.Name
prefix = "target." + os.Name + "_" + t.Name
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
if (os.Class == Host || os.Class == HostCross) && os != Windows {
field := "Not_windows"
prefix := "target.not_windows"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
// Handle 64-bit device properties in the form:
// target {
// android64 {
// key: value,
// },
// android32 {
// key: value,
// },
// },
// WARNING: this is probably not what you want to use in your blueprints file, it selects
// options for all targets on a device that supports 64-bit binaries, not just the targets
// that are being compiled for 64-bit. Its expected use case is binaries like linker and
// debuggerd that need to know when they are a 32-bit process running on a 64-bit device
if os.Class == Device {
if ctx.Config().Android64() {
field := "Android64"
prefix := "target.android64"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
} else {
field := "Android32"
prefix := "target.android32"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
if (arch.ArchType == X86 && (hasArmAbi(arch) ||
hasArmAndroidArch(ctx.Config().Targets[Android]))) ||
(arch.ArchType == Arm &&
hasX86AndroidArch(ctx.Config().Targets[Android])) {
field := "Arm_on_x86"
prefix := "target.arm_on_x86"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
if (arch.ArchType == X86_64 && (hasArmAbi(arch) ||
hasArmAndroidArch(ctx.Config().Targets[Android]))) ||
(arch.ArchType == Arm &&
hasX8664AndroidArch(ctx.Config().Targets[Android])) {
field := "Arm_on_x86_64"
prefix := "target.arm_on_x86_64"
a.appendProperties(ctx, genProps, targetProp, field, prefix)
}
}
}
}
}
func forEachInterface(v reflect.Value, f func(reflect.Value)) {
switch v.Kind() {
case reflect.Interface:
f(v)
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
forEachInterface(v.Field(i), f)
}
case reflect.Ptr:
forEachInterface(v.Elem(), f)
default:
panic(fmt.Errorf("Unsupported kind %s", v.Kind()))
}
}
// Convert the arch product variables into a list of targets for each os class structs
func decodeTargetProductVariables(config *config) (map[OsType][]Target, error) {
variables := config.productVariables
targets := make(map[OsType][]Target)
var targetErr error
addTarget := func(os OsType, archName string, archVariant, cpuVariant *string, abi []string) {
if targetErr != nil {
return
}
arch, err := decodeArch(os, archName, archVariant, cpuVariant, abi)
if err != nil {
targetErr = err
return
}
targets[os] = append(targets[os],
Target{
Os: os,
Arch: arch,
})
}
if variables.HostArch == nil {
return nil, fmt.Errorf("No host primary architecture set")
}
addTarget(BuildOs, *variables.HostArch, nil, nil, nil)
if variables.HostSecondaryArch != nil && *variables.HostSecondaryArch != "" {
addTarget(BuildOs, *variables.HostSecondaryArch, nil, nil, nil)
}
if Bool(config.Host_bionic) {
addTarget(LinuxBionic, "x86_64", nil, nil, nil)
}
if String(variables.CrossHost) != "" {
crossHostOs := osByName(*variables.CrossHost)
if crossHostOs == NoOsType {
return nil, fmt.Errorf("Unknown cross host OS %q", *variables.CrossHost)
}
if String(variables.CrossHostArch) == "" {
return nil, fmt.Errorf("No cross-host primary architecture set")
}
addTarget(crossHostOs, *variables.CrossHostArch, nil, nil, nil)
if variables.CrossHostSecondaryArch != nil && *variables.CrossHostSecondaryArch != "" {
addTarget(crossHostOs, *variables.CrossHostSecondaryArch, nil, nil, nil)
}
}
if variables.DeviceArch != nil && *variables.DeviceArch != "" {
var target = Android
if Bool(variables.Fuchsia) {
target = Fuchsia
}
addTarget(target, *variables.DeviceArch, variables.DeviceArchVariant,
variables.DeviceCpuVariant, variables.DeviceAbi)
if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" {
addTarget(Android, *variables.DeviceSecondaryArch,
variables.DeviceSecondaryArchVariant, variables.DeviceSecondaryCpuVariant,
variables.DeviceSecondaryAbi)
deviceArches := targets[Android]
if deviceArches[0].Arch.ArchType.Multilib == deviceArches[1].Arch.ArchType.Multilib {
deviceArches[1].Arch.Native = false
}
}
}
if targetErr != nil {
return nil, targetErr
}
return targets, nil
}
// hasArmAbi returns true if arch has at least one arm ABI
func hasArmAbi(arch Arch) bool {
for _, abi := range arch.Abi {
if strings.HasPrefix(abi, "arm") {
return true
}
}
return false
}
// hasArmArch returns true if targets has at least arm Android arch
func hasArmAndroidArch(targets []Target) bool {
for _, target := range targets {
if target.Os == Android && target.Arch.ArchType == Arm {
return true
}
}
return false
}
// hasX86Arch returns true if targets has at least x86 Android arch
func hasX86AndroidArch(targets []Target) bool {
for _, target := range targets {
if target.Os == Android && target.Arch.ArchType == X86 {
return true
}
}
return false
}
// hasX8664Arch returns true if targets has at least x86_64 Android arch
func hasX8664AndroidArch(targets []Target) bool {
for _, target := range targets {
if target.Os == Android && target.Arch.ArchType == X86_64 {
return true
}
}
return false
}
type archConfig struct {
arch string
archVariant string
cpuVariant string
abi []string
}
func getMegaDeviceConfig() []archConfig {
return []archConfig{
{"arm", "armv7-a-neon", "generic", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a7", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a8", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a9", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a15", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a53", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a53.a57", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a72", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a73", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a75", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "cortex-a76", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "krait", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "kryo", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "kryo385", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "exynos-m1", []string{"armeabi-v7a"}},
{"arm", "armv7-a-neon", "exynos-m2", []string{"armeabi-v7a"}},
{"arm64", "armv8-a", "cortex-a53", []string{"arm64-v8a"}},
{"arm64", "armv8-a", "cortex-a72", []string{"arm64-v8a"}},
{"arm64", "armv8-a", "cortex-a73", []string{"arm64-v8a"}},
{"arm64", "armv8-a", "kryo", []string{"arm64-v8a"}},
{"arm64", "armv8-a", "exynos-m1", []string{"arm64-v8a"}},
{"arm64", "armv8-a", "exynos-m2", []string{"arm64-v8a"}},
{"arm64", "armv8-2a", "cortex-a75", []string{"arm64-v8a"}},
{"arm64", "armv8-2a", "cortex-a76", []string{"arm64-v8a"}},
{"arm64", "armv8-2a", "kryo385", []string{"arm64-v8a"}},
{"mips", "mips32-fp", "", []string{"mips"}},
{"mips", "mips32r2-fp", "", []string{"mips"}},
{"mips", "mips32r2-fp-xburst", "", []string{"mips"}},
//{"mips", "mips32r6", "", []string{"mips"}},
{"mips", "mips32r2dsp-fp", "", []string{"mips"}},
{"mips", "mips32r2dspr2-fp", "", []string{"mips"}},
// mips64r2 is mismatching 64r2 and 64r6 libraries during linking to libgcc
//{"mips64", "mips64r2", "", []string{"mips64"}},
{"mips64", "mips64r6", "", []string{"mips64"}},
{"x86", "", "", []string{"x86"}},
{"x86", "atom", "", []string{"x86"}},
{"x86", "haswell", "", []string{"x86"}},
{"x86", "ivybridge", "", []string{"x86"}},
{"x86", "sandybridge", "", []string{"x86"}},
{"x86", "silvermont", "", []string{"x86"}},
{"x86", "x86_64", "", []string{"x86"}},
{"x86_64", "", "", []string{"x86_64"}},
{"x86_64", "haswell", "", []string{"x86_64"}},
{"x86_64", "ivybridge", "", []string{"x86_64"}},
{"x86_64", "sandybridge", "", []string{"x86_64"}},
{"x86_64", "silvermont", "", []string{"x86_64"}},
}
}
func getNdkAbisConfig() []archConfig {
return []archConfig{
{"arm", "armv7-a-neon", "", []string{"armeabi"}},
{"arm64", "armv8-a", "", []string{"arm64-v8a"}},
{"x86", "", "", []string{"x86"}},
{"x86_64", "", "", []string{"x86_64"}},
}
}
func decodeArchSettings(os OsType, archConfigs []archConfig) ([]Target, error) {
var ret []Target
for _, config := range archConfigs {
arch, err := decodeArch(os, config.arch, &config.archVariant,
&config.cpuVariant, config.abi)
if err != nil {
return nil, err
}
arch.Native = false
ret = append(ret, Target{
Os: Android,
Arch: arch,
})
}
return ret, nil
}
// Convert a set of strings from product variables into a single Arch struct
func decodeArch(os OsType, arch string, archVariant, cpuVariant *string, abi []string) (Arch, error) {
stringPtr := func(p *string) string {
if p != nil {
return *p
}
return ""
}
archType, ok := archTypeMap[arch]
if !ok {
return Arch{}, fmt.Errorf("unknown arch %q", arch)
}
a := Arch{
ArchType: archType,
ArchVariant: stringPtr(archVariant),
CpuVariant: stringPtr(cpuVariant),
Abi: abi,
Native: true,
}
if a.ArchVariant == a.ArchType.Name || a.ArchVariant == "generic" {
a.ArchVariant = ""
}
if a.CpuVariant == a.ArchType.Name || a.CpuVariant == "generic" {
a.CpuVariant = ""
}
for i := 0; i < len(a.Abi); i++ {
if a.Abi[i] == "" {
a.Abi = append(a.Abi[:i], a.Abi[i+1:]...)
i--
}
}
if a.ArchVariant == "" {
if featureMap, ok := defaultArchFeatureMap[os]; ok {
a.ArchFeatures = featureMap[archType]
}
} else {
if featureMap, ok := archFeatureMap[archType]; ok {
a.ArchFeatures = featureMap[a.ArchVariant]
}
}
return a, nil
}
func filterMultilibTargets(targets []Target, multilib string) []Target {
var ret []Target
for _, t := range targets {
if t.Arch.ArchType.Multilib == multilib {
ret = append(ret, t)
}
}
return ret
}
func getCommonTargets(targets []Target) []Target {
var ret []Target
set := make(map[string]bool)
for _, t := range targets {
if _, found := set[t.Os.String()]; !found {
set[t.Os.String()] = true
ret = append(ret, commonTargetMap[t.Os.String()])
}
}
return ret
}
func firstTarget(targets []Target, filters ...string) []Target {
for _, filter := range filters {
buildTargets := filterMultilibTargets(targets, filter)
if len(buildTargets) > 0 {
return buildTargets[:1]
}
}
return nil
}
// Use the module multilib setting to select one or more targets from a target list
func decodeMultilibTargets(multilib string, targets []Target, prefer32 bool) ([]Target, error) {
buildTargets := []Target{}
switch multilib {
case "common":
buildTargets = getCommonTargets(targets)
case "common_first":
buildTargets = getCommonTargets(targets)
if prefer32 {
buildTargets = append(buildTargets, firstTarget(targets, "lib32", "lib64")...)
} else {
buildTargets = append(buildTargets, firstTarget(targets, "lib64", "lib32")...)
}
case "both":
if prefer32 {
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...)
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...)
} else {
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...)
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...)
}
case "32":
buildTargets = filterMultilibTargets(targets, "lib32")
case "64":
buildTargets = filterMultilibTargets(targets, "lib64")
case "first":
if prefer32 {
buildTargets = firstTarget(targets, "lib32", "lib64")
} else {
buildTargets = firstTarget(targets, "lib64", "lib32")
}
case "prefer32":
buildTargets = filterMultilibTargets(targets, "lib32")
if len(buildTargets) == 0 {
buildTargets = filterMultilibTargets(targets, "lib64")
}
default:
return nil, fmt.Errorf(`compile_multilib must be "both", "first", "32", "64", or "prefer32" found %q`,
multilib)
}
return buildTargets, nil
}