platform_build_soong/mk2rbc/mk2rbc.go

1920 lines
64 KiB
Go
Raw Normal View History

// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Convert makefile containing device configuration to Starlark file
// The conversion can handle the following constructs in a makefile:
// * comments
// * simple variable assignments
// * $(call init-product,<file>)
// * $(call inherit-product-if-exists
// * if directives
// All other constructs are carried over to the output starlark file as comments.
//
package mk2rbc
import (
"bytes"
"fmt"
"io"
"io/fs"
"io/ioutil"
"os"
"path/filepath"
"regexp"
"strconv"
"strings"
"text/scanner"
mkparser "android/soong/androidmk/parser"
)
const (
annotationCommentPrefix = "RBC#"
baseUri = "//build/make/core:product_config.rbc"
// The name of the struct exported by the product_config.rbc
// that contains the functions and variables available to
// product configuration Starlark files.
baseName = "rblf"
soongNsPrefix = "SOONG_CONFIG_"
// And here are the functions and variables:
cfnGetCfg = baseName + ".cfg"
cfnMain = baseName + ".product_configuration"
cfnBoardMain = baseName + ".board_configuration"
cfnPrintVars = baseName + ".printvars"
cfnInherit = baseName + ".inherit"
cfnSetListDefault = baseName + ".setdefault"
)
const (
soongConfigAppend = "soong_config_append"
soongConfigAssign = "soong_config_set"
)
var knownFunctions = map[string]interface {
parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr
}{
"abspath": &simpleCallParser{name: baseName + ".abspath", returnType: starlarkTypeString},
"add-product-dex-preopt-module-config": &simpleCallParser{name: baseName + ".add_product_dex_preopt_module_config", returnType: starlarkTypeString, addHandle: true},
"add_soong_config_namespace": &simpleCallParser{name: baseName + ".soong_config_namespace", returnType: starlarkTypeVoid, addGlobals: true},
"add_soong_config_var_value": &simpleCallParser{name: baseName + ".soong_config_set", returnType: starlarkTypeVoid, addGlobals: true},
soongConfigAssign: &simpleCallParser{name: baseName + ".soong_config_set", returnType: starlarkTypeVoid, addGlobals: true},
soongConfigAppend: &simpleCallParser{name: baseName + ".soong_config_append", returnType: starlarkTypeVoid, addGlobals: true},
"soong_config_get": &simpleCallParser{name: baseName + ".soong_config_get", returnType: starlarkTypeString, addGlobals: true},
"add-to-product-copy-files-if-exists": &simpleCallParser{name: baseName + ".copy_if_exists", returnType: starlarkTypeList},
"addprefix": &simpleCallParser{name: baseName + ".addprefix", returnType: starlarkTypeList},
"addsuffix": &simpleCallParser{name: baseName + ".addsuffix", returnType: starlarkTypeList},
"copy-files": &simpleCallParser{name: baseName + ".copy_files", returnType: starlarkTypeList},
"dir": &simpleCallParser{name: baseName + ".dir", returnType: starlarkTypeList},
"dist-for-goals": &simpleCallParser{name: baseName + ".mkdist_for_goals", returnType: starlarkTypeVoid, addGlobals: true},
"enforce-product-packages-exist": &simpleCallParser{name: baseName + ".enforce_product_packages_exist", returnType: starlarkTypeVoid},
"error": &makeControlFuncParser{name: baseName + ".mkerror"},
"findstring": &simpleCallParser{name: baseName + ".findstring", returnType: starlarkTypeInt},
"find-copy-subdir-files": &simpleCallParser{name: baseName + ".find_and_copy", returnType: starlarkTypeList},
"filter": &simpleCallParser{name: baseName + ".filter", returnType: starlarkTypeList},
"filter-out": &simpleCallParser{name: baseName + ".filter_out", returnType: starlarkTypeList},
"firstword": &firstOrLastwordCallParser{isLastWord: false},
"foreach": &foreachCallPaser{},
"if": &ifCallParser{},
"info": &makeControlFuncParser{name: baseName + ".mkinfo"},
"is-board-platform": &simpleCallParser{name: baseName + ".board_platform_is", returnType: starlarkTypeBool, addGlobals: true},
"is-board-platform2": &simpleCallParser{name: baseName + ".board_platform_is", returnType: starlarkTypeBool, addGlobals: true},
"is-board-platform-in-list": &simpleCallParser{name: baseName + ".board_platform_in", returnType: starlarkTypeBool, addGlobals: true},
"is-board-platform-in-list2": &simpleCallParser{name: baseName + ".board_platform_in", returnType: starlarkTypeBool, addGlobals: true},
"is-product-in-list": &isProductInListCallParser{},
"is-vendor-board-platform": &isVendorBoardPlatformCallParser{},
"is-vendor-board-qcom": &isVendorBoardQcomCallParser{},
"lastword": &firstOrLastwordCallParser{isLastWord: true},
"notdir": &simpleCallParser{name: baseName + ".notdir", returnType: starlarkTypeString},
"math_max": &mathMaxOrMinCallParser{function: "max"},
"math_min": &mathMaxOrMinCallParser{function: "min"},
"math_gt_or_eq": &mathComparisonCallParser{op: ">="},
"math_gt": &mathComparisonCallParser{op: ">"},
"math_lt": &mathComparisonCallParser{op: "<"},
"my-dir": &myDirCallParser{},
"patsubst": &substCallParser{fname: "patsubst"},
"product-copy-files-by-pattern": &simpleCallParser{name: baseName + ".product_copy_files_by_pattern", returnType: starlarkTypeList},
"require-artifacts-in-path": &simpleCallParser{name: baseName + ".require_artifacts_in_path", returnType: starlarkTypeVoid},
"require-artifacts-in-path-relaxed": &simpleCallParser{name: baseName + ".require_artifacts_in_path_relaxed", returnType: starlarkTypeVoid},
// TODO(asmundak): remove it once all calls are removed from configuration makefiles. see b/183161002
"shell": &shellCallParser{},
"strip": &simpleCallParser{name: baseName + ".mkstrip", returnType: starlarkTypeString},
"subst": &substCallParser{fname: "subst"},
"warning": &makeControlFuncParser{name: baseName + ".mkwarning"},
"word": &wordCallParser{},
"wildcard": &simpleCallParser{name: baseName + ".expand_wildcard", returnType: starlarkTypeList},
}
// These are functions that we don't implement conversions for, but
// we allow seeing their definitions in the product config files.
var ignoredDefines = map[string]bool{
"find-word-in-list": true, // internal macro
"get-vendor-board-platforms": true, // internal macro, used by is-board-platform, etc.
"is-android-codename": true, // unused by product config
"is-android-codename-in-list": true, // unused by product config
"is-chipset-in-board-platform": true, // unused by product config
"is-chipset-prefix-in-board-platform": true, // unused by product config
"is-not-board-platform": true, // defined but never used
"is-platform-sdk-version-at-least": true, // unused by product config
"match-prefix": true, // internal macro
"match-word": true, // internal macro
"match-word-in-list": true, // internal macro
"tb-modules": true, // defined in hardware/amlogic/tb_modules/tb_detect.mk, unused
}
var identifierFullMatchRegex = regexp.MustCompile("^[a-zA-Z_][a-zA-Z0-9_]*$")
// Conversion request parameters
type Request struct {
MkFile string // file to convert
Reader io.Reader // if set, read input from this stream instead
OutputSuffix string // generated Starlark files suffix
OutputDir string // if set, root of the output hierarchy
ErrorLogger ErrorLogger
TracedVariables []string // trace assignment to these variables
TraceCalls bool
SourceFS fs.FS
MakefileFinder MakefileFinder
}
// ErrorLogger prints errors and gathers error statistics.
// Its NewError function is called on every error encountered during the conversion.
type ErrorLogger interface {
NewError(el ErrorLocation, node mkparser.Node, text string, args ...interface{})
}
type ErrorLocation struct {
MkFile string
MkLine int
}
func (el ErrorLocation) String() string {
return fmt.Sprintf("%s:%d", el.MkFile, el.MkLine)
}
// Derives module name for a given file. It is base name
// (file name without suffix), with some characters replaced to make it a Starlark identifier
func moduleNameForFile(mkFile string) string {
base := strings.TrimSuffix(filepath.Base(mkFile), filepath.Ext(mkFile))
// TODO(asmundak): what else can be in the product file names?
return strings.NewReplacer("-", "_", ".", "_").Replace(base)
}
func cloneMakeString(mkString *mkparser.MakeString) *mkparser.MakeString {
r := &mkparser.MakeString{StringPos: mkString.StringPos}
r.Strings = append(r.Strings, mkString.Strings...)
r.Variables = append(r.Variables, mkString.Variables...)
return r
}
func isMakeControlFunc(s string) bool {
return s == "error" || s == "warning" || s == "info"
}
// Starlark output generation context
type generationContext struct {
buf strings.Builder
starScript *StarlarkScript
indentLevel int
inAssignment bool
tracedCount int
}
func NewGenerateContext(ss *StarlarkScript) *generationContext {
return &generationContext{starScript: ss}
}
// emit returns generated script
func (gctx *generationContext) emit() string {
ss := gctx.starScript
// The emitted code has the following layout:
// <initial comments>
// preamble, i.e.,
// load statement for the runtime support
// load statement for each unique submodule pulled in by this one
// def init(g, handle):
// cfg = rblf.cfg(handle)
// <statements>
// <warning if conversion was not clean>
iNode := len(ss.nodes)
for i, node := range ss.nodes {
if _, ok := node.(*commentNode); !ok {
iNode = i
break
}
node.emit(gctx)
}
gctx.emitPreamble()
gctx.newLine()
// The arguments passed to the init function are the global dictionary
// ('g') and the product configuration dictionary ('cfg')
gctx.write("def init(g, handle):")
gctx.indentLevel++
if gctx.starScript.traceCalls {
gctx.newLine()
gctx.writef(`print(">%s")`, gctx.starScript.mkFile)
}
gctx.newLine()
gctx.writef("cfg = %s(handle)", cfnGetCfg)
for _, node := range ss.nodes[iNode:] {
node.emit(gctx)
}
if gctx.starScript.traceCalls {
gctx.newLine()
gctx.writef(`print("<%s")`, gctx.starScript.mkFile)
}
gctx.indentLevel--
gctx.write("\n")
return gctx.buf.String()
}
func (gctx *generationContext) emitPreamble() {
gctx.newLine()
gctx.writef("load(%q, %q)", baseUri, baseName)
// Emit exactly one load statement for each URI.
loadedSubConfigs := make(map[string]string)
for _, mi := range gctx.starScript.inherited {
uri := mi.path
if m, ok := loadedSubConfigs[uri]; ok {
// No need to emit load statement, but fix module name.
mi.moduleLocalName = m
continue
}
if mi.optional || mi.missing {
uri += "|init"
}
gctx.newLine()
gctx.writef("load(%q, %s = \"init\")", uri, mi.entryName())
loadedSubConfigs[uri] = mi.moduleLocalName
}
gctx.write("\n")
}
func (gctx *generationContext) emitPass() {
gctx.newLine()
gctx.write("pass")
}
func (gctx *generationContext) write(ss ...string) {
for _, s := range ss {
gctx.buf.WriteString(s)
}
}
func (gctx *generationContext) writef(format string, args ...interface{}) {
gctx.write(fmt.Sprintf(format, args...))
}
func (gctx *generationContext) newLine() {
if gctx.buf.Len() == 0 {
return
}
gctx.write("\n")
gctx.writef("%*s", 2*gctx.indentLevel, "")
}
func (gctx *generationContext) emitConversionError(el ErrorLocation, message string) {
gctx.writef(`rblf.mk2rbc_error("%s", %q)`, el, message)
}
func (gctx *generationContext) emitLoadCheck(im inheritedModule) {
if !im.needsLoadCheck() {
return
}
gctx.newLine()
gctx.writef("if not %s:", im.entryName())
gctx.indentLevel++
gctx.newLine()
gctx.write(`rblf.mkerror("`, gctx.starScript.mkFile, `", "Cannot find %s" % (`)
im.pathExpr().emit(gctx)
gctx.write("))")
gctx.indentLevel--
}
type knownVariable struct {
name string
class varClass
valueType starlarkType
}
type knownVariables map[string]knownVariable
func (pcv knownVariables) NewVariable(name string, varClass varClass, valueType starlarkType) {
v, exists := pcv[name]
if !exists {
pcv[name] = knownVariable{name, varClass, valueType}
return
}
// Conflict resolution:
// * config class trumps everything
// * any type trumps unknown type
match := varClass == v.class
if !match {
if varClass == VarClassConfig {
v.class = VarClassConfig
match = true
} else if v.class == VarClassConfig {
match = true
}
}
if valueType != v.valueType {
if valueType != starlarkTypeUnknown {
if v.valueType == starlarkTypeUnknown {
v.valueType = valueType
} else {
match = false
}
}
}
if !match {
fmt.Fprintf(os.Stderr, "cannot redefine %s as %v/%v (already defined as %v/%v)\n",
name, varClass, valueType, v.class, v.valueType)
}
}
// All known product variables.
var KnownVariables = make(knownVariables)
func init() {
for _, kv := range []string{
// Kernel-related variables that we know are lists.
"BOARD_VENDOR_KERNEL_MODULES",
"BOARD_VENDOR_RAMDISK_KERNEL_MODULES",
"BOARD_VENDOR_RAMDISK_KERNEL_MODULES_LOAD",
"BOARD_RECOVERY_KERNEL_MODULES",
// Other variables we knwo are lists
"ART_APEX_JARS",
} {
KnownVariables.NewVariable(kv, VarClassSoong, starlarkTypeList)
}
}
// Information about the generated Starlark script.
type StarlarkScript struct {
mkFile string
moduleName string
mkPos scanner.Position
nodes []starlarkNode
inherited []*moduleInfo
hasErrors bool
traceCalls bool // print enter/exit each init function
sourceFS fs.FS
makefileFinder MakefileFinder
nodeLocator func(pos mkparser.Pos) int
}
// varAssignmentScope points to the last assignment for each variable
// in the current block. It is used during the parsing to chain
// the assignments to a variable together.
type varAssignmentScope struct {
outer *varAssignmentScope
vars map[string]*assignmentNode
}
// parseContext holds the script we are generating and all the ephemeral data
// needed during the parsing.
type parseContext struct {
script *StarlarkScript
nodes []mkparser.Node // Makefile as parsed by mkparser
currentNodeIndex int // Node in it we are processing
ifNestLevel int
moduleNameCount map[string]int // count of imported modules with given basename
fatalError error
outputSuffix string
errorLogger ErrorLogger
tracedVariables map[string]bool // variables to be traced in the generated script
variables map[string]variable
varAssignments *varAssignmentScope
outputDir string
dependentModules map[string]*moduleInfo
soongNamespaces map[string]map[string]bool
includeTops []string
typeHints map[string]starlarkType
atTopOfMakefile bool
}
func newParseContext(ss *StarlarkScript, nodes []mkparser.Node) *parseContext {
predefined := []struct{ name, value string }{
{"SRC_TARGET_DIR", filepath.Join("build", "make", "target")},
{"LOCAL_PATH", filepath.Dir(ss.mkFile)},
{"TOPDIR", ""}, // TOPDIR is just set to an empty string in cleanbuild.mk and core.mk
// TODO(asmundak): maybe read it from build/make/core/envsetup.mk?
{"TARGET_COPY_OUT_SYSTEM", "system"},
{"TARGET_COPY_OUT_SYSTEM_OTHER", "system_other"},
{"TARGET_COPY_OUT_DATA", "data"},
{"TARGET_COPY_OUT_ASAN", filepath.Join("data", "asan")},
{"TARGET_COPY_OUT_OEM", "oem"},
{"TARGET_COPY_OUT_RAMDISK", "ramdisk"},
{"TARGET_COPY_OUT_DEBUG_RAMDISK", "debug_ramdisk"},
{"TARGET_COPY_OUT_VENDOR_DEBUG_RAMDISK", "vendor_debug_ramdisk"},
{"TARGET_COPY_OUT_TEST_HARNESS_RAMDISK", "test_harness_ramdisk"},
{"TARGET_COPY_OUT_ROOT", "root"},
{"TARGET_COPY_OUT_RECOVERY", "recovery"},
{"TARGET_COPY_OUT_VENDOR_RAMDISK", "vendor_ramdisk"},
// TODO(asmundak): to process internal config files, we need the following variables:
// TARGET_VENDOR
// target_base_product
//
// the following utility variables are set in build/make/common/core.mk:
{"empty", ""},
{"space", " "},
{"comma", ","},
{"newline", "\n"},
{"pound", "#"},
{"backslash", "\\"},
}
ctx := &parseContext{
script: ss,
nodes: nodes,
currentNodeIndex: 0,
ifNestLevel: 0,
moduleNameCount: make(map[string]int),
variables: make(map[string]variable),
dependentModules: make(map[string]*moduleInfo),
soongNamespaces: make(map[string]map[string]bool),
includeTops: []string{},
typeHints: make(map[string]starlarkType),
atTopOfMakefile: true,
}
ctx.pushVarAssignments()
for _, item := range predefined {
ctx.variables[item.name] = &predefinedVariable{
baseVariable: baseVariable{nam: item.name, typ: starlarkTypeString},
value: &stringLiteralExpr{item.value},
}
}
return ctx
}
func (ctx *parseContext) lastAssignment(v variable) *assignmentNode {
for va := ctx.varAssignments; va != nil; va = va.outer {
if v, ok := va.vars[v.name()]; ok {
return v
}
}
return nil
}
func (ctx *parseContext) setLastAssignment(v variable, asgn *assignmentNode) {
ctx.varAssignments.vars[v.name()] = asgn
}
func (ctx *parseContext) pushVarAssignments() {
va := &varAssignmentScope{
outer: ctx.varAssignments,
vars: make(map[string]*assignmentNode),
}
ctx.varAssignments = va
}
func (ctx *parseContext) popVarAssignments() {
ctx.varAssignments = ctx.varAssignments.outer
}
func (ctx *parseContext) hasNodes() bool {
return ctx.currentNodeIndex < len(ctx.nodes)
}
func (ctx *parseContext) getNode() mkparser.Node {
if !ctx.hasNodes() {
return nil
}
node := ctx.nodes[ctx.currentNodeIndex]
ctx.currentNodeIndex++
return node
}
func (ctx *parseContext) backNode() {
if ctx.currentNodeIndex <= 0 {
panic("Cannot back off")
}
ctx.currentNodeIndex--
}
func (ctx *parseContext) handleAssignment(a *mkparser.Assignment) []starlarkNode {
// Handle only simple variables
if !a.Name.Const() {
return []starlarkNode{ctx.newBadNode(a, "Only simple variables are handled")}
}
name := a.Name.Strings[0]
// The `override` directive
// override FOO :=
// is parsed as an assignment to a variable named `override FOO`.
// There are very few places where `override` is used, just flag it.
if strings.HasPrefix(name, "override ") {
return []starlarkNode{ctx.newBadNode(a, "cannot handle override directive")}
}
// Soong configuration
if strings.HasPrefix(name, soongNsPrefix) {
return ctx.handleSoongNsAssignment(strings.TrimPrefix(name, soongNsPrefix), a)
}
lhs := ctx.addVariable(name)
if lhs == nil {
return []starlarkNode{ctx.newBadNode(a, "unknown variable %s", name)}
}
_, isTraced := ctx.tracedVariables[lhs.name()]
asgn := &assignmentNode{lhs: lhs, mkValue: a.Value, isTraced: isTraced, location: ctx.errorLocation(a)}
if lhs.valueType() == starlarkTypeUnknown {
// Try to divine variable type from the RHS
asgn.value = ctx.parseMakeString(a, a.Value)
if xBad, ok := asgn.value.(*badExpr); ok {
return []starlarkNode{&exprNode{xBad}}
}
inferred_type := asgn.value.typ()
if inferred_type != starlarkTypeUnknown {
lhs.setValueType(inferred_type)
}
}
if lhs.valueType() == starlarkTypeList {
xConcat, xBad := ctx.buildConcatExpr(a)
if xBad != nil {
return []starlarkNode{&exprNode{expr: xBad}}
}
switch len(xConcat.items) {
case 0:
asgn.value = &listExpr{}
case 1:
asgn.value = xConcat.items[0]
default:
asgn.value = xConcat
}
} else {
asgn.value = ctx.parseMakeString(a, a.Value)
if xBad, ok := asgn.value.(*badExpr); ok {
return []starlarkNode{&exprNode{expr: xBad}}
}
}
if asgn.lhs.valueType() == starlarkTypeString &&
asgn.value.typ() != starlarkTypeUnknown &&
asgn.value.typ() != starlarkTypeString {
asgn.value = &toStringExpr{expr: asgn.value}
}
asgn.previous = ctx.lastAssignment(lhs)
ctx.setLastAssignment(lhs, asgn)
switch a.Type {
case "=", ":=":
asgn.flavor = asgnSet
case "+=":
asgn.flavor = asgnAppend
case "?=":
asgn.flavor = asgnMaybeSet
default:
panic(fmt.Errorf("unexpected assignment type %s", a.Type))
}
return []starlarkNode{asgn}
}
func (ctx *parseContext) handleSoongNsAssignment(name string, asgn *mkparser.Assignment) []starlarkNode {
val := ctx.parseMakeString(asgn, asgn.Value)
if xBad, ok := val.(*badExpr); ok {
return []starlarkNode{&exprNode{expr: xBad}}
}
// Unfortunately, Soong namespaces can be set up by directly setting corresponding Make
// variables instead of via add_soong_config_namespace + add_soong_config_var_value.
// Try to divine the call from the assignment as follows:
if name == "NAMESPACES" {
// Upon seeng
// SOONG_CONFIG_NAMESPACES += foo
// remember that there is a namespace `foo` and act as we saw
// $(call add_soong_config_namespace,foo)
s, ok := maybeString(val)
if !ok {
return []starlarkNode{ctx.newBadNode(asgn, "cannot handle variables in SOONG_CONFIG_NAMESPACES assignment, please use add_soong_config_namespace instead")}
}
result := make([]starlarkNode, 0)
for _, ns := range strings.Fields(s) {
ctx.addSoongNamespace(ns)
result = append(result, &exprNode{&callExpr{
name: baseName + ".soong_config_namespace",
args: []starlarkExpr{&globalsExpr{}, &stringLiteralExpr{ns}},
returnType: starlarkTypeVoid,
}})
}
return result
} else {
// Upon seeing
// SOONG_CONFIG_x_y = v
// find a namespace called `x` and act as if we encountered
// $(call soong_config_set,x,y,v)
// or check that `x_y` is a namespace, and then add the RHS of this assignment as variables in
// it.
// Emit an error in the ambiguous situation (namespaces `foo_bar` with a variable `baz`
// and `foo` with a variable `bar_baz`.
namespaceName := ""
if ctx.hasSoongNamespace(name) {
namespaceName = name
}
var varName string
for pos, ch := range name {
if !(ch == '_' && ctx.hasSoongNamespace(name[0:pos])) {
continue
}
if namespaceName != "" {
return []starlarkNode{ctx.newBadNode(asgn, "ambiguous soong namespace (may be either `%s` or `%s`)", namespaceName, name[0:pos])}
}
namespaceName = name[0:pos]
varName = name[pos+1:]
}
if namespaceName == "" {
return []starlarkNode{ctx.newBadNode(asgn, "cannot figure out Soong namespace, please use add_soong_config_var_value macro instead")}
}
if varName == "" {
// Remember variables in this namespace
s, ok := maybeString(val)
if !ok {
return []starlarkNode{ctx.newBadNode(asgn, "cannot handle variables in SOONG_CONFIG_ assignment, please use add_soong_config_var_value instead")}
}
ctx.updateSoongNamespace(asgn.Type != "+=", namespaceName, strings.Fields(s))
return []starlarkNode{}
}
// Finally, handle assignment to a namespace variable
if !ctx.hasNamespaceVar(namespaceName, varName) {
return []starlarkNode{ctx.newBadNode(asgn, "no %s variable in %s namespace, please use add_soong_config_var_value instead", varName, namespaceName)}
}
fname := baseName + "." + soongConfigAssign
if asgn.Type == "+=" {
fname = baseName + "." + soongConfigAppend
}
return []starlarkNode{&exprNode{&callExpr{
name: fname,
args: []starlarkExpr{&globalsExpr{}, &stringLiteralExpr{namespaceName}, &stringLiteralExpr{varName}, val},
returnType: starlarkTypeVoid,
}}}
}
}
func (ctx *parseContext) buildConcatExpr(a *mkparser.Assignment) (*concatExpr, *badExpr) {
xConcat := &concatExpr{}
var xItemList *listExpr
addToItemList := func(x ...starlarkExpr) {
if xItemList == nil {
xItemList = &listExpr{[]starlarkExpr{}}
}
xItemList.items = append(xItemList.items, x...)
}
finishItemList := func() {
if xItemList != nil {
xConcat.items = append(xConcat.items, xItemList)
xItemList = nil
}
}
items := a.Value.Words()
for _, item := range items {
// A function call in RHS is supposed to return a list, all other item
// expressions return individual elements.
switch x := ctx.parseMakeString(a, item).(type) {
case *badExpr:
return nil, x
case *stringLiteralExpr:
addToItemList(maybeConvertToStringList(x).(*listExpr).items...)
default:
switch x.typ() {
case starlarkTypeList:
finishItemList()
xConcat.items = append(xConcat.items, x)
case starlarkTypeString:
finishItemList()
xConcat.items = append(xConcat.items, &callExpr{
object: x,
name: "split",
args: nil,
returnType: starlarkTypeList,
})
default:
addToItemList(x)
}
}
}
if xItemList != nil {
xConcat.items = append(xConcat.items, xItemList)
}
return xConcat, nil
}
func (ctx *parseContext) newDependentModule(path string, optional bool) *moduleInfo {
modulePath := ctx.loadedModulePath(path)
if mi, ok := ctx.dependentModules[modulePath]; ok {
mi.optional = mi.optional && optional
return mi
}
moduleName := moduleNameForFile(path)
moduleLocalName := "_" + moduleName
n, found := ctx.moduleNameCount[moduleName]
if found {
moduleLocalName += fmt.Sprintf("%d", n)
}
ctx.moduleNameCount[moduleName] = n + 1
_, err := fs.Stat(ctx.script.sourceFS, path)
mi := &moduleInfo{
path: modulePath,
originalPath: path,
moduleLocalName: moduleLocalName,
optional: optional,
missing: err != nil,
}
ctx.dependentModules[modulePath] = mi
ctx.script.inherited = append(ctx.script.inherited, mi)
return mi
}
func (ctx *parseContext) handleSubConfig(
v mkparser.Node, pathExpr starlarkExpr, loadAlways bool, processModule func(inheritedModule) starlarkNode) []starlarkNode {
// In a simple case, the name of a module to inherit/include is known statically.
if path, ok := maybeString(pathExpr); ok {
// Note that even if this directive loads a module unconditionally, a module may be
// absent without causing any harm if this directive is inside an if/else block.
moduleShouldExist := loadAlways && ctx.ifNestLevel == 0
if strings.Contains(path, "*") {
if paths, err := fs.Glob(ctx.script.sourceFS, path); err == nil {
result := make([]starlarkNode, 0)
for _, p := range paths {
mi := ctx.newDependentModule(p, !moduleShouldExist)
result = append(result, processModule(inheritedStaticModule{mi, loadAlways}))
}
return result
} else {
return []starlarkNode{ctx.newBadNode(v, "cannot glob wildcard argument")}
}
} else {
mi := ctx.newDependentModule(path, !moduleShouldExist)
return []starlarkNode{processModule(inheritedStaticModule{mi, loadAlways})}
}
}
// If module path references variables (e.g., $(v1)/foo/$(v2)/device-config.mk), find all the paths in the
// source tree that may be a match and the corresponding variable values. For instance, if the source tree
// contains vendor1/foo/abc/dev.mk and vendor2/foo/def/dev.mk, the first one will be inherited when
// (v1, v2) == ('vendor1', 'abc'), and the second one when (v1, v2) == ('vendor2', 'def').
// We then emit the code that loads all of them, e.g.:
// load("//vendor1/foo/abc:dev.rbc", _dev1_init="init")
// load("//vendor2/foo/def/dev.rbc", _dev2_init="init")
// And then inherit it as follows:
// _e = {
// "vendor1/foo/abc/dev.mk": ("vendor1/foo/abc/dev", _dev1_init),
// "vendor2/foo/def/dev.mk": ("vendor2/foo/def/dev", _dev_init2) }.get("%s/foo/%s/dev.mk" % (v1, v2))
// if _e:
// rblf.inherit(handle, _e[0], _e[1])
//
var matchingPaths []string
varPath, ok := pathExpr.(*interpolateExpr)
if !ok {
return []starlarkNode{ctx.newBadNode(v, "inherit-product/include argument is too complex")}
}
pathPattern := []string{varPath.chunks[0]}
for _, chunk := range varPath.chunks[1:] {
if chunk != "" {
pathPattern = append(pathPattern, chunk)
}
}
if pathPattern[0] == "" && len(ctx.includeTops) > 0 {
// If pattern starts from the top. restrict it to the directories where
// we know inherit-product uses dynamically calculated path.
for _, p := range ctx.includeTops {
pathPattern[0] = p
matchingPaths = append(matchingPaths, ctx.findMatchingPaths(pathPattern)...)
}
} else {
matchingPaths = ctx.findMatchingPaths(pathPattern)
}
// Safeguard against $(call inherit-product,$(PRODUCT_PATH))
const maxMatchingFiles = 150
if len(matchingPaths) > maxMatchingFiles {
return []starlarkNode{ctx.newBadNode(v, "there are >%d files matching the pattern, please rewrite it", maxMatchingFiles)}
}
needsWarning := pathPattern[0] == "" && len(ctx.includeTops) == 0
res := inheritedDynamicModule{*varPath, []*moduleInfo{}, loadAlways, ctx.errorLocation(v), needsWarning}
for _, p := range matchingPaths {
// A product configuration files discovered dynamically may attempt to inherit
// from another one which does not exist in this source tree. Prevent load errors
// by always loading the dynamic files as optional.
res.candidateModules = append(res.candidateModules, ctx.newDependentModule(p, true))
}
return []starlarkNode{processModule(res)}
}
func (ctx *parseContext) findMatchingPaths(pattern []string) []string {
files := ctx.script.makefileFinder.Find(".")
if len(pattern) == 0 {
return files
}
// Create regular expression from the pattern
s_regexp := "^" + regexp.QuoteMeta(pattern[0])
for _, s := range pattern[1:] {
s_regexp += ".*" + regexp.QuoteMeta(s)
}
s_regexp += "$"
rex := regexp.MustCompile(s_regexp)
// Now match
var res []string
for _, p := range files {
if rex.MatchString(p) {
res = append(res, p)
}
}
return res
}
func (ctx *parseContext) handleInheritModule(v mkparser.Node, args *mkparser.MakeString, loadAlways bool) []starlarkNode {
args.TrimLeftSpaces()
args.TrimRightSpaces()
pathExpr := ctx.parseMakeString(v, args)
if _, ok := pathExpr.(*badExpr); ok {
return []starlarkNode{ctx.newBadNode(v, "Unable to parse argument to inherit")}
}
return ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) starlarkNode {
return &inheritNode{im, loadAlways}
})
}
func (ctx *parseContext) handleInclude(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) []starlarkNode {
return ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) starlarkNode {
return &includeNode{im, loadAlways}
})
}
func (ctx *parseContext) handleVariable(v *mkparser.Variable) []starlarkNode {
// Handle:
// $(call inherit-product,...)
// $(call inherit-product-if-exists,...)
// $(info xxx)
// $(warning xxx)
// $(error xxx)
// $(call other-custom-functions,...)
// inherit-product(-if-exists) gets converted to a series of statements,
// not just a single expression like parseReference returns. So handle it
// separately at the beginning here.
if strings.HasPrefix(v.Name.Dump(), "call inherit-product,") {
args := v.Name.Clone()
args.ReplaceLiteral("call inherit-product,", "")
return ctx.handleInheritModule(v, args, true)
}
if strings.HasPrefix(v.Name.Dump(), "call inherit-product-if-exists,") {
args := v.Name.Clone()
args.ReplaceLiteral("call inherit-product-if-exists,", "")
return ctx.handleInheritModule(v, args, false)
}
return []starlarkNode{&exprNode{expr: ctx.parseReference(v, v.Name)}}
}
func (ctx *parseContext) maybeHandleDefine(directive *mkparser.Directive) starlarkNode {
macro_name := strings.Fields(directive.Args.Strings[0])[0]
// Ignore the macros that we handle
_, ignored := ignoredDefines[macro_name]
_, known := knownFunctions[macro_name]
if !ignored && !known {
return ctx.newBadNode(directive, "define is not supported: %s", macro_name)
}
return nil
}
func (ctx *parseContext) handleIfBlock(ifDirective *mkparser.Directive) starlarkNode {
ssSwitch := &switchNode{
ssCases: []*switchCase{ctx.processBranch(ifDirective)},
}
for ctx.hasNodes() && ctx.fatalError == nil {
node := ctx.getNode()
switch x := node.(type) {
case *mkparser.Directive:
switch x.Name {
case "else", "elifdef", "elifndef", "elifeq", "elifneq":
ssSwitch.ssCases = append(ssSwitch.ssCases, ctx.processBranch(x))
case "endif":
return ssSwitch
default:
return ctx.newBadNode(node, "unexpected directive %s", x.Name)
}
default:
return ctx.newBadNode(ifDirective, "unexpected statement")
}
}
if ctx.fatalError == nil {
ctx.fatalError = fmt.Errorf("no matching endif for %s", ifDirective.Dump())
}
return ctx.newBadNode(ifDirective, "no matching endif for %s", ifDirective.Dump())
}
// processBranch processes a single branch (if/elseif/else) until the next directive
// on the same level.
func (ctx *parseContext) processBranch(check *mkparser.Directive) *switchCase {
block := &switchCase{gate: ctx.parseCondition(check)}
defer func() {
ctx.popVarAssignments()
ctx.ifNestLevel--
}()
ctx.pushVarAssignments()
ctx.ifNestLevel++
for ctx.hasNodes() {
node := ctx.getNode()
if d, ok := node.(*mkparser.Directive); ok {
switch d.Name {
case "else", "elifdef", "elifndef", "elifeq", "elifneq", "endif":
ctx.backNode()
return block
}
}
block.nodes = append(block.nodes, ctx.handleSimpleStatement(node)...)
}
ctx.fatalError = fmt.Errorf("no matching endif for %s", check.Dump())
return block
}
func (ctx *parseContext) parseCondition(check *mkparser.Directive) starlarkNode {
switch check.Name {
case "ifdef", "ifndef", "elifdef", "elifndef":
if !check.Args.Const() {
return ctx.newBadNode(check, "ifdef variable ref too complex: %s", check.Args.Dump())
}
v := NewVariableRefExpr(ctx.addVariable(check.Args.Strings[0]), false)
if strings.HasSuffix(check.Name, "ndef") {
v = &notExpr{v}
}
return &ifNode{
isElif: strings.HasPrefix(check.Name, "elif"),
expr: v,
}
case "ifeq", "ifneq", "elifeq", "elifneq":
return &ifNode{
isElif: strings.HasPrefix(check.Name, "elif"),
expr: ctx.parseCompare(check),
}
case "else":
return &elseNode{}
default:
panic(fmt.Errorf("%s: unknown directive: %s", ctx.script.mkFile, check.Dump()))
}
}
func (ctx *parseContext) newBadExpr(node mkparser.Node, text string, args ...interface{}) starlarkExpr {
if ctx.errorLogger != nil {
ctx.errorLogger.NewError(ctx.errorLocation(node), node, text, args...)
}
ctx.script.hasErrors = true
return &badExpr{errorLocation: ctx.errorLocation(node), message: fmt.Sprintf(text, args...)}
}
// records that the given node failed to be converted and includes an explanatory message
func (ctx *parseContext) newBadNode(failedNode mkparser.Node, message string, args ...interface{}) starlarkNode {
return &exprNode{ctx.newBadExpr(failedNode, message, args...)}
}
func (ctx *parseContext) parseCompare(cond *mkparser.Directive) starlarkExpr {
// Strip outer parentheses
mkArg := cloneMakeString(cond.Args)
mkArg.Strings[0] = strings.TrimLeft(mkArg.Strings[0], "( ")
n := len(mkArg.Strings)
mkArg.Strings[n-1] = strings.TrimRight(mkArg.Strings[n-1], ") ")
args := mkArg.Split(",")
// TODO(asmundak): handle the case where the arguments are in quotes and space-separated
if len(args) != 2 {
return ctx.newBadExpr(cond, "ifeq/ifneq len(args) != 2 %s", cond.Dump())
}
args[0].TrimRightSpaces()
args[1].TrimLeftSpaces()
isEq := !strings.HasSuffix(cond.Name, "neq")
xLeft := ctx.parseMakeString(cond, args[0])
xRight := ctx.parseMakeString(cond, args[1])
if bad, ok := xLeft.(*badExpr); ok {
return bad
}
if bad, ok := xRight.(*badExpr); ok {
return bad
}
if expr, ok := ctx.parseCompareSpecialCases(cond, xLeft, xRight); ok {
return expr
}
var stringOperand string
var otherOperand starlarkExpr
if s, ok := maybeString(xLeft); ok {
stringOperand = s
otherOperand = xRight
} else if s, ok := maybeString(xRight); ok {
stringOperand = s
otherOperand = xLeft
}
not := func(expr starlarkExpr) starlarkExpr {
switch typedExpr := expr.(type) {
case *inExpr:
typedExpr.isNot = !typedExpr.isNot
return typedExpr
case *eqExpr:
typedExpr.isEq = !typedExpr.isEq
return typedExpr
case *binaryOpExpr:
switch typedExpr.op {
case ">":
typedExpr.op = "<="
return typedExpr
case "<":
typedExpr.op = ">="
return typedExpr
case ">=":
typedExpr.op = "<"
return typedExpr
case "<=":
typedExpr.op = ">"
return typedExpr
default:
return &notExpr{expr: expr}
}
default:
return &notExpr{expr: expr}
}
}
// If we've identified one of the operands as being a string literal, check
// for some special cases we can do to simplify the resulting expression.
if otherOperand != nil {
if stringOperand == "" {
if isEq {
return not(otherOperand)
} else {
return otherOperand
}
}
if stringOperand == "true" && otherOperand.typ() == starlarkTypeBool {
if !isEq {
return not(otherOperand)
} else {
return otherOperand
}
}
if intOperand, err := strconv.Atoi(strings.TrimSpace(stringOperand)); err == nil && otherOperand.typ() == starlarkTypeInt {
return &eqExpr{
left: otherOperand,
right: &intLiteralExpr{literal: intOperand},
isEq: isEq,
}
}
}
return &eqExpr{left: xLeft, right: xRight, isEq: isEq}
}
// Given an if statement's directive and the left/right starlarkExprs,
// check if the starlarkExprs are one of a few hardcoded special cases
// that can be converted to a simpler equality expression than simply comparing
// the two.
func (ctx *parseContext) parseCompareSpecialCases(directive *mkparser.Directive, left starlarkExpr,
right starlarkExpr) (starlarkExpr, bool) {
isEq := !strings.HasSuffix(directive.Name, "neq")
// All the special cases require a call on one side and a
// string literal/variable on the other. Turn the left/right variables into
// call/value variables, and return false if that's not possible.
var value starlarkExpr = nil
call, ok := left.(*callExpr)
if ok {
switch right.(type) {
case *stringLiteralExpr, *variableRefExpr:
value = right
}
} else {
call, _ = right.(*callExpr)
switch left.(type) {
case *stringLiteralExpr, *variableRefExpr:
value = left
}
}
if call == nil || value == nil {
return nil, false
}
switch call.name {
case baseName + ".filter":
return ctx.parseCompareFilterFuncResult(directive, call, value, isEq)
case baseName + ".expand_wildcard":
return ctx.parseCompareWildcardFuncResult(directive, call, value, !isEq), true
case baseName + ".findstring":
return ctx.parseCheckFindstringFuncResult(directive, call, value, !isEq), true
case baseName + ".strip":
return ctx.parseCompareStripFuncResult(directive, call, value, !isEq), true
}
return nil, false
}
func (ctx *parseContext) parseCompareFilterFuncResult(cond *mkparser.Directive,
filterFuncCall *callExpr, xValue starlarkExpr, negate bool) (starlarkExpr, bool) {
// We handle:
// * ifeq/ifneq (,$(filter v1 v2 ..., EXPR) becomes if EXPR not in/in ["v1", "v2", ...]
// * ifeq/ifneq (,$(filter EXPR, v1 v2 ...) becomes if EXPR not in/in ["v1", "v2", ...]
if x, ok := xValue.(*stringLiteralExpr); !ok || x.literal != "" {
return nil, false
}
xPattern := filterFuncCall.args[0]
xText := filterFuncCall.args[1]
var xInList *stringLiteralExpr
var expr starlarkExpr
var ok bool
if xInList, ok = xPattern.(*stringLiteralExpr); ok && !strings.ContainsRune(xInList.literal, '%') && xText.typ() == starlarkTypeList {
expr = xText
} else if xInList, ok = xText.(*stringLiteralExpr); ok {
expr = xPattern
} else {
return nil, false
}
slExpr := newStringListExpr(strings.Fields(xInList.literal))
// Generate simpler code for the common cases:
if expr.typ() == starlarkTypeList {
if len(slExpr.items) == 1 {
// Checking that a string belongs to list
return &inExpr{isNot: negate, list: expr, expr: slExpr.items[0]}, true
} else {
return nil, false
}
} else if len(slExpr.items) == 1 {
return &eqExpr{left: expr, right: slExpr.items[0], isEq: !negate}, true
} else {
return &inExpr{isNot: negate, list: newStringListExpr(strings.Fields(xInList.literal)), expr: expr}, true
}
}
func (ctx *parseContext) parseCompareWildcardFuncResult(directive *mkparser.Directive,
xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
if !isEmptyString(xValue) {
return ctx.newBadExpr(directive, "wildcard result can be compared only to empty: %s", xValue)
}
callFunc := baseName + ".file_wildcard_exists"
if s, ok := xCall.args[0].(*stringLiteralExpr); ok && !strings.ContainsAny(s.literal, "*?{[") {
callFunc = baseName + ".file_exists"
}
var cc starlarkExpr = &callExpr{name: callFunc, args: xCall.args, returnType: starlarkTypeBool}
if !negate {
cc = &notExpr{cc}
}
return cc
}
func (ctx *parseContext) parseCheckFindstringFuncResult(directive *mkparser.Directive,
xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
if isEmptyString(xValue) {
return &eqExpr{
left: &callExpr{
object: xCall.args[1],
name: "find",
args: []starlarkExpr{xCall.args[0]},
returnType: starlarkTypeInt,
},
right: &intLiteralExpr{-1},
isEq: !negate,
}
} else if s, ok := maybeString(xValue); ok {
if s2, ok := maybeString(xCall.args[0]); ok && s == s2 {
return &eqExpr{
left: &callExpr{
object: xCall.args[1],
name: "find",
args: []starlarkExpr{xCall.args[0]},
returnType: starlarkTypeInt,
},
right: &intLiteralExpr{-1},
isEq: negate,
}
}
}
return ctx.newBadExpr(directive, "$(findstring) can only be compared to nothing or its first argument")
}
func (ctx *parseContext) parseCompareStripFuncResult(directive *mkparser.Directive,
xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
if _, ok := xValue.(*stringLiteralExpr); !ok {
return ctx.newBadExpr(directive, "strip result can be compared only to string: %s", xValue)
}
return &eqExpr{
left: &callExpr{
name: "strip",
args: xCall.args,
returnType: starlarkTypeString,
},
right: xValue, isEq: !negate}
}
// parses $(...), returning an expression
func (ctx *parseContext) parseReference(node mkparser.Node, ref *mkparser.MakeString) starlarkExpr {
ref.TrimLeftSpaces()
ref.TrimRightSpaces()
refDump := ref.Dump()
// Handle only the case where the first (or only) word is constant
words := ref.SplitN(" ", 2)
if !words[0].Const() {
return ctx.newBadExpr(node, "reference is too complex: %s", refDump)
}
// If it is a single word, it can be a simple variable
// reference or a function call
if len(words) == 1 && !isMakeControlFunc(refDump) && refDump != "shell" {
if strings.HasPrefix(refDump, soongNsPrefix) {
// TODO (asmundak): if we find many, maybe handle them.
return ctx.newBadExpr(node, "SOONG_CONFIG_ variables cannot be referenced, use soong_config_get instead: %s", refDump)
}
// Handle substitution references: https://www.gnu.org/software/make/manual/html_node/Substitution-Refs.html
if strings.Contains(refDump, ":") {
parts := strings.SplitN(refDump, ":", 2)
substParts := strings.SplitN(parts[1], "=", 2)
if len(substParts) < 2 || strings.Count(substParts[0], "%") > 1 {
return ctx.newBadExpr(node, "Invalid substitution reference")
}
if !strings.Contains(substParts[0], "%") {
if strings.Contains(substParts[1], "%") {
return ctx.newBadExpr(node, "A substitution reference must have a %% in the \"before\" part of the substitution if it has one in the \"after\" part.")
}
substParts[0] = "%" + substParts[0]
substParts[1] = "%" + substParts[1]
}
v := ctx.addVariable(parts[0])
if v == nil {
return ctx.newBadExpr(node, "unknown variable %s", refDump)
}
return &callExpr{
name: baseName + ".mkpatsubst",
returnType: starlarkTypeString,
args: []starlarkExpr{
&stringLiteralExpr{literal: substParts[0]},
&stringLiteralExpr{literal: substParts[1]},
NewVariableRefExpr(v, ctx.lastAssignment(v) != nil),
},
}
}
if v := ctx.addVariable(refDump); v != nil {
return NewVariableRefExpr(v, ctx.lastAssignment(v) != nil)
}
return ctx.newBadExpr(node, "unknown variable %s", refDump)
}
expr := &callExpr{name: words[0].Dump(), returnType: starlarkTypeUnknown}
args := mkparser.SimpleMakeString("", words[0].Pos())
if len(words) >= 2 {
args = words[1]
}
args.TrimLeftSpaces()
if expr.name == "call" {
words = args.SplitN(",", 2)
if words[0].Empty() || !words[0].Const() {
return ctx.newBadExpr(node, "cannot handle %s", refDump)
}
expr.name = words[0].Dump()
if len(words) < 2 {
args = &mkparser.MakeString{}
} else {
args = words[1]
}
}
if kf, found := knownFunctions[expr.name]; found {
return kf.parse(ctx, node, args)
} else {
return ctx.newBadExpr(node, "cannot handle invoking %s", expr.name)
}
}
type simpleCallParser struct {
name string
returnType starlarkType
addGlobals bool
addHandle bool
}
func (p *simpleCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
expr := &callExpr{name: p.name, returnType: p.returnType}
if p.addGlobals {
expr.args = append(expr.args, &globalsExpr{})
}
if p.addHandle {
expr.args = append(expr.args, &identifierExpr{name: "handle"})
}
for _, arg := range args.Split(",") {
arg.TrimLeftSpaces()
arg.TrimRightSpaces()
x := ctx.parseMakeString(node, arg)
if xBad, ok := x.(*badExpr); ok {
return xBad
}
expr.args = append(expr.args, x)
}
return expr
}
type makeControlFuncParser struct {
name string
}
func (p *makeControlFuncParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
// Make control functions need special treatment as everything
// after the name is a single text argument
x := ctx.parseMakeString(node, args)
if xBad, ok := x.(*badExpr); ok {
return xBad
}
return &callExpr{
name: p.name,
args: []starlarkExpr{
&stringLiteralExpr{ctx.script.mkFile},
x,
},
returnType: starlarkTypeUnknown,
}
}
type shellCallParser struct{}
func (p *shellCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
// Shell functions need special treatment as everything
// after the name is a single text argument
x := ctx.parseMakeString(node, args)
if xBad, ok := x.(*badExpr); ok {
return xBad
}
return &callExpr{
name: baseName + ".shell",
args: []starlarkExpr{x},
returnType: starlarkTypeUnknown,
}
}
type myDirCallParser struct{}
func (p *myDirCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
if !args.Empty() {
return ctx.newBadExpr(node, "my-dir function cannot have any arguments passed to it.")
}
return &stringLiteralExpr{literal: filepath.Dir(ctx.script.mkFile)}
}
type isProductInListCallParser struct{}
func (p *isProductInListCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
if args.Empty() {
return ctx.newBadExpr(node, "is-product-in-list requires an argument")
}
return &inExpr{
expr: &variableRefExpr{ctx.addVariable("TARGET_PRODUCT"), true},
list: maybeConvertToStringList(ctx.parseMakeString(node, args)),
isNot: false,
}
}
type isVendorBoardPlatformCallParser struct{}
func (p *isVendorBoardPlatformCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
if args.Empty() || !identifierFullMatchRegex.MatchString(args.Dump()) {
return ctx.newBadExpr(node, "cannot handle non-constant argument to is-vendor-board-platform")
}
return &inExpr{
expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
list: &variableRefExpr{ctx.addVariable(args.Dump() + "_BOARD_PLATFORMS"), true},
isNot: false,
}
}
type isVendorBoardQcomCallParser struct{}
func (p *isVendorBoardQcomCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
if !args.Empty() {
return ctx.newBadExpr(node, "is-vendor-board-qcom does not accept any arguments")
}
return &inExpr{
expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
list: &variableRefExpr{ctx.addVariable("QCOM_BOARD_PLATFORMS"), true},
isNot: false,
}
}
type substCallParser struct {
fname string
}
func (p *substCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
words := args.Split(",")
if len(words) != 3 {
return ctx.newBadExpr(node, "%s function should have 3 arguments", p.fname)
}
from := ctx.parseMakeString(node, words[0])
if xBad, ok := from.(*badExpr); ok {
return xBad
}
to := ctx.parseMakeString(node, words[1])
if xBad, ok := to.(*badExpr); ok {
return xBad
}
words[2].TrimLeftSpaces()
words[2].TrimRightSpaces()
obj := ctx.parseMakeString(node, words[2])
typ := obj.typ()
if typ == starlarkTypeString && p.fname == "subst" {
// Optimization: if it's $(subst from, to, string), emit string.replace(from, to)
return &callExpr{
object: obj,
name: "replace",
args: []starlarkExpr{from, to},
returnType: typ,
}
}
return &callExpr{
name: baseName + ".mk" + p.fname,
args: []starlarkExpr{from, to, obj},
returnType: obj.typ(),
}
}
type ifCallParser struct{}
func (p *ifCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
words := args.Split(",")
if len(words) != 2 && len(words) != 3 {
return ctx.newBadExpr(node, "if function should have 2 or 3 arguments, found "+strconv.Itoa(len(words)))
}
condition := ctx.parseMakeString(node, words[0])
ifTrue := ctx.parseMakeString(node, words[1])
var ifFalse starlarkExpr
if len(words) == 3 {
ifFalse = ctx.parseMakeString(node, words[2])
} else {
switch ifTrue.typ() {
case starlarkTypeList:
ifFalse = &listExpr{items: []starlarkExpr{}}
case starlarkTypeInt:
ifFalse = &intLiteralExpr{literal: 0}
case starlarkTypeBool:
ifFalse = &boolLiteralExpr{literal: false}
default:
ifFalse = &stringLiteralExpr{literal: ""}
}
}
return &ifExpr{
condition,
ifTrue,
ifFalse,
}
}
type foreachCallPaser struct{}
func (p *foreachCallPaser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
words := args.Split(",")
if len(words) != 3 {
return ctx.newBadExpr(node, "foreach function should have 3 arguments, found "+strconv.Itoa(len(words)))
}
if !words[0].Const() || words[0].Empty() || !identifierFullMatchRegex.MatchString(words[0].Strings[0]) {
return ctx.newBadExpr(node, "first argument to foreach function must be a simple string identifier")
}
loopVarName := words[0].Strings[0]
list := ctx.parseMakeString(node, words[1])
action := ctx.parseMakeString(node, words[2]).transform(func(expr starlarkExpr) starlarkExpr {
if varRefExpr, ok := expr.(*variableRefExpr); ok && varRefExpr.ref.name() == loopVarName {
return &identifierExpr{loopVarName}
}
return nil
})
if list.typ() != starlarkTypeList {
list = &callExpr{
name: baseName + ".words",
returnType: starlarkTypeList,
args: []starlarkExpr{list},
}
}
return &foreachExpr{
varName: loopVarName,
list: list,
action: action,
}
}
type wordCallParser struct{}
func (p *wordCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
words := args.Split(",")
if len(words) != 2 {
return ctx.newBadExpr(node, "word function should have 2 arguments")
}
var index uint64 = 0
if words[0].Const() {
index, _ = strconv.ParseUint(strings.TrimSpace(words[0].Strings[0]), 10, 64)
}
if index < 1 {
return ctx.newBadExpr(node, "word index should be constant positive integer")
}
words[1].TrimLeftSpaces()
words[1].TrimRightSpaces()
array := ctx.parseMakeString(node, words[1])
if xBad, ok := array.(*badExpr); ok {
return xBad
}
if array.typ() != starlarkTypeList {
array = &callExpr{object: array, name: "split", returnType: starlarkTypeList}
}
return &indexExpr{array, &intLiteralExpr{int(index - 1)}}
}
type firstOrLastwordCallParser struct {
isLastWord bool
}
func (p *firstOrLastwordCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
arg := ctx.parseMakeString(node, args)
if bad, ok := arg.(*badExpr); ok {
return bad
}
index := &intLiteralExpr{0}
if p.isLastWord {
if v, ok := arg.(*variableRefExpr); ok && v.ref.name() == "MAKEFILE_LIST" {
return &stringLiteralExpr{ctx.script.mkFile}
}
index.literal = -1
}
if arg.typ() == starlarkTypeList {
return &indexExpr{arg, index}
}
return &indexExpr{&callExpr{object: arg, name: "split", returnType: starlarkTypeList}, index}
}
func parseIntegerArguments(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString, expectedArgs int) ([]starlarkExpr, error) {
parsedArgs := make([]starlarkExpr, 0)
for _, arg := range args.Split(",") {
expr := ctx.parseMakeString(node, arg)
if expr.typ() == starlarkTypeList {
return nil, fmt.Errorf("argument to math argument has type list, which cannot be converted to int")
}
if s, ok := maybeString(expr); ok {
intVal, err := strconv.Atoi(strings.TrimSpace(s))
if err != nil {
return nil, err
}
expr = &intLiteralExpr{literal: intVal}
} else if expr.typ() != starlarkTypeInt {
expr = &callExpr{
name: "int",
args: []starlarkExpr{expr},
returnType: starlarkTypeInt,
}
}
parsedArgs = append(parsedArgs, expr)
}
if len(parsedArgs) != expectedArgs {
return nil, fmt.Errorf("function should have %d arguments", expectedArgs)
}
return parsedArgs, nil
}
type mathComparisonCallParser struct {
op string
}
func (p *mathComparisonCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
parsedArgs, err := parseIntegerArguments(ctx, node, args, 2)
if err != nil {
return ctx.newBadExpr(node, err.Error())
}
return &binaryOpExpr{
left: parsedArgs[0],
right: parsedArgs[1],
op: p.op,
returnType: starlarkTypeBool,
}
}
type mathMaxOrMinCallParser struct {
function string
}
func (p *mathMaxOrMinCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
parsedArgs, err := parseIntegerArguments(ctx, node, args, 2)
if err != nil {
return ctx.newBadExpr(node, err.Error())
}
return &callExpr{
object: nil,
name: p.function,
args: parsedArgs,
returnType: starlarkTypeInt,
}
}
func (ctx *parseContext) parseMakeString(node mkparser.Node, mk *mkparser.MakeString) starlarkExpr {
if mk.Const() {
return &stringLiteralExpr{mk.Dump()}
}
if mkRef, ok := mk.SingleVariable(); ok {
return ctx.parseReference(node, mkRef)
}
// If we reached here, it's neither string literal nor a simple variable,
// we need a full-blown interpolation node that will generate
// "a%b%c" % (X, Y) for a$(X)b$(Y)c
parts := make([]starlarkExpr, len(mk.Variables)+len(mk.Strings))
for i := 0; i < len(parts); i++ {
if i%2 == 0 {
parts[i] = &stringLiteralExpr{literal: mk.Strings[i/2]}
} else {
parts[i] = ctx.parseReference(node, mk.Variables[i/2].Name)
if x, ok := parts[i].(*badExpr); ok {
return x
}
}
}
return NewInterpolateExpr(parts)
}
// Handles the statements whose treatment is the same in all contexts: comment,
// assignment, variable (which is a macro call in reality) and all constructs that
// do not handle in any context ('define directive and any unrecognized stuff).
func (ctx *parseContext) handleSimpleStatement(node mkparser.Node) []starlarkNode {
var result []starlarkNode
switch x := node.(type) {
case *mkparser.Comment:
if n, handled := ctx.maybeHandleAnnotation(x); handled && n != nil {
result = []starlarkNode{n}
} else if !handled {
result = []starlarkNode{&commentNode{strings.TrimSpace("#" + x.Comment)}}
}
case *mkparser.Assignment:
result = ctx.handleAssignment(x)
case *mkparser.Variable:
result = ctx.handleVariable(x)
case *mkparser.Directive:
switch x.Name {
case "define":
if res := ctx.maybeHandleDefine(x); res != nil {
result = []starlarkNode{res}
}
case "include", "-include":
result = ctx.handleInclude(node, ctx.parseMakeString(node, x.Args), x.Name[0] != '-')
case "ifeq", "ifneq", "ifdef", "ifndef":
result = []starlarkNode{ctx.handleIfBlock(x)}
default:
result = []starlarkNode{ctx.newBadNode(x, "unexpected directive %s", x.Name)}
}
default:
result = []starlarkNode{ctx.newBadNode(x, "unsupported line %s", strings.ReplaceAll(x.Dump(), "\n", "\n#"))}
}
// Clear the includeTops after each non-comment statement
// so that include annotations placed on certain statements don't apply
// globally for the rest of the makefile was well.
if _, wasComment := node.(*mkparser.Comment); !wasComment {
ctx.atTopOfMakefile = false
ctx.includeTops = []string{}
}
if result == nil {
result = []starlarkNode{}
}
return result
}
// The types allowed in a type_hint
var typeHintMap = map[string]starlarkType{
"string": starlarkTypeString,
"list": starlarkTypeList,
}
// Processes annotation. An annotation is a comment that starts with #RBC# and provides
// a conversion hint -- say, where to look for the dynamically calculated inherit/include
// paths. Returns true if the comment was a successfully-handled annotation.
func (ctx *parseContext) maybeHandleAnnotation(cnode *mkparser.Comment) (starlarkNode, bool) {
maybeTrim := func(s, prefix string) (string, bool) {
if strings.HasPrefix(s, prefix) {
return strings.TrimSpace(strings.TrimPrefix(s, prefix)), true
}
return s, false
}
annotation, ok := maybeTrim(cnode.Comment, annotationCommentPrefix)
if !ok {
return nil, false
}
if p, ok := maybeTrim(annotation, "include_top"); ok {
// Don't allow duplicate include tops, because then we will generate
// invalid starlark code. (duplicate keys in the _entry dictionary)
for _, top := range ctx.includeTops {
if top == p {
return nil, true
}
}
ctx.includeTops = append(ctx.includeTops, p)
return nil, true
} else if p, ok := maybeTrim(annotation, "type_hint"); ok {
// Type hints must come at the beginning the file, to avoid confusion
// if a type hint was specified later and thus only takes effect for half
// of the file.
if !ctx.atTopOfMakefile {
return ctx.newBadNode(cnode, "type_hint annotations must come before the first Makefile statement"), true
}
parts := strings.Fields(p)
if len(parts) <= 1 {
return ctx.newBadNode(cnode, "Invalid type_hint annotation: %s. Must be a variable type followed by a list of variables of that type", p), true
}
var varType starlarkType
if varType, ok = typeHintMap[parts[0]]; !ok {
varType = starlarkTypeUnknown
}
if varType == starlarkTypeUnknown {
return ctx.newBadNode(cnode, "Invalid type_hint annotation. Only list/string types are accepted, found %s", parts[0]), true
}
for _, name := range parts[1:] {
// Don't allow duplicate type hints
if _, ok := ctx.typeHints[name]; ok {
return ctx.newBadNode(cnode, "Duplicate type hint for variable %s", name), true
}
ctx.typeHints[name] = varType
}
return nil, true
}
return ctx.newBadNode(cnode, "unsupported annotation %s", cnode.Comment), true
}
func (ctx *parseContext) loadedModulePath(path string) string {
// During the transition to Roboleaf some of the product configuration files
// will be converted and checked in while the others will be generated on the fly
// and run. The runner (rbcrun application) accommodates this by allowing three
// different ways to specify the loaded file location:
// 1) load(":<file>",...) loads <file> from the same directory
// 2) load("//path/relative/to/source/root:<file>", ...) loads <file> source tree
// 3) load("/absolute/path/to/<file> absolute path
// If the file being generated and the file it wants to load are in the same directory,
// generate option 1.
// Otherwise, if output directory is not specified, generate 2)
// Finally, if output directory has been specified and the file being generated and
// the file it wants to load from are in the different directories, generate 2) or 3):
// * if the file being loaded exists in the source tree, generate 2)
// * otherwise, generate 3)
// Finally, figure out the loaded module path and name and create a node for it
loadedModuleDir := filepath.Dir(path)
base := filepath.Base(path)
loadedModuleName := strings.TrimSuffix(base, filepath.Ext(base)) + ctx.outputSuffix
if loadedModuleDir == filepath.Dir(ctx.script.mkFile) {
return ":" + loadedModuleName
}
if ctx.outputDir == "" {
return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
}
if _, err := os.Stat(filepath.Join(loadedModuleDir, loadedModuleName)); err == nil {
return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
}
return filepath.Join(ctx.outputDir, loadedModuleDir, loadedModuleName)
}
func (ctx *parseContext) addSoongNamespace(ns string) {
if _, ok := ctx.soongNamespaces[ns]; ok {
return
}
ctx.soongNamespaces[ns] = make(map[string]bool)
}
func (ctx *parseContext) hasSoongNamespace(name string) bool {
_, ok := ctx.soongNamespaces[name]
return ok
}
func (ctx *parseContext) updateSoongNamespace(replace bool, namespaceName string, varNames []string) {
ctx.addSoongNamespace(namespaceName)
vars := ctx.soongNamespaces[namespaceName]
if replace {
vars = make(map[string]bool)
ctx.soongNamespaces[namespaceName] = vars
}
for _, v := range varNames {
vars[v] = true
}
}
func (ctx *parseContext) hasNamespaceVar(namespaceName string, varName string) bool {
vars, ok := ctx.soongNamespaces[namespaceName]
if ok {
_, ok = vars[varName]
}
return ok
}
func (ctx *parseContext) errorLocation(node mkparser.Node) ErrorLocation {
return ErrorLocation{ctx.script.mkFile, ctx.script.nodeLocator(node.Pos())}
}
func (ss *StarlarkScript) String() string {
return NewGenerateContext(ss).emit()
}
func (ss *StarlarkScript) SubConfigFiles() []string {
var subs []string
for _, src := range ss.inherited {
subs = append(subs, src.originalPath)
}
return subs
}
func (ss *StarlarkScript) HasErrors() bool {
return ss.hasErrors
}
// Convert reads and parses a makefile. If successful, parsed tree
// is returned and then can be passed to String() to get the generated
// Starlark file.
func Convert(req Request) (*StarlarkScript, error) {
reader := req.Reader
if reader == nil {
mkContents, err := ioutil.ReadFile(req.MkFile)
if err != nil {
return nil, err
}
reader = bytes.NewBuffer(mkContents)
}
parser := mkparser.NewParser(req.MkFile, reader)
nodes, errs := parser.Parse()
if len(errs) > 0 {
for _, e := range errs {
fmt.Fprintln(os.Stderr, "ERROR:", e)
}
return nil, fmt.Errorf("bad makefile %s", req.MkFile)
}
starScript := &StarlarkScript{
moduleName: moduleNameForFile(req.MkFile),
mkFile: req.MkFile,
traceCalls: req.TraceCalls,
sourceFS: req.SourceFS,
makefileFinder: req.MakefileFinder,
nodeLocator: func(pos mkparser.Pos) int { return parser.Unpack(pos).Line },
nodes: make([]starlarkNode, 0),
}
ctx := newParseContext(starScript, nodes)
ctx.outputSuffix = req.OutputSuffix
ctx.outputDir = req.OutputDir
ctx.errorLogger = req.ErrorLogger
if len(req.TracedVariables) > 0 {
ctx.tracedVariables = make(map[string]bool)
for _, v := range req.TracedVariables {
ctx.tracedVariables[v] = true
}
}
for ctx.hasNodes() && ctx.fatalError == nil {
starScript.nodes = append(starScript.nodes, ctx.handleSimpleStatement(ctx.getNode())...)
}
if ctx.fatalError != nil {
return nil, ctx.fatalError
}
return starScript, nil
}
func Launcher(mainModuleUri, inputVariablesUri, mainModuleName string) string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName)
fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri)
fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri)
fmt.Fprintf(&buf, "%s(%s(%q, init, input_variables_init))\n", cfnPrintVars, cfnMain, mainModuleName)
return buf.String()
}
func BoardLauncher(mainModuleUri string, inputVariablesUri string) string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName)
fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri)
fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri)
fmt.Fprintf(&buf, "%s(%s(init, input_variables_init))\n", cfnPrintVars, cfnBoardMain)
return buf.String()
}
func MakePath2ModuleName(mkPath string) string {
return strings.TrimSuffix(mkPath, filepath.Ext(mkPath))
}