Reimplement DepSet as a wrapper around a generic implementation

Implement depSet as a generic depsets implementation using reflection,
and then make DepSet a type-safe wrapper around it.  This will allow
additional wrappers for depsets that work with other types.  All of
this can be replaced with generics once Go supports them.

Test: depset_test.go
Change-Id: Id9df17bcc76f6c1545e7eb498f298066cf8a7679
This commit is contained in:
Colin Cross 2020-11-25 14:29:50 -08:00
parent 2254cffd53
commit 96c44127d1
5 changed files with 458 additions and 116 deletions

View file

@ -23,7 +23,8 @@ bootstrap_go_package {
"csuite_config.go",
"defaults.go",
"defs.go",
"depset.go",
"depset_generic.go",
"depset_paths.go",
"deptag.go",
"expand.go",
"filegroup.go",

351
android/depset_generic.go Normal file
View file

@ -0,0 +1,351 @@
// Copyright 2020 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package android
import (
"fmt"
"reflect"
)
// depSet is designed to be conceptually compatible with Bazel's depsets:
// https://docs.bazel.build/versions/master/skylark/depsets.html
type DepSetOrder int
const (
PREORDER DepSetOrder = iota
POSTORDER
TOPOLOGICAL
)
func (o DepSetOrder) String() string {
switch o {
case PREORDER:
return "PREORDER"
case POSTORDER:
return "POSTORDER"
case TOPOLOGICAL:
return "TOPOLOGICAL"
default:
panic(fmt.Errorf("Invalid DepSetOrder %d", o))
}
}
// A depSet efficiently stores a slice of an arbitrary type from transitive dependencies without
// copying. It is stored as a DAG of depSet nodes, each of which has some direct contents and a list
// of dependency depSet nodes.
//
// A depSet has an order that will be used to walk the DAG when ToList() is called. The order
// can be POSTORDER, PREORDER, or TOPOLOGICAL. POSTORDER and PREORDER orders return a postordered
// or preordered left to right flattened list. TOPOLOGICAL returns a list that guarantees that
// elements of children are listed after all of their parents (unless there are duplicate direct
// elements in the depSet or any of its transitive dependencies, in which case the ordering of the
// duplicated element is not guaranteed).
//
// A depSet is created by newDepSet or newDepSetBuilder.Build from the slice for direct contents
// and the *depSets of dependencies. A depSet is immutable once created.
//
// This object uses reflection to remain agnostic to the type it contains. It should be replaced
// with generics once those exist in Go. Callers should generally use a thin wrapper around depSet
// that provides type-safe methods like DepSet for Paths.
type depSet struct {
preorder bool
reverse bool
order DepSetOrder
direct interface{}
transitive []*depSet
}
type depSetInterface interface {
embeddedDepSet() *depSet
}
func (d *depSet) embeddedDepSet() *depSet {
return d
}
var _ depSetInterface = (*depSet)(nil)
// newDepSet returns an immutable depSet with the given order, direct and transitive contents.
// direct must be a slice, but is not type-safe due to the lack of generics in Go. It can be a
// nil slice, but not a nil interface{}, i.e. []string(nil) but not nil.
func newDepSet(order DepSetOrder, direct interface{}, transitive interface{}) *depSet {
var directCopy interface{}
transitiveDepSet := sliceToDepSets(transitive, order)
if order == TOPOLOGICAL {
directCopy = reverseSlice(direct)
reverseSliceInPlace(transitiveDepSet)
} else {
directCopy = copySlice(direct)
}
return &depSet{
preorder: order == PREORDER,
reverse: order == TOPOLOGICAL,
order: order,
direct: directCopy,
transitive: transitiveDepSet,
}
}
// depSetBuilder is used to create an immutable depSet.
type depSetBuilder struct {
order DepSetOrder
direct reflect.Value
transitive []*depSet
}
// newDepSetBuilder returns a depSetBuilder to create an immutable depSet with the given order and
// type, represented by a slice of type that will be in the depSet.
func newDepSetBuilder(order DepSetOrder, typ interface{}) *depSetBuilder {
empty := reflect.Zero(reflect.TypeOf(typ))
return &depSetBuilder{
order: order,
direct: empty,
}
}
// sliceToDepSets converts a slice of any type that implements depSetInterface (by having a depSet
// embedded in it) into a []*depSet.
func sliceToDepSets(in interface{}, order DepSetOrder) []*depSet {
slice := reflect.ValueOf(in)
length := slice.Len()
out := make([]*depSet, length)
for i := 0; i < length; i++ {
vi := slice.Index(i)
depSetIntf, ok := vi.Interface().(depSetInterface)
if !ok {
panic(fmt.Errorf("element %d is a %s, not a depSetInterface", i, vi.Type()))
}
depSet := depSetIntf.embeddedDepSet()
if depSet.order != order {
panic(fmt.Errorf("incompatible order, new depSet is %s but transitive depSet is %s",
order, depSet.order))
}
out[i] = depSet
}
return out
}
// DirectSlice adds direct contents to the depSet being built by a depSetBuilder. Newly added direct
// contents are to the right of any existing direct contents. The argument must be a slice, but
// is not type-safe due to the lack of generics in Go.
func (b *depSetBuilder) DirectSlice(direct interface{}) *depSetBuilder {
b.direct = reflect.AppendSlice(b.direct, reflect.ValueOf(direct))
return b
}
// Direct adds direct contents to the depSet being built by a depSetBuilder. Newly added direct
// contents are to the right of any existing direct contents. The argument must be the same type
// as the element of the slice passed to newDepSetBuilder, but is not type-safe due to the lack of
// generics in Go.
func (b *depSetBuilder) Direct(direct interface{}) *depSetBuilder {
b.direct = reflect.Append(b.direct, reflect.ValueOf(direct))
return b
}
// Transitive adds transitive contents to the DepSet being built by a DepSetBuilder. Newly added
// transitive contents are to the right of any existing transitive contents. The argument can
// be any slice of type that has depSet embedded in it.
func (b *depSetBuilder) Transitive(transitive interface{}) *depSetBuilder {
depSets := sliceToDepSets(transitive, b.order)
b.transitive = append(b.transitive, depSets...)
return b
}
// Returns the depSet being built by this depSetBuilder. The depSetBuilder retains its contents
// for creating more depSets.
func (b *depSetBuilder) Build() *depSet {
return newDepSet(b.order, b.direct.Interface(), b.transitive)
}
// walk calls the visit method in depth-first order on a DepSet, preordered if d.preorder is set,
// otherwise postordered.
func (d *depSet) walk(visit func(interface{})) {
visited := make(map[*depSet]bool)
var dfs func(d *depSet)
dfs = func(d *depSet) {
visited[d] = true
if d.preorder {
visit(d.direct)
}
for _, dep := range d.transitive {
if !visited[dep] {
dfs(dep)
}
}
if !d.preorder {
visit(d.direct)
}
}
dfs(d)
}
// ToList returns the depSet flattened to a list. The order in the list is based on the order
// of the depSet. POSTORDER and PREORDER orders return a postordered or preordered left to right
// flattened list. TOPOLOGICAL returns a list that guarantees that elements of children are listed
// after all of their parents (unless there are duplicate direct elements in the DepSet or any of
// its transitive dependencies, in which case the ordering of the duplicated element is not
// guaranteed).
//
// This method uses a reflection-based implementation to find the unique elements in slice, which
// is around 3x slower than a concrete implementation. Type-safe wrappers around depSet can
// provide their own implementation of ToList that calls depSet.toList with a method that
// uses a concrete implementation.
func (d *depSet) ToList() interface{} {
return d.toList(firstUnique)
}
// toList returns the depSet flattened to a list. The order in the list is based on the order
// of the depSet. POSTORDER and PREORDER orders return a postordered or preordered left to right
// flattened list. TOPOLOGICAL returns a list that guarantees that elements of children are listed
// after all of their parents (unless there are duplicate direct elements in the DepSet or any of
// its transitive dependencies, in which case the ordering of the duplicated element is not
// guaranteed). The firstUniqueFunc is used to remove duplicates from the list.
func (d *depSet) toList(firstUniqueFunc func(interface{}) interface{}) interface{} {
if d == nil {
return nil
}
slice := reflect.Zero(reflect.TypeOf(d.direct))
d.walk(func(paths interface{}) {
slice = reflect.AppendSlice(slice, reflect.ValueOf(paths))
})
list := slice.Interface()
list = firstUniqueFunc(list)
if d.reverse {
reverseSliceInPlace(list)
}
return list
}
// firstUnique returns all unique elements of a slice, keeping the first copy of each. It
// modifies the slice contents in place, and returns a subslice of the original slice. The
// argument must be a slice, but is not type-safe due to the lack of reflection in Go.
//
// Performance of the reflection-based firstUnique is up to 3x slower than a concrete type
// version such as FirstUniqueStrings.
func firstUnique(slice interface{}) interface{} {
// 4 was chosen based on Benchmark_firstUnique results.
if reflect.ValueOf(slice).Len() > 4 {
return firstUniqueMap(slice)
}
return firstUniqueList(slice)
}
// firstUniqueList is an implementation of firstUnique using an O(N^2) list comparison to look for
// duplicates.
func firstUniqueList(in interface{}) interface{} {
writeIndex := 0
slice := reflect.ValueOf(in)
length := slice.Len()
outer:
for readIndex := 0; readIndex < length; readIndex++ {
readValue := slice.Index(readIndex)
for compareIndex := 0; compareIndex < writeIndex; compareIndex++ {
compareValue := slice.Index(compareIndex)
// These two Interface() calls seem to cause an allocation and significantly
// slow down this list-based implementation. The map implementation below doesn't
// have this issue because reflect.Value.MapIndex takes a Value and appears to be
// able to do the map lookup without an allocation.
if readValue.Interface() == compareValue.Interface() {
// The value at readIndex already exists somewhere in the output region
// of the slice before writeIndex, skip it.
continue outer
}
}
if readIndex != writeIndex {
writeValue := slice.Index(writeIndex)
writeValue.Set(readValue)
}
writeIndex++
}
return slice.Slice(0, writeIndex).Interface()
}
var trueValue = reflect.ValueOf(true)
// firstUniqueList is an implementation of firstUnique using an O(N) hash set lookup to look for
// duplicates.
func firstUniqueMap(in interface{}) interface{} {
writeIndex := 0
slice := reflect.ValueOf(in)
length := slice.Len()
seen := reflect.MakeMapWithSize(reflect.MapOf(slice.Type().Elem(), trueValue.Type()), slice.Len())
for readIndex := 0; readIndex < length; readIndex++ {
readValue := slice.Index(readIndex)
if seen.MapIndex(readValue).IsValid() {
continue
}
seen.SetMapIndex(readValue, trueValue)
if readIndex != writeIndex {
writeValue := slice.Index(writeIndex)
writeValue.Set(readValue)
}
writeIndex++
}
return slice.Slice(0, writeIndex).Interface()
}
// reverseSliceInPlace reverses the elements of a slice in place. The argument must be a slice, but
// is not type-safe due to the lack of reflection in Go.
func reverseSliceInPlace(in interface{}) {
swapper := reflect.Swapper(in)
slice := reflect.ValueOf(in)
length := slice.Len()
for i, j := 0, length-1; i < j; i, j = i+1, j-1 {
swapper(i, j)
}
}
// reverseSlice returns a copy of a slice in reverse order. The argument must be a slice, but is
// not type-safe due to the lack of reflection in Go.
func reverseSlice(in interface{}) interface{} {
slice := reflect.ValueOf(in)
if !slice.IsValid() || slice.IsNil() {
return in
}
if slice.Kind() != reflect.Slice {
panic(fmt.Errorf("%t is not a slice", in))
}
length := slice.Len()
if length == 0 {
return in
}
out := reflect.MakeSlice(slice.Type(), length, length)
for i := 0; i < length; i++ {
out.Index(i).Set(slice.Index(length - 1 - i))
}
return out.Interface()
}
// copySlice returns a copy of a slice. The argument must be a slice, but is not type-safe due to
// the lack of reflection in Go.
func copySlice(in interface{}) interface{} {
slice := reflect.ValueOf(in)
if !slice.IsValid() || slice.IsNil() {
return in
}
length := slice.Len()
if length == 0 {
return in
}
out := reflect.MakeSlice(slice.Type(), length, length)
reflect.Copy(out, slice)
return out.Interface()
}

View file

@ -14,10 +14,7 @@
package android
import "fmt"
// DepSet is designed to be conceptually compatible with Bazel's depsets:
// https://docs.bazel.build/versions/master/skylark/depsets.html
// This file implements DepSet, a thin type-safe wrapper around depSet that contains Paths.
// A DepSet efficiently stores Paths from transitive dependencies without copying. It is stored
// as a DAG of DepSet nodes, each of which has some direct contents and a list of dependency
@ -33,123 +30,42 @@ import "fmt"
// A DepSet is created by NewDepSet or NewDepSetBuilder.Build from the Paths for direct contents
// and the *DepSets of dependencies. A DepSet is immutable once created.
type DepSet struct {
preorder bool
reverse bool
order DepSetOrder
direct Paths
transitive []*DepSet
depSet
}
// DepSetBuilder is used to create an immutable DepSet.
type DepSetBuilder struct {
order DepSetOrder
direct Paths
transitive []*DepSet
}
type DepSetOrder int
const (
PREORDER DepSetOrder = iota
POSTORDER
TOPOLOGICAL
)
func (o DepSetOrder) String() string {
switch o {
case PREORDER:
return "PREORDER"
case POSTORDER:
return "POSTORDER"
case TOPOLOGICAL:
return "TOPOLOGICAL"
default:
panic(fmt.Errorf("Invalid DepSetOrder %d", o))
}
depSetBuilder
}
// NewDepSet returns an immutable DepSet with the given order, direct and transitive contents.
func NewDepSet(order DepSetOrder, direct Paths, transitive []*DepSet) *DepSet {
var directCopy Paths
transitiveCopy := make([]*DepSet, 0, len(transitive))
for _, dep := range transitive {
if dep != nil {
if dep.order != order {
panic(fmt.Errorf("incompatible order, new DepSet is %s but transitive DepSet is %s",
order, dep.order))
}
transitiveCopy = append(transitiveCopy, dep)
}
}
if order == TOPOLOGICAL {
directCopy = ReversePaths(direct)
reverseDepSetsInPlace(transitiveCopy)
} else {
// Use copy instead of append(nil, ...) to make a slice that is exactly the size of the input
// slice. The DepSet is immutable, there is no need for additional capacity.
directCopy = make(Paths, len(direct))
copy(directCopy, direct)
}
return &DepSet{
preorder: order == PREORDER,
reverse: order == TOPOLOGICAL,
order: order,
direct: directCopy,
transitive: transitiveCopy,
}
return &DepSet{*newDepSet(order, direct, transitive)}
}
// NewDepSetBuilder returns a DepSetBuilder to create an immutable DepSet with the given order.
func NewDepSetBuilder(order DepSetOrder) *DepSetBuilder {
return &DepSetBuilder{order: order}
return &DepSetBuilder{*newDepSetBuilder(order, Paths(nil))}
}
// Direct adds direct contents to the DepSet being built by a DepSetBuilder. Newly added direct
// contents are to the right of any existing direct contents.
func (b *DepSetBuilder) Direct(direct ...Path) *DepSetBuilder {
b.direct = append(b.direct, direct...)
b.depSetBuilder.DirectSlice(direct)
return b
}
// Transitive adds transitive contents to the DepSet being built by a DepSetBuilder. Newly added
// transitive contents are to the right of any existing transitive contents.
func (b *DepSetBuilder) Transitive(transitive ...*DepSet) *DepSetBuilder {
b.transitive = append(b.transitive, transitive...)
b.depSetBuilder.Transitive(transitive)
return b
}
// Returns the DepSet being built by this DepSetBuilder. The DepSetBuilder retains its contents
// for creating more DepSets.
func (b *DepSetBuilder) Build() *DepSet {
return NewDepSet(b.order, b.direct, b.transitive)
}
// walk calls the visit method in depth-first order on a DepSet, preordered if d.preorder is set,
// otherwise postordered.
func (d *DepSet) walk(visit func(Paths)) {
visited := make(map[*DepSet]bool)
var dfs func(d *DepSet)
dfs = func(d *DepSet) {
visited[d] = true
if d.preorder {
visit(d.direct)
}
for _, dep := range d.transitive {
if !visited[dep] {
dfs(dep)
}
}
if !d.preorder {
visit(d.direct)
}
}
dfs(d)
return &DepSet{*b.depSetBuilder.Build()}
}
// ToList returns the DepSet flattened to a list. The order in the list is based on the order
@ -162,33 +78,17 @@ func (d *DepSet) ToList() Paths {
if d == nil {
return nil
}
var list Paths
d.walk(func(paths Paths) {
list = append(list, paths...)
})
list = FirstUniquePaths(list)
if d.reverse {
reversePathsInPlace(list)
}
return list
return d.toList(func(paths interface{}) interface{} {
return FirstUniquePaths(paths.(Paths))
}).(Paths)
}
// ToSortedList returns the direct and transitive contents of a DepSet in lexically sorted order
// with duplicates removed.
func (d *DepSet) ToSortedList() Paths {
list := d.ToList()
return SortedUniquePaths(list)
}
func reversePathsInPlace(list Paths) {
for i, j := 0, len(list)-1; i < j; i, j = i+1, j-1 {
list[i], list[j] = list[j], list[i]
if d == nil {
return nil
}
}
func reverseDepSetsInPlace(list []*DepSet) {
for i, j := 0, len(list)-1; i < j; i, j = i+1, j-1 {
list[i], list[j] = list[j], list[i]
}
paths := d.ToList()
return SortedUniquePaths(paths)
}

View file

@ -17,6 +17,7 @@ package android
import (
"fmt"
"reflect"
"strconv"
"strings"
"testing"
)
@ -108,6 +109,7 @@ func TestDepSet(t *testing.T) {
name: "builderReuse",
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
assertEquals := func(t *testing.T, w, g Paths) {
t.Helper()
if !reflect.DeepEqual(w, g) {
t.Errorf("want %q, got %q", w, g)
}
@ -302,3 +304,87 @@ func TestDepSetInvalidOrder(t *testing.T) {
})
}
}
func Test_firstUnique(t *testing.T) {
f := func(t *testing.T, imp func([]string) []string, in, want []string) {
t.Helper()
out := imp(in)
if !reflect.DeepEqual(out, want) {
t.Errorf("incorrect output:")
t.Errorf(" input: %#v", in)
t.Errorf(" expected: %#v", want)
t.Errorf(" got: %#v", out)
}
}
for _, testCase := range firstUniqueStringsTestCases {
t.Run("list", func(t *testing.T) {
f(t, func(s []string) []string {
return firstUniqueList(s).([]string)
}, testCase.in, testCase.out)
})
t.Run("map", func(t *testing.T) {
f(t, func(s []string) []string {
return firstUniqueMap(s).([]string)
}, testCase.in, testCase.out)
})
}
}
func Benchmark_firstUnique(b *testing.B) {
implementations := []struct {
name string
f func([]string) []string
}{
{
name: "list",
f: func(slice []string) []string {
return firstUniqueList(slice).([]string)
},
},
{
name: "map",
f: func(slice []string) []string {
return firstUniqueMap(slice).([]string)
},
},
{
name: "optimal",
f: func(slice []string) []string {
return firstUnique(slice).([]string)
},
},
}
const maxSize = 1024
uniqueStrings := make([]string, maxSize)
for i := range uniqueStrings {
uniqueStrings[i] = strconv.Itoa(i)
}
sameString := make([]string, maxSize)
for i := range sameString {
sameString[i] = uniqueStrings[0]
}
f := func(b *testing.B, imp func([]string) []string, s []string) {
for i := 0; i < b.N; i++ {
b.ReportAllocs()
s = append([]string(nil), s...)
imp(s)
}
}
for n := 1; n <= maxSize; n <<= 1 {
b.Run(strconv.Itoa(n), func(b *testing.B) {
for _, implementation := range implementations {
b.Run(implementation.name, func(b *testing.B) {
b.Run("same", func(b *testing.B) {
f(b, implementation.f, sameString[:n])
})
b.Run("unique", func(b *testing.B) {
f(b, implementation.f, uniqueStrings[:n])
})
})
}
})
}
}

View file

@ -593,6 +593,10 @@ func BenchmarkFirstUniqueStrings(b *testing.B) {
name: "map",
f: firstUniqueStringsMap,
},
{
name: "optimal",
f: FirstUniqueStrings,
},
}
const maxSize = 1024
uniqueStrings := make([]string, maxSize)