platform_build_soong/cc/sanitize.go

1915 lines
64 KiB
Go
Raw Normal View History

// Copyright 2016 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cc
import (
"fmt"
"sort"
"strings"
"sync"
"github.com/google/blueprint"
"github.com/google/blueprint/proptools"
"android/soong/android"
"android/soong/cc/config"
"android/soong/snapshot"
)
var (
// Any C flags added by sanitizer which libTooling tools may not
// understand also need to be added to ClangLibToolingUnknownCflags in
// cc/config/clang.go
asanCflags = []string{
"-fno-omit-frame-pointer",
}
asanLdflags = []string{"-Wl,-u,__asan_preinit"}
// DO NOT ADD MLLVM FLAGS HERE! ADD THEM BELOW TO hwasanCommonFlags.
hwasanCflags = []string{
"-fno-omit-frame-pointer",
"-Wno-frame-larger-than=",
"-fsanitize-hwaddress-abi=platform",
}
// ThinLTO performs codegen during link time, thus these flags need to
// passed to both CFLAGS and LDFLAGS.
hwasanCommonflags = []string{
// The following improves debug location information
// availability at the cost of its accuracy. It increases
// the likelihood of a stack variable's frame offset
// to be recorded in the debug info, which is important
// for the quality of hwasan reports. The downside is a
// higher number of "optimized out" stack variables.
// b/112437883.
"-instcombine-lower-dbg-declare=0",
"-hwasan-use-after-scope=1",
"-dom-tree-reachability-max-bbs-to-explore=128",
}
sanitizeIgnorelistPrefix = "-fsanitize-ignorelist="
cfiBlocklistPath = "external/compiler-rt/lib/cfi"
cfiBlocklistFilename = "cfi_blocklist.txt"
cfiEnableFlag = "-fsanitize=cfi"
cfiCrossDsoFlag = "-fsanitize-cfi-cross-dso"
cfiCflags = []string{"-flto", cfiCrossDsoFlag,
sanitizeIgnorelistPrefix + cfiBlocklistPath + "/" + cfiBlocklistFilename}
// -flto and -fvisibility are required by clang when -fsanitize=cfi is
// used, but have no effect on assembly files
cfiAsflags = []string{"-flto", "-fvisibility=default"}
cfiLdflags = []string{"-flto", cfiCrossDsoFlag, cfiEnableFlag,
"-Wl,-plugin-opt,O1"}
cfiExportsMapPath = "build/soong/cc/config"
cfiExportsMapFilename = "cfi_exports.map"
cfiAssemblySupportFlag = "-fno-sanitize-cfi-canonical-jump-tables"
intOverflowCflags = []string{"-fsanitize-ignorelist=build/soong/cc/config/integer_overflow_blocklist.txt"}
minimalRuntimeFlags = []string{"-fsanitize-minimal-runtime", "-fno-sanitize-trap=integer,undefined",
"-fno-sanitize-recover=integer,undefined"}
hwasanGlobalOptions = []string{"heap_history_size=1023", "stack_history_size=512",
"export_memory_stats=0", "max_malloc_fill_size=131072", "malloc_fill_byte=0"}
memtagStackCommonFlags = []string{"-march=armv8-a+memtag", "-mllvm", "-dom-tree-reachability-max-bbs-to-explore=128"}
hostOnlySanitizeFlags = []string{"-fno-sanitize-recover=all"}
deviceOnlySanitizeFlags = []string{"-fsanitize-trap=all", "-ftrap-function=abort"}
noSanitizeLinkRuntimeFlag = "-fno-sanitize-link-runtime"
)
type SanitizerType int
const (
Asan SanitizerType = iota + 1
Hwasan
tsan
intOverflow
scs
Fuzzer
Memtag_heap
Memtag_stack
Memtag_globals
cfi // cfi is last to prevent it running before incompatible mutators
)
var Sanitizers = []SanitizerType{
Asan,
Hwasan,
tsan,
intOverflow,
scs,
Fuzzer,
Memtag_heap,
Memtag_stack,
Memtag_globals,
cfi, // cfi is last to prevent it running before incompatible mutators
}
// Name of the sanitizer variation for this sanitizer type
func (t SanitizerType) variationName() string {
switch t {
case Asan:
return "asan"
case Hwasan:
return "hwasan"
case tsan:
return "tsan"
case intOverflow:
return "intOverflow"
case cfi:
return "cfi"
case scs:
return "scs"
case Memtag_heap:
return "memtag_heap"
case Memtag_stack:
return "memtag_stack"
case Memtag_globals:
return "memtag_globals"
case Fuzzer:
return "fuzzer"
default:
panic(fmt.Errorf("unknown SanitizerType %d", t))
}
}
// This is the sanitizer names in SANITIZE_[TARGET|HOST]
func (t SanitizerType) name() string {
switch t {
case Asan:
return "address"
case Hwasan:
return "hwaddress"
case Memtag_heap:
return "memtag_heap"
case Memtag_stack:
return "memtag_stack"
case Memtag_globals:
return "memtag_globals"
case tsan:
return "thread"
case intOverflow:
return "integer_overflow"
case cfi:
return "cfi"
case scs:
return "shadow-call-stack"
case Fuzzer:
return "fuzzer"
default:
panic(fmt.Errorf("unknown SanitizerType %d", t))
}
}
func (t SanitizerType) registerMutators(ctx android.RegisterMutatorsContext) {
switch t {
case cfi, Hwasan, Asan, tsan, Fuzzer, scs:
sanitizer := &sanitizerSplitMutator{t}
ctx.TopDown(t.variationName()+"_markapexes", sanitizer.markSanitizableApexesMutator)
ctx.Transition(t.variationName(), sanitizer)
case Memtag_heap, Memtag_stack, Memtag_globals, intOverflow:
// do nothing
default:
panic(fmt.Errorf("unknown SanitizerType %d", t))
}
}
// shouldPropagateToSharedLibraryDeps returns whether a sanitizer type should propagate to share
// dependencies. In most cases, sanitizers only propagate to static dependencies; however, some
// sanitizers also must be enabled for shared libraries for linking.
func (t SanitizerType) shouldPropagateToSharedLibraryDeps() bool {
switch t {
case Fuzzer:
// Typically, shared libs are not split. However, for fuzzer, we split even for shared libs
// because a library sanitized for fuzzer can't be linked from a library that isn't sanitized
// for fuzzer.
return true
default:
return false
}
}
func (*Module) SanitizerSupported(t SanitizerType) bool {
switch t {
case Asan:
return true
case Hwasan:
return true
case tsan:
return true
case intOverflow:
return true
case cfi:
return true
case scs:
return true
case Fuzzer:
return true
case Memtag_heap:
return true
case Memtag_stack:
return true
case Memtag_globals:
return true
default:
return false
}
}
// incompatibleWithCfi returns true if a sanitizer is incompatible with CFI.
func (t SanitizerType) incompatibleWithCfi() bool {
return t == Asan || t == Fuzzer || t == Hwasan
}
type SanitizeUserProps struct {
// Prevent use of any sanitizers on this module
Never *bool `android:"arch_variant"`
// ASan (Address sanitizer), incompatible with static binaries.
// Always runs in a diagnostic mode.
// Use of address sanitizer disables cfi sanitizer.
// Hwaddress sanitizer takes precedence over this sanitizer.
Address *bool `android:"arch_variant"`
// TSan (Thread sanitizer), incompatible with static binaries and 32 bit architectures.
// Always runs in a diagnostic mode.
// Use of thread sanitizer disables cfi and scudo sanitizers.
// Hwaddress sanitizer takes precedence over this sanitizer.
Thread *bool `android:"arch_variant"`
// HWASan (Hardware Address sanitizer).
// Use of hwasan sanitizer disables cfi, address, thread, and scudo sanitizers.
Hwaddress *bool `android:"arch_variant"`
// Undefined behavior sanitizer
All_undefined *bool `android:"arch_variant"`
// Subset of undefined behavior sanitizer
Undefined *bool `android:"arch_variant"`
// List of specific undefined behavior sanitizers to enable
Misc_undefined []string `android:"arch_variant"`
// Fuzzer, incompatible with static binaries.
Fuzzer *bool `android:"arch_variant"`
// safe-stack sanitizer, incompatible with 32-bit architectures.
Safestack *bool `android:"arch_variant"`
// cfi sanitizer, incompatible with asan, hwasan, fuzzer, or Darwin
Cfi *bool `android:"arch_variant"`
// signed/unsigned integer overflow sanitizer, incompatible with Darwin.
Integer_overflow *bool `android:"arch_variant"`
// scudo sanitizer, incompatible with asan, hwasan, tsan
// This should not be used in Android 11+ : https://source.android.com/devices/tech/debug/scudo
// deprecated
Scudo *bool `android:"arch_variant"`
// shadow-call-stack sanitizer, only available on arm64/riscv64.
Scs *bool `android:"arch_variant"`
// Memory-tagging, only available on arm64
// if diag.memtag unset or false, enables async memory tagging
Memtag_heap *bool `android:"arch_variant"`
// Memory-tagging stack instrumentation, only available on arm64
// Adds instrumentation to detect stack buffer overflows and use-after-scope using MTE.
Memtag_stack *bool `android:"arch_variant"`
// Memory-tagging globals instrumentation, only available on arm64
// Adds instrumentation to detect global buffer overflows using MTE.
Memtag_globals *bool `android:"arch_variant"`
// A modifier for ASAN and HWASAN for write only instrumentation
Writeonly *bool `android:"arch_variant"`
// Sanitizers to run in the diagnostic mode (as opposed to the release mode).
// Replaces abort() on error with a human-readable error message.
// Address and Thread sanitizers always run in diagnostic mode.
Diag struct {
// Undefined behavior sanitizer, diagnostic mode
Undefined *bool `android:"arch_variant"`
// cfi sanitizer, diagnostic mode, incompatible with asan, hwasan, fuzzer, or Darwin
Cfi *bool `android:"arch_variant"`
// signed/unsigned integer overflow sanitizer, diagnostic mode, incompatible with Darwin.
Integer_overflow *bool `android:"arch_variant"`
// Memory-tagging, only available on arm64
// requires sanitizer.memtag: true
// if set, enables sync memory tagging
Memtag_heap *bool `android:"arch_variant"`
// List of specific undefined behavior sanitizers to enable in diagnostic mode
Misc_undefined []string `android:"arch_variant"`
// List of sanitizers to pass to -fno-sanitize-recover
// results in only the first detected error for these sanitizers being reported and program then
// exits with a non-zero exit code.
No_recover []string `android:"arch_variant"`
} `android:"arch_variant"`
// Sanitizers to run with flag configuration specified
Config struct {
// Enables CFI support flags for assembly-heavy libraries
Cfi_assembly_support *bool `android:"arch_variant"`
} `android:"arch_variant"`
// List of sanitizers to pass to -fsanitize-recover
// allows execution to continue for these sanitizers to detect multiple errors rather than only
// the first one
Recover []string
// value to pass to -fsanitize-ignorelist
Blocklist *string
}
type sanitizeMutatedProperties struct {
// Whether sanitizers can be enabled on this module
Never *bool `blueprint:"mutated"`
// Whether ASan (Address sanitizer) is enabled for this module.
// Hwaddress sanitizer takes precedence over this sanitizer.
Address *bool `blueprint:"mutated"`
// Whether TSan (Thread sanitizer) is enabled for this module
Thread *bool `blueprint:"mutated"`
// Whether HWASan (Hardware Address sanitizer) is enabled for this module
Hwaddress *bool `blueprint:"mutated"`
// Whether Undefined behavior sanitizer is enabled for this module
All_undefined *bool `blueprint:"mutated"`
// Whether undefined behavior sanitizer subset is enabled for this module
Undefined *bool `blueprint:"mutated"`
// List of specific undefined behavior sanitizers enabled for this module
Misc_undefined []string `blueprint:"mutated"`
// Whether Fuzzeris enabled for this module
Fuzzer *bool `blueprint:"mutated"`
// whether safe-stack sanitizer is enabled for this module
Safestack *bool `blueprint:"mutated"`
// Whether cfi sanitizer is enabled for this module
Cfi *bool `blueprint:"mutated"`
// Whether signed/unsigned integer overflow sanitizer is enabled for this module
Integer_overflow *bool `blueprint:"mutated"`
// Whether scudo sanitizer is enabled for this module
Scudo *bool `blueprint:"mutated"`
// Whether shadow-call-stack sanitizer is enabled for this module.
Scs *bool `blueprint:"mutated"`
// Whether Memory-tagging is enabled for this module
Memtag_heap *bool `blueprint:"mutated"`
// Whether Memory-tagging stack instrumentation is enabled for this module
Memtag_stack *bool `blueprint:"mutated"`
// Whether Memory-tagging globals instrumentation is enabled for this module
Memtag_globals *bool `android:"arch_variant"`
// Whether a modifier for ASAN and HWASAN for write only instrumentation is enabled for this
// module
Writeonly *bool `blueprint:"mutated"`
// Sanitizers to run in the diagnostic mode (as opposed to the release mode).
Diag struct {
// Whether Undefined behavior sanitizer, diagnostic mode is enabled for this module
Undefined *bool `blueprint:"mutated"`
// Whether cfi sanitizer, diagnostic mode is enabled for this module
Cfi *bool `blueprint:"mutated"`
// Whether signed/unsigned integer overflow sanitizer, diagnostic mode is enabled for this
// module
Integer_overflow *bool `blueprint:"mutated"`
// Whether Memory-tagging, diagnostic mode is enabled for this module
Memtag_heap *bool `blueprint:"mutated"`
// List of specific undefined behavior sanitizers enabled in diagnostic mode
Misc_undefined []string `blueprint:"mutated"`
} `blueprint:"mutated"`
}
type SanitizeProperties struct {
Sanitize SanitizeUserProps `android:"arch_variant"`
SanitizeMutated sanitizeMutatedProperties `blueprint:"mutated"`
SanitizerEnabled bool `blueprint:"mutated"`
MinimalRuntimeDep bool `blueprint:"mutated"`
BuiltinsDep bool `blueprint:"mutated"`
UbsanRuntimeDep bool `blueprint:"mutated"`
InSanitizerDir bool `blueprint:"mutated"`
Sanitizers []string `blueprint:"mutated"`
DiagSanitizers []string `blueprint:"mutated"`
}
type sanitize struct {
Properties SanitizeProperties
}
// Mark this tag with a check to see if apex dependency check should be skipped
func (t libraryDependencyTag) SkipApexAllowedDependenciesCheck() bool {
return t.skipApexAllowedDependenciesCheck
}
var _ android.SkipApexAllowedDependenciesCheck = (*libraryDependencyTag)(nil)
var exportedVars = android.NewExportedVariables(pctx)
func init() {
exportedVars.ExportStringListStaticVariable("HostOnlySanitizeFlags", hostOnlySanitizeFlags)
exportedVars.ExportStringList("DeviceOnlySanitizeFlags", deviceOnlySanitizeFlags)
exportedVars.ExportStringList("MinimalRuntimeFlags", minimalRuntimeFlags)
// Leave out "-flto" from the slices exported to bazel, as we will use the
// dedicated LTO feature for this. For C Flags and Linker Flags, also leave
// out the cross DSO flag which will be added separately under the correct conditions.
exportedVars.ExportStringList("CfiCFlags", append(cfiCflags[2:], cfiEnableFlag))
exportedVars.ExportStringList("CfiLdFlags", cfiLdflags[2:])
exportedVars.ExportStringList("CfiAsFlags", cfiAsflags[1:])
exportedVars.ExportString("SanitizeIgnorelistPrefix", sanitizeIgnorelistPrefix)
exportedVars.ExportString("CfiCrossDsoFlag", cfiCrossDsoFlag)
exportedVars.ExportString("CfiBlocklistPath", cfiBlocklistPath)
exportedVars.ExportString("CfiBlocklistFilename", cfiBlocklistFilename)
exportedVars.ExportString("CfiExportsMapPath", cfiExportsMapPath)
exportedVars.ExportString("CfiExportsMapFilename", cfiExportsMapFilename)
exportedVars.ExportString("CfiAssemblySupportFlag", cfiAssemblySupportFlag)
exportedVars.ExportString("NoSanitizeLinkRuntimeFlag", noSanitizeLinkRuntimeFlag)
android.RegisterMakeVarsProvider(pctx, cfiMakeVarsProvider)
android.RegisterMakeVarsProvider(pctx, hwasanMakeVarsProvider)
}
func (sanitize *sanitize) props() []interface{} {
return []interface{}{&sanitize.Properties}
}
func (p *sanitizeMutatedProperties) copyUserPropertiesToMutated(userProps *SanitizeUserProps) {
p.Never = userProps.Never
p.Address = userProps.Address
p.All_undefined = userProps.All_undefined
p.Cfi = userProps.Cfi
p.Fuzzer = userProps.Fuzzer
p.Hwaddress = userProps.Hwaddress
p.Integer_overflow = userProps.Integer_overflow
p.Memtag_heap = userProps.Memtag_heap
p.Memtag_stack = userProps.Memtag_stack
p.Memtag_globals = userProps.Memtag_globals
p.Safestack = userProps.Safestack
p.Scs = userProps.Scs
p.Scudo = userProps.Scudo
p.Thread = userProps.Thread
p.Undefined = userProps.Undefined
p.Writeonly = userProps.Writeonly
p.Misc_undefined = make([]string, 0, len(userProps.Misc_undefined))
for _, v := range userProps.Misc_undefined {
p.Misc_undefined = append(p.Misc_undefined, v)
}
p.Diag.Cfi = userProps.Diag.Cfi
p.Diag.Integer_overflow = userProps.Diag.Integer_overflow
p.Diag.Memtag_heap = userProps.Diag.Memtag_heap
p.Diag.Undefined = userProps.Diag.Undefined
p.Diag.Misc_undefined = make([]string, 0, len(userProps.Diag.Misc_undefined))
for _, v := range userProps.Diag.Misc_undefined {
p.Diag.Misc_undefined = append(p.Diag.Misc_undefined, v)
}
}
func (sanitize *sanitize) begin(ctx BaseModuleContext) {
s := &sanitize.Properties.SanitizeMutated
s.copyUserPropertiesToMutated(&sanitize.Properties.Sanitize)
// Don't apply sanitizers to NDK code.
if ctx.useSdk() {
s.Never = BoolPtr(true)
}
// Never always wins.
if Bool(s.Never) {
return
}
// cc_test targets default to SYNC MemTag unless explicitly set to ASYNC (via diag: {memtag_heap: false}).
if ctx.testBinary() {
if s.Memtag_heap == nil {
s.Memtag_heap = proptools.BoolPtr(true)
}
if s.Diag.Memtag_heap == nil {
s.Diag.Memtag_heap = proptools.BoolPtr(true)
}
}
var globalSanitizers []string
var globalSanitizersDiag []string
if ctx.Host() {
if !ctx.Windows() {
globalSanitizers = ctx.Config().SanitizeHost()
}
} else {
arches := ctx.Config().SanitizeDeviceArch()
if len(arches) == 0 || inList(ctx.Arch().ArchType.Name, arches) {
globalSanitizers = ctx.Config().SanitizeDevice()
globalSanitizersDiag = ctx.Config().SanitizeDeviceDiag()
}
}
if len(globalSanitizers) > 0 {
var found bool
if found, globalSanitizers = removeFromList("undefined", globalSanitizers); found && s.All_undefined == nil {
s.All_undefined = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("default-ub", globalSanitizers); found && s.Undefined == nil {
s.Undefined = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("address", globalSanitizers); found && s.Address == nil {
s.Address = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("thread", globalSanitizers); found && s.Thread == nil {
s.Thread = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("fuzzer", globalSanitizers); found && s.Fuzzer == nil {
s.Fuzzer = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("safe-stack", globalSanitizers); found && s.Safestack == nil {
s.Safestack = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("cfi", globalSanitizers); found && s.Cfi == nil {
if !ctx.Config().CFIDisabledForPath(ctx.ModuleDir()) {
s.Cfi = proptools.BoolPtr(true)
}
}
// Global integer_overflow builds do not support static libraries.
if found, globalSanitizers = removeFromList("integer_overflow", globalSanitizers); found && s.Integer_overflow == nil {
if !ctx.Config().IntegerOverflowDisabledForPath(ctx.ModuleDir()) && !ctx.static() {
s.Integer_overflow = proptools.BoolPtr(true)
}
}
if found, globalSanitizers = removeFromList("scudo", globalSanitizers); found && s.Scudo == nil {
s.Scudo = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("hwaddress", globalSanitizers); found && s.Hwaddress == nil {
if !ctx.Config().HWASanDisabledForPath(ctx.ModuleDir()) {
s.Hwaddress = proptools.BoolPtr(true)
}
}
if found, globalSanitizers = removeFromList("writeonly", globalSanitizers); found && s.Writeonly == nil {
// Hwaddress and Address are set before, so we can check them here
// If they aren't explicitly set in the blueprint/SANITIZE_(HOST|TARGET), they would be nil instead of false
if s.Address == nil && s.Hwaddress == nil {
ctx.ModuleErrorf("writeonly modifier cannot be used without 'address' or 'hwaddress'")
}
s.Writeonly = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("memtag_heap", globalSanitizers); found && s.Memtag_heap == nil {
if !ctx.Config().MemtagHeapDisabledForPath(ctx.ModuleDir()) {
s.Memtag_heap = proptools.BoolPtr(true)
}
}
if found, globalSanitizers = removeFromList("memtag_stack", globalSanitizers); found && s.Memtag_stack == nil {
s.Memtag_stack = proptools.BoolPtr(true)
}
if found, globalSanitizers = removeFromList("memtag_globals", globalSanitizers); found && s.Memtag_globals == nil {
s.Memtag_globals = proptools.BoolPtr(true)
}
if len(globalSanitizers) > 0 {
ctx.ModuleErrorf("unknown global sanitizer option %s", globalSanitizers[0])
}
// Global integer_overflow builds do not support static library diagnostics.
if found, globalSanitizersDiag = removeFromList("integer_overflow", globalSanitizersDiag); found &&
s.Diag.Integer_overflow == nil && Bool(s.Integer_overflow) && !ctx.static() {
s.Diag.Integer_overflow = proptools.BoolPtr(true)
}
if found, globalSanitizersDiag = removeFromList("cfi", globalSanitizersDiag); found &&
s.Diag.Cfi == nil && Bool(s.Cfi) {
s.Diag.Cfi = proptools.BoolPtr(true)
}
if found, globalSanitizersDiag = removeFromList("memtag_heap", globalSanitizersDiag); found &&
s.Diag.Memtag_heap == nil && Bool(s.Memtag_heap) {
s.Diag.Memtag_heap = proptools.BoolPtr(true)
}
if len(globalSanitizersDiag) > 0 {
ctx.ModuleErrorf("unknown global sanitizer diagnostics option %s", globalSanitizersDiag[0])
}
}
// Enable Memtag for all components in the include paths (for Aarch64 only)
if ctx.Arch().ArchType == android.Arm64 && ctx.toolchain().Bionic() {
if ctx.Config().MemtagHeapSyncEnabledForPath(ctx.ModuleDir()) {
if s.Memtag_heap == nil {
s.Memtag_heap = proptools.BoolPtr(true)
}
if s.Diag.Memtag_heap == nil {
s.Diag.Memtag_heap = proptools.BoolPtr(true)
}
} else if ctx.Config().MemtagHeapAsyncEnabledForPath(ctx.ModuleDir()) {
if s.Memtag_heap == nil {
s.Memtag_heap = proptools.BoolPtr(true)
}
}
}
// Enable HWASan for all components in the include paths (for Aarch64 only)
if s.Hwaddress == nil && ctx.Config().HWASanEnabledForPath(ctx.ModuleDir()) &&
ctx.Arch().ArchType == android.Arm64 && ctx.toolchain().Bionic() {
s.Hwaddress = proptools.BoolPtr(true)
}
// Enable CFI for non-host components in the include paths
if s.Cfi == nil && ctx.Config().CFIEnabledForPath(ctx.ModuleDir()) && !ctx.Host() {
s.Cfi = proptools.BoolPtr(true)
if inList("cfi", ctx.Config().SanitizeDeviceDiag()) {
s.Diag.Cfi = proptools.BoolPtr(true)
}
}
// Is CFI actually enabled?
if !ctx.Config().EnableCFI() {
s.Cfi = nil
s.Diag.Cfi = nil
}
// HWASan requires AArch64 hardware feature (top-byte-ignore).
if ctx.Arch().ArchType != android.Arm64 || !ctx.toolchain().Bionic() {
s.Hwaddress = nil
}
// SCS is only implemented on AArch64/riscv64.
if (ctx.Arch().ArchType != android.Arm64 && ctx.Arch().ArchType != android.Riscv64) || !ctx.toolchain().Bionic() {
s.Scs = nil
}
// Memtag_heap is only implemented on AArch64.
// Memtag ABI is Android specific for now, so disable for host.
if ctx.Arch().ArchType != android.Arm64 || !ctx.toolchain().Bionic() || ctx.Host() {
s.Memtag_heap = nil
s.Memtag_stack = nil
s.Memtag_globals = nil
}
// Also disable CFI if ASAN is enabled.
if Bool(s.Address) || Bool(s.Hwaddress) {
s.Cfi = nil
s.Diag.Cfi = nil
// HWASAN and ASAN win against MTE.
s.Memtag_heap = nil
s.Memtag_stack = nil
s.Memtag_globals = nil
}
// Disable sanitizers that depend on the UBSan runtime for windows/darwin builds.
if !ctx.Os().Linux() {
s.Cfi = nil
s.Diag.Cfi = nil
s.Misc_undefined = nil
s.Undefined = nil
s.All_undefined = nil
s.Integer_overflow = nil
}
// Disable CFI for musl
if ctx.toolchain().Musl() {
s.Cfi = nil
s.Diag.Cfi = nil
}
// TODO(b/280478629): runtimes don't exist for musl arm64 yet.
if ctx.toolchain().Musl() && ctx.Arch().ArchType == android.Arm64 {
s.Address = nil
s.Hwaddress = nil
s.Thread = nil
s.Scudo = nil
s.Fuzzer = nil
s.Cfi = nil
s.Diag.Cfi = nil
s.Misc_undefined = nil
s.Undefined = nil
s.All_undefined = nil
s.Integer_overflow = nil
}
// Also disable CFI for VNDK variants of components
if ctx.isVndk() && ctx.useVndk() {
s.Cfi = nil
s.Diag.Cfi = nil
}
// HWASan ramdisk (which is built from recovery) goes over some bootloader limit.
// Keep libc instrumented so that ramdisk / vendor_ramdisk / recovery can run hwasan-instrumented code if necessary.
if (ctx.inRamdisk() || ctx.inVendorRamdisk() || ctx.inRecovery()) && !strings.HasPrefix(ctx.ModuleDir(), "bionic/libc") {
s.Hwaddress = nil
}
if ctx.staticBinary() {
s.Address = nil
s.Fuzzer = nil
s.Thread = nil
}
if Bool(s.All_undefined) {
s.Undefined = nil
}
if !ctx.toolchain().Is64Bit() {
// TSAN and SafeStack are not supported on 32-bit architectures
s.Thread = nil
s.Safestack = nil
// TODO(ccross): error for compile_multilib = "32"?
}
if ctx.Os() != android.Windows && (Bool(s.All_undefined) || Bool(s.Undefined) || Bool(s.Address) || Bool(s.Thread) ||
Bool(s.Fuzzer) || Bool(s.Safestack) || Bool(s.Cfi) || Bool(s.Integer_overflow) || len(s.Misc_undefined) > 0 ||
Bool(s.Scudo) || Bool(s.Hwaddress) || Bool(s.Scs) || Bool(s.Memtag_heap) || Bool(s.Memtag_stack) ||
Bool(s.Memtag_globals)) {
sanitize.Properties.SanitizerEnabled = true
}
// Disable Scudo if ASan or TSan is enabled, or if it's disabled globally.
if Bool(s.Address) || Bool(s.Thread) || Bool(s.Hwaddress) || ctx.Config().DisableScudo() {
s.Scudo = nil
}
if Bool(s.Hwaddress) {
s.Address = nil
s.Thread = nil
}
// TODO(b/131771163): CFI transiently depends on LTO, and thus Fuzzer is
// mutually incompatible.
if Bool(s.Fuzzer) {
s.Cfi = nil
}
}
func toDisableImplicitIntegerChange(flags []string) bool {
// Returns true if any flag is fsanitize*integer, and there is
// no explicit flag about sanitize=implicit-integer-sign-change.
for _, f := range flags {
if strings.Contains(f, "sanitize=implicit-integer-sign-change") {
return false
}
}
for _, f := range flags {
if strings.HasPrefix(f, "-fsanitize") && strings.Contains(f, "integer") {
return true
}
}
return false
}
func toDisableUnsignedShiftBaseChange(flags []string) bool {
// Returns true if any flag is fsanitize*integer, and there is
// no explicit flag about sanitize=unsigned-shift-base.
for _, f := range flags {
if strings.Contains(f, "sanitize=unsigned-shift-base") {
return false
}
}
for _, f := range flags {
if strings.HasPrefix(f, "-fsanitize") && strings.Contains(f, "integer") {
return true
}
}
return false
}
func (s *sanitize) flags(ctx ModuleContext, flags Flags) Flags {
if !s.Properties.SanitizerEnabled && !s.Properties.UbsanRuntimeDep {
return flags
}
sanProps := &s.Properties.SanitizeMutated
if Bool(sanProps.Address) {
if ctx.Arch().ArchType == android.Arm {
// Frame pointer based unwinder in ASan requires ARM frame setup.
// TODO: put in flags?
flags.RequiredInstructionSet = "arm"
}
flags.Local.CFlags = append(flags.Local.CFlags, asanCflags...)
flags.Local.LdFlags = append(flags.Local.LdFlags, asanLdflags...)
if Bool(sanProps.Writeonly) {
flags.Local.CFlags = append(flags.Local.CFlags, "-mllvm", "-asan-instrument-reads=0")
}
if ctx.Host() {
// -nodefaultlibs (provided with libc++) prevents the driver from linking
// libraries needed with -fsanitize=address. http://b/18650275 (WAI)
flags.Local.LdFlags = append(flags.Local.LdFlags, "-Wl,--no-as-needed")
} else {
flags.Local.CFlags = append(flags.Local.CFlags, "-mllvm", "-asan-globals=0")
if ctx.bootstrap() {
flags.DynamicLinker = "/system/bin/bootstrap/linker_asan"
} else {
flags.DynamicLinker = "/system/bin/linker_asan"
}
if flags.Toolchain.Is64Bit() {
flags.DynamicLinker += "64"
}
}
}
if Bool(sanProps.Hwaddress) {
flags.Local.CFlags = append(flags.Local.CFlags, hwasanCflags...)
for _, flag := range hwasanCommonflags {
flags.Local.CFlags = append(flags.Local.CFlags, "-mllvm", flag)
}
for _, flag := range hwasanCommonflags {
flags.Local.LdFlags = append(flags.Local.LdFlags, "-Wl,-mllvm,"+flag)
}
if Bool(sanProps.Writeonly) {
flags.Local.CFlags = append(flags.Local.CFlags, "-mllvm", "-hwasan-instrument-reads=0")
}
if !ctx.staticBinary() && !ctx.Host() {
if ctx.bootstrap() {
flags.DynamicLinker = "/system/bin/bootstrap/linker_hwasan64"
} else {
flags.DynamicLinker = "/system/bin/linker_hwasan64"
}
}
}
if Bool(sanProps.Fuzzer) {
flags.Local.CFlags = append(flags.Local.CFlags, "-fsanitize=fuzzer-no-link")
// TODO(b/131771163): LTO and Fuzzer support is mutually incompatible.
_, flags.Local.LdFlags = removeFromList("-flto", flags.Local.LdFlags)
_, flags.Local.CFlags = removeFromList("-flto", flags.Local.CFlags)
flags.Local.LdFlags = append(flags.Local.LdFlags, "-fno-lto")
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-lto")
Workaround unexported sancov symbols. Fix multiple sanitizer RT deps. Fuzz targets currently have dependencies on multiple libclang_rt runtime libraries when building with ASan/HWAsan on device. This is an error. This happens as Soong adds the dependency on the ASan/HWASan shared runtime library. These libraries should provide the required UBSan components. The clang driver was previously being passed -fsanitize=fuzzer-no-link at link time, and as it doesn't know about the already-established dependency on ASan/HWASan, it mistakenly thinks that there is not runtime providing the UBSan components. This patch fixes that problem by not adding -fsanitize=fuzzer-no-link to the link-time flags. This revealed a underlying issue in the upstream runtime compilation. Android uses emulated TLS, which changes the symbol names from <my_symbol_name> to __emutls_v._<my_symbol_name>. In particular, this fails to account for the '__sancov_lowest_stack' symbol, as it no longer matches the linker script rule for '__sancov*', and the symbol is no longer exported in the shared library variant of ASan/HWASan. This patch works around the discovered issue, which is being tracked in the linked bug. It disables stack depth instrumentation, and we no longer depend on this symbol. This means we get a missing sanitizer coverage feature when fuzzing, but shouldn't be too detrimental. Bug: 142430592 Test: SANITIZE_TARGET=hwaddress m example_fuzzer && \ readelf -d example_fuzzer # ensure only ONE libclang_rt dep (in this case, hwasan) Change-Id: Iea6df55d592a801732511c9b690134367429d62a
2019-10-10 02:18:59 +02:00
// TODO(b/142430592): Upstream linker scripts for sanitizer runtime libraries
// discard the sancov_lowest_stack symbol, because it's emulated TLS (and thus
// doesn't match the linker script due to the "__emutls_v." prefix).
flags.Local.LdFlags = append(flags.Local.LdFlags, "-fno-sanitize-coverage=stack-depth")
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-sanitize-coverage=stack-depth")
Workaround unexported sancov symbols. Fix multiple sanitizer RT deps. Fuzz targets currently have dependencies on multiple libclang_rt runtime libraries when building with ASan/HWAsan on device. This is an error. This happens as Soong adds the dependency on the ASan/HWASan shared runtime library. These libraries should provide the required UBSan components. The clang driver was previously being passed -fsanitize=fuzzer-no-link at link time, and as it doesn't know about the already-established dependency on ASan/HWASan, it mistakenly thinks that there is not runtime providing the UBSan components. This patch fixes that problem by not adding -fsanitize=fuzzer-no-link to the link-time flags. This revealed a underlying issue in the upstream runtime compilation. Android uses emulated TLS, which changes the symbol names from <my_symbol_name> to __emutls_v._<my_symbol_name>. In particular, this fails to account for the '__sancov_lowest_stack' symbol, as it no longer matches the linker script rule for '__sancov*', and the symbol is no longer exported in the shared library variant of ASan/HWASan. This patch works around the discovered issue, which is being tracked in the linked bug. It disables stack depth instrumentation, and we no longer depend on this symbol. This means we get a missing sanitizer coverage feature when fuzzing, but shouldn't be too detrimental. Bug: 142430592 Test: SANITIZE_TARGET=hwaddress m example_fuzzer && \ readelf -d example_fuzzer # ensure only ONE libclang_rt dep (in this case, hwasan) Change-Id: Iea6df55d592a801732511c9b690134367429d62a
2019-10-10 02:18:59 +02:00
// Disable fortify for fuzzing builds. Generally, we'll be building with
// UBSan or ASan here and the fortify checks pollute the stack traces.
flags.Local.CFlags = append(flags.Local.CFlags, "-U_FORTIFY_SOURCE")
// Build fuzzer-sanitized libraries with an $ORIGIN DT_RUNPATH. Android's
// linker uses DT_RUNPATH, not DT_RPATH. When we deploy cc_fuzz targets and
// their libraries to /data/fuzz/<arch>/lib, any transient shared library gets
// the DT_RUNPATH from the shared library above it, and not the executable,
// meaning that the lookup falls back to the system. Adding the $ORIGIN to the
// DT_RUNPATH here means that transient shared libraries can be found
// colocated with their parents.
flags.Local.LdFlags = append(flags.Local.LdFlags, `-Wl,-rpath,\$$ORIGIN`)
}
if Bool(sanProps.Cfi) {
if ctx.Arch().ArchType == android.Arm {
// __cfi_check needs to be built as Thumb (see the code in linker_cfi.cpp). LLVM is not set up
// to do this on a function basis, so force Thumb on the entire module.
flags.RequiredInstructionSet = "thumb"
}
flags.Local.CFlags = append(flags.Local.CFlags, cfiCflags...)
flags.Local.AsFlags = append(flags.Local.AsFlags, cfiAsflags...)
if Bool(s.Properties.Sanitize.Config.Cfi_assembly_support) {
flags.Local.CFlags = append(flags.Local.CFlags, cfiAssemblySupportFlag)
}
// Only append the default visibility flag if -fvisibility has not already been set
// to hidden.
if !inList("-fvisibility=hidden", flags.Local.CFlags) {
flags.Local.CFlags = append(flags.Local.CFlags, "-fvisibility=default")
}
flags.Local.LdFlags = append(flags.Local.LdFlags, cfiLdflags...)
if ctx.staticBinary() {
_, flags.Local.CFlags = removeFromList("-fsanitize-cfi-cross-dso", flags.Local.CFlags)
_, flags.Local.LdFlags = removeFromList("-fsanitize-cfi-cross-dso", flags.Local.LdFlags)
}
}
if Bool(sanProps.Memtag_stack) {
flags.Local.CFlags = append(flags.Local.CFlags, memtagStackCommonFlags...)
flags.Local.AsFlags = append(flags.Local.AsFlags, memtagStackCommonFlags...)
flags.Local.LdFlags = append(flags.Local.LdFlags, memtagStackCommonFlags...)
}
if (Bool(sanProps.Memtag_heap) || Bool(sanProps.Memtag_stack) || Bool(sanProps.Memtag_globals)) && ctx.binary() {
if Bool(sanProps.Diag.Memtag_heap) {
flags.Local.LdFlags = append(flags.Local.LdFlags, "-fsanitize-memtag-mode=sync")
} else {
flags.Local.LdFlags = append(flags.Local.LdFlags, "-fsanitize-memtag-mode=async")
}
}
if Bool(sanProps.Integer_overflow) {
flags.Local.CFlags = append(flags.Local.CFlags, intOverflowCflags...)
}
if len(s.Properties.Sanitizers) > 0 {
sanitizeArg := "-fsanitize=" + strings.Join(s.Properties.Sanitizers, ",")
flags.Local.CFlags = append(flags.Local.CFlags, sanitizeArg)
flags.Local.AsFlags = append(flags.Local.AsFlags, sanitizeArg)
flags.Local.LdFlags = append(flags.Local.LdFlags, sanitizeArg)
if ctx.toolchain().Bionic() || ctx.toolchain().Musl() {
// Bionic and musl sanitizer runtimes have already been added as dependencies so that
// the right variant of the runtime will be used (with the "-android" or "-musl"
// suffixes), so don't let clang the runtime library.
flags.Local.LdFlags = append(flags.Local.LdFlags, noSanitizeLinkRuntimeFlag)
} else {
// Host sanitizers only link symbols in the final executable, so
// there will always be undefined symbols in intermediate libraries.
_, flags.Global.LdFlags = removeFromList("-Wl,--no-undefined", flags.Global.LdFlags)
}
if !ctx.toolchain().Bionic() {
// non-Bionic toolchain prebuilts are missing UBSan's vptr and function san.
// Musl toolchain prebuilts have vptr and function sanitizers, but enabling them
// implicitly enables RTTI which causes RTTI mismatch issues with dependencies.
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-sanitize=vptr,function")
}
if Bool(sanProps.Fuzzer) {
// When fuzzing, we wish to crash with diagnostics on any bug.
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-sanitize-trap=all", "-fno-sanitize-recover=all")
} else if ctx.Host() {
flags.Local.CFlags = append(flags.Local.CFlags, hostOnlySanitizeFlags...)
} else {
flags.Local.CFlags = append(flags.Local.CFlags, deviceOnlySanitizeFlags...)
}
if enableMinimalRuntime(s) {
flags.Local.CFlags = append(flags.Local.CFlags, strings.Join(minimalRuntimeFlags, " "))
}
// http://b/119329758, Android core does not boot up with this sanitizer yet.
if toDisableImplicitIntegerChange(flags.Local.CFlags) {
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-sanitize=implicit-integer-sign-change")
}
// http://b/171275751, Android doesn't build with this sanitizer yet.
if toDisableUnsignedShiftBaseChange(flags.Local.CFlags) {
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-sanitize=unsigned-shift-base")
}
}
if len(s.Properties.DiagSanitizers) > 0 {
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-sanitize-trap="+strings.Join(s.Properties.DiagSanitizers, ","))
}
// FIXME: enable RTTI if diag + (cfi or vptr)
if s.Properties.Sanitize.Recover != nil {
flags.Local.CFlags = append(flags.Local.CFlags, "-fsanitize-recover="+
strings.Join(s.Properties.Sanitize.Recover, ","))
}
if s.Properties.Sanitize.Diag.No_recover != nil {
flags.Local.CFlags = append(flags.Local.CFlags, "-fno-sanitize-recover="+
strings.Join(s.Properties.Sanitize.Diag.No_recover, ","))
}
blocklist := android.OptionalPathForModuleSrc(ctx, s.Properties.Sanitize.Blocklist)
if blocklist.Valid() {
flags.Local.CFlags = append(flags.Local.CFlags, sanitizeIgnorelistPrefix+blocklist.String())
flags.CFlagsDeps = append(flags.CFlagsDeps, blocklist.Path())
}
return flags
}
func (s *sanitize) AndroidMkEntries(ctx AndroidMkContext, entries *android.AndroidMkEntries) {
// Add a suffix for cfi/hwasan/scs-enabled static/header libraries to allow surfacing
// both the sanitized and non-sanitized variants to make without a name conflict.
if entries.Class == "STATIC_LIBRARIES" || entries.Class == "HEADER_LIBRARIES" {
if Bool(s.Properties.SanitizeMutated.Cfi) {
entries.SubName += ".cfi"
}
if Bool(s.Properties.SanitizeMutated.Hwaddress) {
entries.SubName += ".hwasan"
}
if Bool(s.Properties.SanitizeMutated.Scs) {
entries.SubName += ".scs"
}
}
}
func (s *sanitize) inSanitizerDir() bool {
return s.Properties.InSanitizerDir
}
// getSanitizerBoolPtr returns the SanitizerTypes associated bool pointer from SanitizeProperties.
func (s *sanitize) getSanitizerBoolPtr(t SanitizerType) *bool {
switch t {
case Asan:
return s.Properties.SanitizeMutated.Address
case Hwasan:
return s.Properties.SanitizeMutated.Hwaddress
case tsan:
return s.Properties.SanitizeMutated.Thread
case intOverflow:
return s.Properties.SanitizeMutated.Integer_overflow
case cfi:
return s.Properties.SanitizeMutated.Cfi
case scs:
return s.Properties.SanitizeMutated.Scs
case Memtag_heap:
return s.Properties.SanitizeMutated.Memtag_heap
case Memtag_stack:
return s.Properties.SanitizeMutated.Memtag_stack
case Memtag_globals:
return s.Properties.SanitizeMutated.Memtag_globals
case Fuzzer:
return s.Properties.SanitizeMutated.Fuzzer
default:
panic(fmt.Errorf("unknown SanitizerType %d", t))
}
}
// isUnsanitizedVariant returns true if no sanitizers are enabled.
func (sanitize *sanitize) isUnsanitizedVariant() bool {
return !sanitize.isSanitizerEnabled(Asan) &&
!sanitize.isSanitizerEnabled(Hwasan) &&
!sanitize.isSanitizerEnabled(tsan) &&
!sanitize.isSanitizerEnabled(cfi) &&
!sanitize.isSanitizerEnabled(scs) &&
!sanitize.isSanitizerEnabled(Memtag_heap) &&
!sanitize.isSanitizerEnabled(Memtag_stack) &&
!sanitize.isSanitizerEnabled(Memtag_globals) &&
!sanitize.isSanitizerEnabled(Fuzzer)
}
// isVariantOnProductionDevice returns true if variant is for production devices (no non-production sanitizers enabled).
func (sanitize *sanitize) isVariantOnProductionDevice() bool {
return !sanitize.isSanitizerEnabled(Asan) &&
!sanitize.isSanitizerEnabled(Hwasan) &&
!sanitize.isSanitizerEnabled(tsan) &&
!sanitize.isSanitizerEnabled(Fuzzer)
}
func (sanitize *sanitize) SetSanitizer(t SanitizerType, b bool) {
bPtr := proptools.BoolPtr(b)
if !b {
bPtr = nil
}
switch t {
case Asan:
sanitize.Properties.SanitizeMutated.Address = bPtr
// For ASAN variant, we need to disable Memtag_stack
sanitize.Properties.SanitizeMutated.Memtag_stack = nil
sanitize.Properties.SanitizeMutated.Memtag_globals = nil
case Hwasan:
sanitize.Properties.SanitizeMutated.Hwaddress = bPtr
// For HWAsan variant, we need to disable Memtag_stack
sanitize.Properties.SanitizeMutated.Memtag_stack = nil
sanitize.Properties.SanitizeMutated.Memtag_globals = nil
case tsan:
sanitize.Properties.SanitizeMutated.Thread = bPtr
case intOverflow:
sanitize.Properties.SanitizeMutated.Integer_overflow = bPtr
case cfi:
sanitize.Properties.SanitizeMutated.Cfi = bPtr
case scs:
sanitize.Properties.SanitizeMutated.Scs = bPtr
case Memtag_heap:
sanitize.Properties.SanitizeMutated.Memtag_heap = bPtr
case Memtag_stack:
sanitize.Properties.SanitizeMutated.Memtag_stack = bPtr
// We do not need to disable ASAN or HWASan here, as there is no Memtag_stack variant.
case Memtag_globals:
sanitize.Properties.Sanitize.Memtag_globals = bPtr
case Fuzzer:
sanitize.Properties.SanitizeMutated.Fuzzer = bPtr
default:
panic(fmt.Errorf("unknown SanitizerType %d", t))
}
if b {
sanitize.Properties.SanitizerEnabled = true
}
}
// Check if the sanitizer is explicitly disabled (as opposed to nil by
// virtue of not being set).
func (sanitize *sanitize) isSanitizerExplicitlyDisabled(t SanitizerType) bool {
if sanitize == nil {
return false
}
sanitizerVal := sanitize.getSanitizerBoolPtr(t)
return sanitizerVal != nil && *sanitizerVal == false
}
// There isn't an analog of the method above (ie:isSanitizerExplicitlyEnabled)
// because enabling a sanitizer either directly (via the blueprint) or
// indirectly (via a mutator) sets the bool ptr to true, and you can't
// distinguish between the cases. It isn't needed though - both cases can be
// treated identically.
func (sanitize *sanitize) isSanitizerEnabled(t SanitizerType) bool {
if sanitize == nil {
return false
}
sanitizerVal := sanitize.getSanitizerBoolPtr(t)
return sanitizerVal != nil && *sanitizerVal == true
}
// IsSanitizableDependencyTag returns true if the dependency tag is sanitizable.
func IsSanitizableDependencyTag(tag blueprint.DependencyTag) bool {
switch t := tag.(type) {
case dependencyTag:
return t == reuseObjTag || t == objDepTag
case libraryDependencyTag:
return true
default:
return false
}
}
func (m *Module) SanitizableDepTagChecker() SantizableDependencyTagChecker {
return IsSanitizableDependencyTag
}
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
// Determines if the current module is a static library going to be captured
// as vendor snapshot. Such modules must create both cfi and non-cfi variants,
// except for ones which explicitly disable cfi.
func needsCfiForVendorSnapshot(mctx android.BaseModuleContext) bool {
if inList("hwaddress", mctx.Config().SanitizeDevice()) {
// cfi will not be built if SANITIZE_TARGET=hwaddress is set
return false
}
if snapshot.IsVendorProprietaryModule(mctx) {
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
return false
}
c := mctx.Module().(PlatformSanitizeable)
if !c.InVendor() {
return false
}
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
if !c.StaticallyLinked() {
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
return false
}
if c.IsPrebuilt() {
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
return false
}
if !c.SanitizerSupported(cfi) {
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
return false
}
return c.SanitizePropDefined() &&
!c.SanitizeNever() &&
!c.IsSanitizerExplicitlyDisabled(cfi)
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
}
type sanitizerSplitMutator struct {
sanitizer SanitizerType
}
// If an APEX is sanitized or not depends on whether it contains at least one
// sanitized module. Transition mutators cannot propagate information up the
// dependency graph this way, so we need an auxiliary mutator to do so.
func (s *sanitizerSplitMutator) markSanitizableApexesMutator(ctx android.TopDownMutatorContext) {
if sanitizeable, ok := ctx.Module().(Sanitizeable); ok {
enabled := sanitizeable.IsSanitizerEnabled(ctx.Config(), s.sanitizer.name())
ctx.VisitDirectDeps(func(dep android.Module) {
if c, ok := dep.(PlatformSanitizeable); ok && c.IsSanitizerEnabled(s.sanitizer) {
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
enabled = true
}
})
if enabled {
sanitizeable.EnableSanitizer(s.sanitizer.name())
}
}
}
func (s *sanitizerSplitMutator) Split(ctx android.BaseModuleContext) []string {
if c, ok := ctx.Module().(PlatformSanitizeable); ok && c.SanitizePropDefined() {
if s.sanitizer == cfi && needsCfiForVendorSnapshot(ctx) {
return []string{"", s.sanitizer.variationName()}
}
// If the given sanitizer is not requested in the .bp file for a module, it
// won't automatically build the sanitized variation.
if !c.IsSanitizerEnabled(s.sanitizer) {
return []string{""}
}
if c.Binary() {
// If a sanitizer is enabled for a binary, we do not build the version
// without the sanitizer
return []string{s.sanitizer.variationName()}
} else if c.StaticallyLinked() || c.Header() {
// For static libraries, we build both versions. Some Make modules
// apparently depend on this behavior.
return []string{"", s.sanitizer.variationName()}
} else {
// We only build the requested variation of dynamic libraries
return []string{s.sanitizer.variationName()}
}
}
if _, ok := ctx.Module().(JniSanitizeable); ok {
// TODO: this should call into JniSanitizable.IsSanitizerEnabledForJni but
// that is short-circuited for now
return []string{""}
}
// If an APEX has a sanitized dependency, we build the APEX in the sanitized
// variation. This is useful because such APEXes require extra dependencies.
if sanitizeable, ok := ctx.Module().(Sanitizeable); ok {
enabled := sanitizeable.IsSanitizerEnabled(ctx.Config(), s.sanitizer.name())
if enabled {
return []string{s.sanitizer.variationName()}
} else {
return []string{""}
}
}
if c, ok := ctx.Module().(LinkableInterface); ok {
// Check if it's a snapshot module supporting sanitizer
if c.IsSnapshotSanitizer() {
if c.IsSnapshotSanitizerAvailable(s.sanitizer) {
return []string{"", s.sanitizer.variationName()}
} else {
return []string{""}
}
}
}
return []string{""}
}
func (s *sanitizerSplitMutator) OutgoingTransition(ctx android.OutgoingTransitionContext, sourceVariation string) string {
if c, ok := ctx.Module().(PlatformSanitizeable); ok {
if !c.SanitizableDepTagChecker()(ctx.DepTag()) {
// If the dependency is through a non-sanitizable tag, use the
// non-sanitized variation
return ""
}
return sourceVariation
} else if _, ok := ctx.Module().(JniSanitizeable); ok {
// TODO: this should call into JniSanitizable.IsSanitizerEnabledForJni but
// that is short-circuited for now
return ""
} else {
// Otherwise, do not rock the boat.
return sourceVariation
}
}
func (s *sanitizerSplitMutator) IncomingTransition(ctx android.IncomingTransitionContext, incomingVariation string) string {
if d, ok := ctx.Module().(PlatformSanitizeable); ok {
if dm, ok := ctx.Module().(LinkableInterface); ok {
if dm.IsSnapshotSanitizerAvailable(s.sanitizer) {
return incomingVariation
Add cfi static libraries to vendor snapshot CFI modules can't link against non-CFI static libraries, and vice versa. So without capturing both CFI and non-CFI static libraries, vendor modules won't be able to use CFI, which will be a critical security hole. This captures both CFI and non-CFI variants of all static libraries for vendor snapshot, except for those whose cfi are explicitly disabled. For example, suppose that "libfoo" is defined as follows. cc_library_static { name: "libfoo", vendor_available: true, } As it doesn't have cfi disabled, two libraries "libfoo.a" and "libfoo.cfi.a" will be captured. When installed, vendor snapshot module for "libfoo" will look like: vendor_snapshot_static { name: "libfoo", src: "libfoo.a", cfi: { src: "libfoo.cfi.a", }, } The build system will recognize the "cfi" property, and will create both CFI and non-CFI variant, allowing any modules to link against "libfoo" safely, no matter whether CFI is enabled or not. Two clarification: 1) The reason why we don't create separate modules is that DepsMutator runs before sanitize mutators. CFI and non-CFI variant of a library should exist in a single module. 2) We can't capture CFI variant if the source module explicitly disables cfi variant by specifying the following. sanitize: { cfi: false, } In this case, only non-CFI variant will be created for the vendor snapshot module. Bug: 65377115 Test: m dist vendor-snapshot && install && build against snapshot Change-Id: Idbf3e3205d581800d6093c8d6cf6152374129ba4
2020-07-29 13:32:10 +02:00
}
}
if !d.SanitizePropDefined() ||
d.SanitizeNever() ||
d.IsSanitizerExplicitlyDisabled(s.sanitizer) ||
!d.SanitizerSupported(s.sanitizer) {
// If a module opts out of a sanitizer, use its non-sanitized variation
return ""
}
// Binaries are always built in the variation they requested.
if d.Binary() {
if d.IsSanitizerEnabled(s.sanitizer) {
return s.sanitizer.variationName()
} else {
return ""
}
}
// If a shared library requests to be sanitized, it will be built for that
// sanitizer. Otherwise, some sanitizers propagate through shared library
// dependency edges, some do not.
if !d.StaticallyLinked() && !d.Header() {
if d.IsSanitizerEnabled(s.sanitizer) {
return s.sanitizer.variationName()
}
// Some sanitizers do not propagate to shared dependencies
if !s.sanitizer.shouldPropagateToSharedLibraryDeps() {
return ""
}
}
// Static and header libraries inherit whether they are sanitized from the
// module they are linked into
return incomingVariation
} else if d, ok := ctx.Module().(Sanitizeable); ok {
// If an APEX contains a sanitized module, it will be built in the variation
// corresponding to that sanitizer.
enabled := d.IsSanitizerEnabled(ctx.Config(), s.sanitizer.name())
if enabled {
return s.sanitizer.variationName()
}
return incomingVariation
}
return ""
}
func (s *sanitizerSplitMutator) Mutate(mctx android.BottomUpMutatorContext, variationName string) {
sanitizerVariation := variationName == s.sanitizer.variationName()
if c, ok := mctx.Module().(PlatformSanitizeable); ok && c.SanitizePropDefined() {
sanitizerEnabled := c.IsSanitizerEnabled(s.sanitizer)
oneMakeVariation := false
if c.StaticallyLinked() || c.Header() {
if s.sanitizer != cfi && s.sanitizer != scs && s.sanitizer != Hwasan {
// These sanitizers export only one variation to Make. For the rest,
// Make targets can depend on both the sanitized and non-sanitized
// versions.
oneMakeVariation = true
}
} else if !c.Binary() {
// Shared library. These are the sanitizers that do propagate through shared
// library dependencies and therefore can cause multiple variations of a
// shared library to be built.
if s.sanitizer != cfi && s.sanitizer != Hwasan && s.sanitizer != scs && s.sanitizer != Asan {
oneMakeVariation = true
}
}
if oneMakeVariation {
if sanitizerEnabled != sanitizerVariation {
c.SetPreventInstall()
c.SetHideFromMake()
}
}
if sanitizerVariation {
c.SetSanitizer(s.sanitizer, true)
// CFI is incompatible with ASAN so disable it in ASAN variations
if s.sanitizer.incompatibleWithCfi() {
cfiSupported := mctx.Module().(PlatformSanitizeable).SanitizerSupported(cfi)
if mctx.Device() && cfiSupported {
c.SetSanitizer(cfi, false)
}
}
// locate the asan libraries under /data/asan
if !c.Binary() && !c.StaticallyLinked() && !c.Header() && mctx.Device() && s.sanitizer == Asan && sanitizerEnabled {
c.SetInSanitizerDir()
}
if c.StaticallyLinked() && c.ExportedToMake() {
if s.sanitizer == Hwasan {
hwasanStaticLibs(mctx.Config()).add(c, c.Module().Name())
} else if s.sanitizer == cfi {
cfiStaticLibs(mctx.Config()).add(c, c.Module().Name())
}
}
} else if c.IsSanitizerEnabled(s.sanitizer) {
// Disable the sanitizer for the non-sanitized variation
c.SetSanitizer(s.sanitizer, false)
}
} else if sanitizeable, ok := mctx.Module().(Sanitizeable); ok {
// If an APEX has sanitized dependencies, it gets a few more dependencies
if sanitizerVariation {
sanitizeable.AddSanitizerDependencies(mctx, s.sanitizer.name())
}
} else if c, ok := mctx.Module().(LinkableInterface); ok {
if c.IsSnapshotSanitizerAvailable(s.sanitizer) {
if !c.IsSnapshotUnsanitizedVariant() {
// Snapshot sanitizer may have only one variantion.
// Skip exporting the module if it already has a sanitizer variation.
c.SetPreventInstall()
c.SetHideFromMake()
return
}
c.SetSnapshotSanitizerVariation(s.sanitizer, sanitizerVariation)
// Export the static lib name to make
if c.Static() && c.ExportedToMake() {
// use BaseModuleName which is the name for Make.
if s.sanitizer == cfi {
cfiStaticLibs(mctx.Config()).add(c, c.BaseModuleName())
} else if s.sanitizer == Hwasan {
hwasanStaticLibs(mctx.Config()).add(c, c.BaseModuleName())
}
}
}
}
}
func (c *Module) IsSnapshotSanitizer() bool {
if _, ok := c.linker.(SnapshotSanitizer); ok {
return true
}
return false
}
func (c *Module) IsSnapshotSanitizerAvailable(t SanitizerType) bool {
if ss, ok := c.linker.(SnapshotSanitizer); ok {
return ss.IsSanitizerAvailable(t)
}
return false
}
func (c *Module) SetSnapshotSanitizerVariation(t SanitizerType, enabled bool) {
if ss, ok := c.linker.(SnapshotSanitizer); ok {
ss.SetSanitizerVariation(t, enabled)
} else {
panic(fmt.Errorf("Calling SetSnapshotSanitizerVariation on a non-snapshotLibraryDecorator: %s", c.Name()))
}
}
func (c *Module) IsSnapshotUnsanitizedVariant() bool {
if ss, ok := c.linker.(SnapshotSanitizer); ok {
return ss.IsUnsanitizedVariant()
}
return false
}
func (c *Module) SanitizeNever() bool {
return Bool(c.sanitize.Properties.SanitizeMutated.Never)
}
func (c *Module) IsSanitizerExplicitlyDisabled(t SanitizerType) bool {
return c.sanitize.isSanitizerExplicitlyDisabled(t)
}
// Propagate the ubsan minimal runtime dependency when there are integer overflow sanitized static dependencies.
func sanitizerRuntimeDepsMutator(mctx android.TopDownMutatorContext) {
// Change this to PlatformSanitizable when/if non-cc modules support ubsan sanitizers.
if c, ok := mctx.Module().(*Module); ok && c.sanitize != nil {
isSanitizableDependencyTag := c.SanitizableDepTagChecker()
mctx.WalkDeps(func(child, parent android.Module) bool {
if !isSanitizableDependencyTag(mctx.OtherModuleDependencyTag(child)) {
return false
}
d, ok := child.(*Module)
if !ok || !d.static() {
return false
}
if d.sanitize != nil {
if enableMinimalRuntime(d.sanitize) {
// If a static dependency is built with the minimal runtime,
// make sure we include the ubsan minimal runtime.
c.sanitize.Properties.MinimalRuntimeDep = true
} else if enableUbsanRuntime(d.sanitize) {
// If a static dependency runs with full ubsan diagnostics,
// make sure we include the ubsan runtime.
c.sanitize.Properties.UbsanRuntimeDep = true
}
if c.sanitize.Properties.MinimalRuntimeDep &&
c.sanitize.Properties.UbsanRuntimeDep {
// both flags that this mutator might set are true, so don't bother recursing
return false
}
if c.Os() == android.Linux {
c.sanitize.Properties.BuiltinsDep = true
}
return true
}
if p, ok := d.linker.(*snapshotLibraryDecorator); ok {
if Bool(p.properties.Sanitize_minimal_dep) {
c.sanitize.Properties.MinimalRuntimeDep = true
}
if Bool(p.properties.Sanitize_ubsan_dep) {
c.sanitize.Properties.UbsanRuntimeDep = true
}
}
return false
})
}
}
// Add the dependency to the runtime library for each of the sanitizer variants
func sanitizerRuntimeMutator(mctx android.BottomUpMutatorContext) {
if c, ok := mctx.Module().(*Module); ok && c.sanitize != nil {
if !c.Enabled() {
return
}
var sanitizers []string
var diagSanitizers []string
sanProps := &c.sanitize.Properties.SanitizeMutated
if Bool(sanProps.All_undefined) {
sanitizers = append(sanitizers, "undefined")
} else {
if Bool(sanProps.Undefined) {
sanitizers = append(sanitizers,
"bool",
"integer-divide-by-zero",
"return",
"returns-nonnull-attribute",
"shift-exponent",
"unreachable",
"vla-bound",
// TODO(danalbert): The following checks currently have compiler performance issues.
//"alignment",
//"bounds",
//"enum",
//"float-cast-overflow",
//"float-divide-by-zero",
//"nonnull-attribute",
//"null",
//"shift-base",
//"signed-integer-overflow",
// TODO(danalbert): Fix UB in libc++'s __tree so we can turn this on.
// https://llvm.org/PR19302
// http://reviews.llvm.org/D6974
// "object-size",
)
}
sanitizers = append(sanitizers, sanProps.Misc_undefined...)
}
if Bool(sanProps.Diag.Undefined) {
diagSanitizers = append(diagSanitizers, "undefined")
}
diagSanitizers = append(diagSanitizers, sanProps.Diag.Misc_undefined...)
if Bool(sanProps.Address) {
sanitizers = append(sanitizers, "address")
diagSanitizers = append(diagSanitizers, "address")
}
if Bool(sanProps.Hwaddress) {
sanitizers = append(sanitizers, "hwaddress")
}
if Bool(sanProps.Thread) {
sanitizers = append(sanitizers, "thread")
}
if Bool(sanProps.Safestack) {
sanitizers = append(sanitizers, "safe-stack")
}
if Bool(sanProps.Cfi) {
sanitizers = append(sanitizers, "cfi")
if Bool(sanProps.Diag.Cfi) {
diagSanitizers = append(diagSanitizers, "cfi")
}
}
if Bool(sanProps.Integer_overflow) {
sanitizers = append(sanitizers, "unsigned-integer-overflow")
sanitizers = append(sanitizers, "signed-integer-overflow")
if Bool(sanProps.Diag.Integer_overflow) {
diagSanitizers = append(diagSanitizers, "unsigned-integer-overflow")
diagSanitizers = append(diagSanitizers, "signed-integer-overflow")
}
}
if Bool(sanProps.Scudo) {
sanitizers = append(sanitizers, "scudo")
}
if Bool(sanProps.Scs) {
sanitizers = append(sanitizers, "shadow-call-stack")
}
if Bool(sanProps.Memtag_heap) && c.Binary() {
sanitizers = append(sanitizers, "memtag-heap")
}
if Bool(sanProps.Memtag_stack) {
sanitizers = append(sanitizers, "memtag-stack")
}
if Bool(sanProps.Memtag_globals) {
sanitizers = append(sanitizers, "memtag-globals")
// TODO(mitchp): For now, enable memtag-heap with memtag-globals because the linker
// isn't new enough (https://reviews.llvm.org/differential/changeset/?ref=4243566).
sanitizers = append(sanitizers, "memtag-heap")
}
if Bool(sanProps.Fuzzer) {
sanitizers = append(sanitizers, "fuzzer-no-link")
}
// Save the list of sanitizers. These will be used again when generating
// the build rules (for Cflags, etc.)
c.sanitize.Properties.Sanitizers = sanitizers
c.sanitize.Properties.DiagSanitizers = diagSanitizers
// TODO(b/150822854) Hosts have a different default behavior and assume the runtime library is used.
if c.Host() {
diagSanitizers = sanitizers
}
addStaticDeps := func(dep string, hideSymbols bool) {
// If we're using snapshots, redirect to snapshot whenever possible
snapshot := mctx.Provider(SnapshotInfoProvider).(SnapshotInfo)
if lib, ok := snapshot.StaticLibs[dep]; ok {
dep = lib
}
// static executable gets static runtime libs
depTag := libraryDependencyTag{Kind: staticLibraryDependency, unexportedSymbols: hideSymbols}
variations := append(mctx.Target().Variations(),
blueprint.Variation{Mutator: "link", Variation: "static"})
if c.Device() {
variations = append(variations, c.ImageVariation())
}
if c.UseSdk() {
variations = append(variations,
blueprint.Variation{Mutator: "sdk", Variation: "sdk"})
}
mctx.AddFarVariationDependencies(variations, depTag, dep)
}
// Determine the runtime library required
runtimeSharedLibrary := ""
toolchain := c.toolchain(mctx)
if Bool(sanProps.Address) {
if toolchain.Musl() || (c.staticBinary() && toolchain.Bionic()) {
// Use a static runtime for musl to match what clang does for glibc.
addStaticDeps(config.AddressSanitizerStaticRuntimeLibrary(toolchain), false)
addStaticDeps(config.AddressSanitizerCXXStaticRuntimeLibrary(toolchain), false)
} else {
runtimeSharedLibrary = config.AddressSanitizerRuntimeLibrary(toolchain)
}
} else if Bool(sanProps.Hwaddress) {
if c.staticBinary() {
addStaticDeps(config.HWAddressSanitizerStaticLibrary(toolchain), true)
addStaticDeps("libdl", false)
} else {
runtimeSharedLibrary = config.HWAddressSanitizerRuntimeLibrary(toolchain)
}
} else if Bool(sanProps.Thread) {
runtimeSharedLibrary = config.ThreadSanitizerRuntimeLibrary(toolchain)
} else if Bool(sanProps.Scudo) {
if len(diagSanitizers) == 0 && !c.sanitize.Properties.UbsanRuntimeDep {
runtimeSharedLibrary = config.ScudoMinimalRuntimeLibrary(toolchain)
} else {
runtimeSharedLibrary = config.ScudoRuntimeLibrary(toolchain)
}
Workaround unexported sancov symbols. Fix multiple sanitizer RT deps. Fuzz targets currently have dependencies on multiple libclang_rt runtime libraries when building with ASan/HWAsan on device. This is an error. This happens as Soong adds the dependency on the ASan/HWASan shared runtime library. These libraries should provide the required UBSan components. The clang driver was previously being passed -fsanitize=fuzzer-no-link at link time, and as it doesn't know about the already-established dependency on ASan/HWASan, it mistakenly thinks that there is not runtime providing the UBSan components. This patch fixes that problem by not adding -fsanitize=fuzzer-no-link to the link-time flags. This revealed a underlying issue in the upstream runtime compilation. Android uses emulated TLS, which changes the symbol names from <my_symbol_name> to __emutls_v._<my_symbol_name>. In particular, this fails to account for the '__sancov_lowest_stack' symbol, as it no longer matches the linker script rule for '__sancov*', and the symbol is no longer exported in the shared library variant of ASan/HWASan. This patch works around the discovered issue, which is being tracked in the linked bug. It disables stack depth instrumentation, and we no longer depend on this symbol. This means we get a missing sanitizer coverage feature when fuzzing, but shouldn't be too detrimental. Bug: 142430592 Test: SANITIZE_TARGET=hwaddress m example_fuzzer && \ readelf -d example_fuzzer # ensure only ONE libclang_rt dep (in this case, hwasan) Change-Id: Iea6df55d592a801732511c9b690134367429d62a
2019-10-10 02:18:59 +02:00
} else if len(diagSanitizers) > 0 || c.sanitize.Properties.UbsanRuntimeDep ||
Bool(sanProps.Fuzzer) ||
Bool(sanProps.Undefined) ||
Bool(sanProps.All_undefined) {
if toolchain.Musl() || c.staticBinary() {
// Use a static runtime for static binaries. For sanitized glibc binaries the runtime is
// added automatically by clang, but for static glibc binaries that are not sanitized but
// have a sanitized dependency the runtime needs to be added manually.
// Also manually add a static runtime for musl to match what clang does for glibc.
// Otherwise dlopening libraries that depend on libclang_rt.ubsan_standalone.so fails with:
// Error relocating ...: initial-exec TLS resolves to dynamic definition
addStaticDeps(config.UndefinedBehaviorSanitizerRuntimeLibrary(toolchain)+".static", true)
} else {
runtimeSharedLibrary = config.UndefinedBehaviorSanitizerRuntimeLibrary(toolchain)
}
}
if enableMinimalRuntime(c.sanitize) || c.sanitize.Properties.MinimalRuntimeDep {
addStaticDeps(config.UndefinedBehaviorSanitizerMinimalRuntimeLibrary(toolchain), true)
}
if c.sanitize.Properties.BuiltinsDep {
addStaticDeps(config.BuiltinsRuntimeLibrary(toolchain), true)
}
if runtimeSharedLibrary != "" && (toolchain.Bionic() || toolchain.Musl() || c.sanitize.Properties.UbsanRuntimeDep) {
// UBSan is supported on non-bionic linux host builds as well
// Adding dependency to the runtime library. We are using *FarVariation*
// because the runtime libraries themselves are not mutated by sanitizer
// mutators and thus don't have sanitizer variants whereas this module
// has been already mutated.
//
// Note that by adding dependency with {static|shared}DepTag, the lib is
// added to libFlags and LOCAL_SHARED_LIBRARIES by cc.Module
if c.staticBinary() {
// Most sanitizers are either disabled for static binaries or have already
// handled the static binary case above through a direct call to addStaticDeps.
// If not, treat the runtime shared library as a static library and hope for
// the best.
addStaticDeps(runtimeSharedLibrary, true)
} else if !c.static() && !c.Header() {
// If we're using snapshots, redirect to snapshot whenever possible
snapshot := mctx.Provider(SnapshotInfoProvider).(SnapshotInfo)
if lib, ok := snapshot.SharedLibs[runtimeSharedLibrary]; ok {
runtimeSharedLibrary = lib
}
// Skip apex dependency check for sharedLibraryDependency
// when sanitizer diags are enabled. Skipping the check will allow
// building with diag libraries without having to list the
// dependency in Apex's allowed_deps file.
diagEnabled := len(diagSanitizers) > 0
// dynamic executable and shared libs get shared runtime libs
depTag := libraryDependencyTag{
Kind: sharedLibraryDependency,
Order: earlyLibraryDependency,
skipApexAllowedDependenciesCheck: diagEnabled,
}
variations := append(mctx.Target().Variations(),
blueprint.Variation{Mutator: "link", Variation: "shared"})
if c.Device() {
variations = append(variations, c.ImageVariation())
}
if c.UseSdk() {
variations = append(variations,
blueprint.Variation{Mutator: "sdk", Variation: "sdk"})
}
AddSharedLibDependenciesWithVersions(mctx, c, variations, depTag, runtimeSharedLibrary, "", true)
}
// static lib does not have dependency to the runtime library. The
// dependency will be added to the executables or shared libs using
// the static lib.
}
}
}
type Sanitizeable interface {
android.Module
IsSanitizerEnabled(config android.Config, sanitizerName string) bool
EnableSanitizer(sanitizerName string)
AddSanitizerDependencies(ctx android.BottomUpMutatorContext, sanitizerName string)
}
type JniSanitizeable interface {
android.Module
IsSanitizerEnabledForJni(ctx android.BaseModuleContext, sanitizerName string) bool
}
func (c *Module) MinimalRuntimeDep() bool {
return c.sanitize.Properties.MinimalRuntimeDep
}
func (c *Module) UbsanRuntimeDep() bool {
return c.sanitize.Properties.UbsanRuntimeDep
}
func (c *Module) SanitizePropDefined() bool {
return c.sanitize != nil
}
func (c *Module) IsSanitizerEnabled(t SanitizerType) bool {
return c.sanitize.isSanitizerEnabled(t)
}
func (c *Module) StaticallyLinked() bool {
return c.static()
}
func (c *Module) SetInSanitizerDir() {
if c.sanitize != nil {
c.sanitize.Properties.InSanitizerDir = true
}
}
func (c *Module) SetSanitizer(t SanitizerType, b bool) {
if c.sanitize != nil {
c.sanitize.SetSanitizer(t, b)
}
}
var _ PlatformSanitizeable = (*Module)(nil)
type sanitizerStaticLibsMap struct {
// libsMap contains one list of modules per each image and each arch.
// e.g. libs[vendor]["arm"] contains arm modules installed to vendor
libsMap map[ImageVariantType]map[string][]string
libsMapLock sync.Mutex
sanitizerType SanitizerType
}
func newSanitizerStaticLibsMap(t SanitizerType) *sanitizerStaticLibsMap {
return &sanitizerStaticLibsMap{
sanitizerType: t,
libsMap: make(map[ImageVariantType]map[string][]string),
}
}
// Add the current module to sanitizer static libs maps
// Each module should pass its exported name as names of Make and Soong can differ.
func (s *sanitizerStaticLibsMap) add(c LinkableInterface, name string) {
image := GetImageVariantType(c)
arch := c.Module().Target().Arch.ArchType.String()
s.libsMapLock.Lock()
defer s.libsMapLock.Unlock()
if _, ok := s.libsMap[image]; !ok {
s.libsMap[image] = make(map[string][]string)
}
s.libsMap[image][arch] = append(s.libsMap[image][arch], name)
}
// Exports makefile variables in the following format:
// SOONG_{sanitizer}_{image}_{arch}_STATIC_LIBRARIES
// e.g. SOONG_cfi_core_x86_STATIC_LIBRARIES
// These are to be used by use_soong_sanitized_static_libraries.
// See build/make/core/binary.mk for more details.
func (s *sanitizerStaticLibsMap) exportToMake(ctx android.MakeVarsContext) {
for _, image := range android.SortedKeys(s.libsMap) {
archMap := s.libsMap[ImageVariantType(image)]
for _, arch := range android.SortedKeys(archMap) {
libs := archMap[arch]
sort.Strings(libs)
key := fmt.Sprintf(
"SOONG_%s_%s_%s_STATIC_LIBRARIES",
s.sanitizerType.variationName(),
image, // already upper
arch)
ctx.Strict(key, strings.Join(libs, " "))
}
}
}
var cfiStaticLibsKey = android.NewOnceKey("cfiStaticLibs")
func cfiStaticLibs(config android.Config) *sanitizerStaticLibsMap {
return config.Once(cfiStaticLibsKey, func() interface{} {
return newSanitizerStaticLibsMap(cfi)
}).(*sanitizerStaticLibsMap)
}
var hwasanStaticLibsKey = android.NewOnceKey("hwasanStaticLibs")
func hwasanStaticLibs(config android.Config) *sanitizerStaticLibsMap {
return config.Once(hwasanStaticLibsKey, func() interface{} {
return newSanitizerStaticLibsMap(Hwasan)
}).(*sanitizerStaticLibsMap)
}
func enableMinimalRuntime(sanitize *sanitize) bool {
if sanitize.isSanitizerEnabled(Asan) {
return false
} else if sanitize.isSanitizerEnabled(Hwasan) {
return false
} else if sanitize.isSanitizerEnabled(Fuzzer) {
return false
}
if enableUbsanRuntime(sanitize) {
return false
}
sanitizeProps := &sanitize.Properties.SanitizeMutated
if Bool(sanitizeProps.Diag.Cfi) {
return false
}
return Bool(sanitizeProps.Integer_overflow) ||
len(sanitizeProps.Misc_undefined) > 0 ||
Bool(sanitizeProps.Undefined) ||
Bool(sanitizeProps.All_undefined)
}
func (m *Module) UbsanRuntimeNeeded() bool {
return enableUbsanRuntime(m.sanitize)
}
func (m *Module) MinimalRuntimeNeeded() bool {
return enableMinimalRuntime(m.sanitize)
}
func enableUbsanRuntime(sanitize *sanitize) bool {
sanitizeProps := &sanitize.Properties.SanitizeMutated
return Bool(sanitizeProps.Diag.Integer_overflow) ||
Bool(sanitizeProps.Diag.Undefined) ||
len(sanitizeProps.Diag.Misc_undefined) > 0
}
func cfiMakeVarsProvider(ctx android.MakeVarsContext) {
cfiStaticLibs(ctx.Config()).exportToMake(ctx)
}
func hwasanMakeVarsProvider(ctx android.MakeVarsContext) {
hwasanStaticLibs(ctx.Config()).exportToMake(ctx)
}
func BazelCcSanitizerToolchainVars(config android.Config) string {
return android.BazelToolchainVars(config, exportedVars)
}