Reimplement DepSet as a wrapper around a generic implementation
Implement depSet as a generic depsets implementation using reflection, and then make DepSet a type-safe wrapper around it. This will allow additional wrappers for depsets that work with other types. All of this can be replaced with generics once Go supports them. Test: depset_test.go Change-Id: Id9df17bcc76f6c1545e7eb498f298066cf8a7679
This commit is contained in:
parent
2254cffd53
commit
96c44127d1
5 changed files with 458 additions and 116 deletions
|
@ -23,7 +23,8 @@ bootstrap_go_package {
|
|||
"csuite_config.go",
|
||||
"defaults.go",
|
||||
"defs.go",
|
||||
"depset.go",
|
||||
"depset_generic.go",
|
||||
"depset_paths.go",
|
||||
"deptag.go",
|
||||
"expand.go",
|
||||
"filegroup.go",
|
||||
|
|
351
android/depset_generic.go
Normal file
351
android/depset_generic.go
Normal file
|
@ -0,0 +1,351 @@
|
|||
// Copyright 2020 Google Inc. All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package android
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"reflect"
|
||||
)
|
||||
|
||||
// depSet is designed to be conceptually compatible with Bazel's depsets:
|
||||
// https://docs.bazel.build/versions/master/skylark/depsets.html
|
||||
|
||||
type DepSetOrder int
|
||||
|
||||
const (
|
||||
PREORDER DepSetOrder = iota
|
||||
POSTORDER
|
||||
TOPOLOGICAL
|
||||
)
|
||||
|
||||
func (o DepSetOrder) String() string {
|
||||
switch o {
|
||||
case PREORDER:
|
||||
return "PREORDER"
|
||||
case POSTORDER:
|
||||
return "POSTORDER"
|
||||
case TOPOLOGICAL:
|
||||
return "TOPOLOGICAL"
|
||||
default:
|
||||
panic(fmt.Errorf("Invalid DepSetOrder %d", o))
|
||||
}
|
||||
}
|
||||
|
||||
// A depSet efficiently stores a slice of an arbitrary type from transitive dependencies without
|
||||
// copying. It is stored as a DAG of depSet nodes, each of which has some direct contents and a list
|
||||
// of dependency depSet nodes.
|
||||
//
|
||||
// A depSet has an order that will be used to walk the DAG when ToList() is called. The order
|
||||
// can be POSTORDER, PREORDER, or TOPOLOGICAL. POSTORDER and PREORDER orders return a postordered
|
||||
// or preordered left to right flattened list. TOPOLOGICAL returns a list that guarantees that
|
||||
// elements of children are listed after all of their parents (unless there are duplicate direct
|
||||
// elements in the depSet or any of its transitive dependencies, in which case the ordering of the
|
||||
// duplicated element is not guaranteed).
|
||||
//
|
||||
// A depSet is created by newDepSet or newDepSetBuilder.Build from the slice for direct contents
|
||||
// and the *depSets of dependencies. A depSet is immutable once created.
|
||||
//
|
||||
// This object uses reflection to remain agnostic to the type it contains. It should be replaced
|
||||
// with generics once those exist in Go. Callers should generally use a thin wrapper around depSet
|
||||
// that provides type-safe methods like DepSet for Paths.
|
||||
type depSet struct {
|
||||
preorder bool
|
||||
reverse bool
|
||||
order DepSetOrder
|
||||
direct interface{}
|
||||
transitive []*depSet
|
||||
}
|
||||
|
||||
type depSetInterface interface {
|
||||
embeddedDepSet() *depSet
|
||||
}
|
||||
|
||||
func (d *depSet) embeddedDepSet() *depSet {
|
||||
return d
|
||||
}
|
||||
|
||||
var _ depSetInterface = (*depSet)(nil)
|
||||
|
||||
// newDepSet returns an immutable depSet with the given order, direct and transitive contents.
|
||||
// direct must be a slice, but is not type-safe due to the lack of generics in Go. It can be a
|
||||
// nil slice, but not a nil interface{}, i.e. []string(nil) but not nil.
|
||||
func newDepSet(order DepSetOrder, direct interface{}, transitive interface{}) *depSet {
|
||||
var directCopy interface{}
|
||||
transitiveDepSet := sliceToDepSets(transitive, order)
|
||||
|
||||
if order == TOPOLOGICAL {
|
||||
directCopy = reverseSlice(direct)
|
||||
reverseSliceInPlace(transitiveDepSet)
|
||||
} else {
|
||||
directCopy = copySlice(direct)
|
||||
}
|
||||
|
||||
return &depSet{
|
||||
preorder: order == PREORDER,
|
||||
reverse: order == TOPOLOGICAL,
|
||||
order: order,
|
||||
direct: directCopy,
|
||||
transitive: transitiveDepSet,
|
||||
}
|
||||
}
|
||||
|
||||
// depSetBuilder is used to create an immutable depSet.
|
||||
type depSetBuilder struct {
|
||||
order DepSetOrder
|
||||
direct reflect.Value
|
||||
transitive []*depSet
|
||||
}
|
||||
|
||||
// newDepSetBuilder returns a depSetBuilder to create an immutable depSet with the given order and
|
||||
// type, represented by a slice of type that will be in the depSet.
|
||||
func newDepSetBuilder(order DepSetOrder, typ interface{}) *depSetBuilder {
|
||||
empty := reflect.Zero(reflect.TypeOf(typ))
|
||||
return &depSetBuilder{
|
||||
order: order,
|
||||
direct: empty,
|
||||
}
|
||||
}
|
||||
|
||||
// sliceToDepSets converts a slice of any type that implements depSetInterface (by having a depSet
|
||||
// embedded in it) into a []*depSet.
|
||||
func sliceToDepSets(in interface{}, order DepSetOrder) []*depSet {
|
||||
slice := reflect.ValueOf(in)
|
||||
length := slice.Len()
|
||||
out := make([]*depSet, length)
|
||||
for i := 0; i < length; i++ {
|
||||
vi := slice.Index(i)
|
||||
depSetIntf, ok := vi.Interface().(depSetInterface)
|
||||
if !ok {
|
||||
panic(fmt.Errorf("element %d is a %s, not a depSetInterface", i, vi.Type()))
|
||||
}
|
||||
depSet := depSetIntf.embeddedDepSet()
|
||||
if depSet.order != order {
|
||||
panic(fmt.Errorf("incompatible order, new depSet is %s but transitive depSet is %s",
|
||||
order, depSet.order))
|
||||
}
|
||||
out[i] = depSet
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// DirectSlice adds direct contents to the depSet being built by a depSetBuilder. Newly added direct
|
||||
// contents are to the right of any existing direct contents. The argument must be a slice, but
|
||||
// is not type-safe due to the lack of generics in Go.
|
||||
func (b *depSetBuilder) DirectSlice(direct interface{}) *depSetBuilder {
|
||||
b.direct = reflect.AppendSlice(b.direct, reflect.ValueOf(direct))
|
||||
return b
|
||||
}
|
||||
|
||||
// Direct adds direct contents to the depSet being built by a depSetBuilder. Newly added direct
|
||||
// contents are to the right of any existing direct contents. The argument must be the same type
|
||||
// as the element of the slice passed to newDepSetBuilder, but is not type-safe due to the lack of
|
||||
// generics in Go.
|
||||
func (b *depSetBuilder) Direct(direct interface{}) *depSetBuilder {
|
||||
b.direct = reflect.Append(b.direct, reflect.ValueOf(direct))
|
||||
return b
|
||||
}
|
||||
|
||||
// Transitive adds transitive contents to the DepSet being built by a DepSetBuilder. Newly added
|
||||
// transitive contents are to the right of any existing transitive contents. The argument can
|
||||
// be any slice of type that has depSet embedded in it.
|
||||
func (b *depSetBuilder) Transitive(transitive interface{}) *depSetBuilder {
|
||||
depSets := sliceToDepSets(transitive, b.order)
|
||||
b.transitive = append(b.transitive, depSets...)
|
||||
return b
|
||||
}
|
||||
|
||||
// Returns the depSet being built by this depSetBuilder. The depSetBuilder retains its contents
|
||||
// for creating more depSets.
|
||||
func (b *depSetBuilder) Build() *depSet {
|
||||
return newDepSet(b.order, b.direct.Interface(), b.transitive)
|
||||
}
|
||||
|
||||
// walk calls the visit method in depth-first order on a DepSet, preordered if d.preorder is set,
|
||||
// otherwise postordered.
|
||||
func (d *depSet) walk(visit func(interface{})) {
|
||||
visited := make(map[*depSet]bool)
|
||||
|
||||
var dfs func(d *depSet)
|
||||
dfs = func(d *depSet) {
|
||||
visited[d] = true
|
||||
if d.preorder {
|
||||
visit(d.direct)
|
||||
}
|
||||
for _, dep := range d.transitive {
|
||||
if !visited[dep] {
|
||||
dfs(dep)
|
||||
}
|
||||
}
|
||||
|
||||
if !d.preorder {
|
||||
visit(d.direct)
|
||||
}
|
||||
}
|
||||
|
||||
dfs(d)
|
||||
}
|
||||
|
||||
// ToList returns the depSet flattened to a list. The order in the list is based on the order
|
||||
// of the depSet. POSTORDER and PREORDER orders return a postordered or preordered left to right
|
||||
// flattened list. TOPOLOGICAL returns a list that guarantees that elements of children are listed
|
||||
// after all of their parents (unless there are duplicate direct elements in the DepSet or any of
|
||||
// its transitive dependencies, in which case the ordering of the duplicated element is not
|
||||
// guaranteed).
|
||||
//
|
||||
// This method uses a reflection-based implementation to find the unique elements in slice, which
|
||||
// is around 3x slower than a concrete implementation. Type-safe wrappers around depSet can
|
||||
// provide their own implementation of ToList that calls depSet.toList with a method that
|
||||
// uses a concrete implementation.
|
||||
func (d *depSet) ToList() interface{} {
|
||||
return d.toList(firstUnique)
|
||||
}
|
||||
|
||||
// toList returns the depSet flattened to a list. The order in the list is based on the order
|
||||
// of the depSet. POSTORDER and PREORDER orders return a postordered or preordered left to right
|
||||
// flattened list. TOPOLOGICAL returns a list that guarantees that elements of children are listed
|
||||
// after all of their parents (unless there are duplicate direct elements in the DepSet or any of
|
||||
// its transitive dependencies, in which case the ordering of the duplicated element is not
|
||||
// guaranteed). The firstUniqueFunc is used to remove duplicates from the list.
|
||||
func (d *depSet) toList(firstUniqueFunc func(interface{}) interface{}) interface{} {
|
||||
if d == nil {
|
||||
return nil
|
||||
}
|
||||
slice := reflect.Zero(reflect.TypeOf(d.direct))
|
||||
d.walk(func(paths interface{}) {
|
||||
slice = reflect.AppendSlice(slice, reflect.ValueOf(paths))
|
||||
})
|
||||
list := slice.Interface()
|
||||
list = firstUniqueFunc(list)
|
||||
if d.reverse {
|
||||
reverseSliceInPlace(list)
|
||||
}
|
||||
return list
|
||||
}
|
||||
|
||||
// firstUnique returns all unique elements of a slice, keeping the first copy of each. It
|
||||
// modifies the slice contents in place, and returns a subslice of the original slice. The
|
||||
// argument must be a slice, but is not type-safe due to the lack of reflection in Go.
|
||||
//
|
||||
// Performance of the reflection-based firstUnique is up to 3x slower than a concrete type
|
||||
// version such as FirstUniqueStrings.
|
||||
func firstUnique(slice interface{}) interface{} {
|
||||
// 4 was chosen based on Benchmark_firstUnique results.
|
||||
if reflect.ValueOf(slice).Len() > 4 {
|
||||
return firstUniqueMap(slice)
|
||||
}
|
||||
return firstUniqueList(slice)
|
||||
}
|
||||
|
||||
// firstUniqueList is an implementation of firstUnique using an O(N^2) list comparison to look for
|
||||
// duplicates.
|
||||
func firstUniqueList(in interface{}) interface{} {
|
||||
writeIndex := 0
|
||||
slice := reflect.ValueOf(in)
|
||||
length := slice.Len()
|
||||
outer:
|
||||
for readIndex := 0; readIndex < length; readIndex++ {
|
||||
readValue := slice.Index(readIndex)
|
||||
for compareIndex := 0; compareIndex < writeIndex; compareIndex++ {
|
||||
compareValue := slice.Index(compareIndex)
|
||||
// These two Interface() calls seem to cause an allocation and significantly
|
||||
// slow down this list-based implementation. The map implementation below doesn't
|
||||
// have this issue because reflect.Value.MapIndex takes a Value and appears to be
|
||||
// able to do the map lookup without an allocation.
|
||||
if readValue.Interface() == compareValue.Interface() {
|
||||
// The value at readIndex already exists somewhere in the output region
|
||||
// of the slice before writeIndex, skip it.
|
||||
continue outer
|
||||
}
|
||||
}
|
||||
if readIndex != writeIndex {
|
||||
writeValue := slice.Index(writeIndex)
|
||||
writeValue.Set(readValue)
|
||||
}
|
||||
writeIndex++
|
||||
}
|
||||
return slice.Slice(0, writeIndex).Interface()
|
||||
}
|
||||
|
||||
var trueValue = reflect.ValueOf(true)
|
||||
|
||||
// firstUniqueList is an implementation of firstUnique using an O(N) hash set lookup to look for
|
||||
// duplicates.
|
||||
func firstUniqueMap(in interface{}) interface{} {
|
||||
writeIndex := 0
|
||||
slice := reflect.ValueOf(in)
|
||||
length := slice.Len()
|
||||
seen := reflect.MakeMapWithSize(reflect.MapOf(slice.Type().Elem(), trueValue.Type()), slice.Len())
|
||||
for readIndex := 0; readIndex < length; readIndex++ {
|
||||
readValue := slice.Index(readIndex)
|
||||
if seen.MapIndex(readValue).IsValid() {
|
||||
continue
|
||||
}
|
||||
seen.SetMapIndex(readValue, trueValue)
|
||||
if readIndex != writeIndex {
|
||||
writeValue := slice.Index(writeIndex)
|
||||
writeValue.Set(readValue)
|
||||
}
|
||||
writeIndex++
|
||||
}
|
||||
return slice.Slice(0, writeIndex).Interface()
|
||||
}
|
||||
|
||||
// reverseSliceInPlace reverses the elements of a slice in place. The argument must be a slice, but
|
||||
// is not type-safe due to the lack of reflection in Go.
|
||||
func reverseSliceInPlace(in interface{}) {
|
||||
swapper := reflect.Swapper(in)
|
||||
slice := reflect.ValueOf(in)
|
||||
length := slice.Len()
|
||||
for i, j := 0, length-1; i < j; i, j = i+1, j-1 {
|
||||
swapper(i, j)
|
||||
}
|
||||
}
|
||||
|
||||
// reverseSlice returns a copy of a slice in reverse order. The argument must be a slice, but is
|
||||
// not type-safe due to the lack of reflection in Go.
|
||||
func reverseSlice(in interface{}) interface{} {
|
||||
slice := reflect.ValueOf(in)
|
||||
if !slice.IsValid() || slice.IsNil() {
|
||||
return in
|
||||
}
|
||||
if slice.Kind() != reflect.Slice {
|
||||
panic(fmt.Errorf("%t is not a slice", in))
|
||||
}
|
||||
length := slice.Len()
|
||||
if length == 0 {
|
||||
return in
|
||||
}
|
||||
out := reflect.MakeSlice(slice.Type(), length, length)
|
||||
for i := 0; i < length; i++ {
|
||||
out.Index(i).Set(slice.Index(length - 1 - i))
|
||||
}
|
||||
return out.Interface()
|
||||
}
|
||||
|
||||
// copySlice returns a copy of a slice. The argument must be a slice, but is not type-safe due to
|
||||
// the lack of reflection in Go.
|
||||
func copySlice(in interface{}) interface{} {
|
||||
slice := reflect.ValueOf(in)
|
||||
if !slice.IsValid() || slice.IsNil() {
|
||||
return in
|
||||
}
|
||||
length := slice.Len()
|
||||
if length == 0 {
|
||||
return in
|
||||
}
|
||||
out := reflect.MakeSlice(slice.Type(), length, length)
|
||||
reflect.Copy(out, slice)
|
||||
return out.Interface()
|
||||
}
|
|
@ -14,10 +14,7 @@
|
|||
|
||||
package android
|
||||
|
||||
import "fmt"
|
||||
|
||||
// DepSet is designed to be conceptually compatible with Bazel's depsets:
|
||||
// https://docs.bazel.build/versions/master/skylark/depsets.html
|
||||
// This file implements DepSet, a thin type-safe wrapper around depSet that contains Paths.
|
||||
|
||||
// A DepSet efficiently stores Paths from transitive dependencies without copying. It is stored
|
||||
// as a DAG of DepSet nodes, each of which has some direct contents and a list of dependency
|
||||
|
@ -33,123 +30,42 @@ import "fmt"
|
|||
// A DepSet is created by NewDepSet or NewDepSetBuilder.Build from the Paths for direct contents
|
||||
// and the *DepSets of dependencies. A DepSet is immutable once created.
|
||||
type DepSet struct {
|
||||
preorder bool
|
||||
reverse bool
|
||||
order DepSetOrder
|
||||
direct Paths
|
||||
transitive []*DepSet
|
||||
depSet
|
||||
}
|
||||
|
||||
// DepSetBuilder is used to create an immutable DepSet.
|
||||
type DepSetBuilder struct {
|
||||
order DepSetOrder
|
||||
direct Paths
|
||||
transitive []*DepSet
|
||||
}
|
||||
|
||||
type DepSetOrder int
|
||||
|
||||
const (
|
||||
PREORDER DepSetOrder = iota
|
||||
POSTORDER
|
||||
TOPOLOGICAL
|
||||
)
|
||||
|
||||
func (o DepSetOrder) String() string {
|
||||
switch o {
|
||||
case PREORDER:
|
||||
return "PREORDER"
|
||||
case POSTORDER:
|
||||
return "POSTORDER"
|
||||
case TOPOLOGICAL:
|
||||
return "TOPOLOGICAL"
|
||||
default:
|
||||
panic(fmt.Errorf("Invalid DepSetOrder %d", o))
|
||||
}
|
||||
depSetBuilder
|
||||
}
|
||||
|
||||
// NewDepSet returns an immutable DepSet with the given order, direct and transitive contents.
|
||||
func NewDepSet(order DepSetOrder, direct Paths, transitive []*DepSet) *DepSet {
|
||||
var directCopy Paths
|
||||
transitiveCopy := make([]*DepSet, 0, len(transitive))
|
||||
|
||||
for _, dep := range transitive {
|
||||
if dep != nil {
|
||||
if dep.order != order {
|
||||
panic(fmt.Errorf("incompatible order, new DepSet is %s but transitive DepSet is %s",
|
||||
order, dep.order))
|
||||
}
|
||||
transitiveCopy = append(transitiveCopy, dep)
|
||||
}
|
||||
}
|
||||
|
||||
if order == TOPOLOGICAL {
|
||||
directCopy = ReversePaths(direct)
|
||||
reverseDepSetsInPlace(transitiveCopy)
|
||||
} else {
|
||||
// Use copy instead of append(nil, ...) to make a slice that is exactly the size of the input
|
||||
// slice. The DepSet is immutable, there is no need for additional capacity.
|
||||
directCopy = make(Paths, len(direct))
|
||||
copy(directCopy, direct)
|
||||
}
|
||||
|
||||
return &DepSet{
|
||||
preorder: order == PREORDER,
|
||||
reverse: order == TOPOLOGICAL,
|
||||
order: order,
|
||||
direct: directCopy,
|
||||
transitive: transitiveCopy,
|
||||
}
|
||||
return &DepSet{*newDepSet(order, direct, transitive)}
|
||||
}
|
||||
|
||||
// NewDepSetBuilder returns a DepSetBuilder to create an immutable DepSet with the given order.
|
||||
func NewDepSetBuilder(order DepSetOrder) *DepSetBuilder {
|
||||
return &DepSetBuilder{order: order}
|
||||
return &DepSetBuilder{*newDepSetBuilder(order, Paths(nil))}
|
||||
}
|
||||
|
||||
// Direct adds direct contents to the DepSet being built by a DepSetBuilder. Newly added direct
|
||||
// contents are to the right of any existing direct contents.
|
||||
func (b *DepSetBuilder) Direct(direct ...Path) *DepSetBuilder {
|
||||
b.direct = append(b.direct, direct...)
|
||||
b.depSetBuilder.DirectSlice(direct)
|
||||
return b
|
||||
}
|
||||
|
||||
// Transitive adds transitive contents to the DepSet being built by a DepSetBuilder. Newly added
|
||||
// transitive contents are to the right of any existing transitive contents.
|
||||
func (b *DepSetBuilder) Transitive(transitive ...*DepSet) *DepSetBuilder {
|
||||
b.transitive = append(b.transitive, transitive...)
|
||||
b.depSetBuilder.Transitive(transitive)
|
||||
return b
|
||||
}
|
||||
|
||||
// Returns the DepSet being built by this DepSetBuilder. The DepSetBuilder retains its contents
|
||||
// for creating more DepSets.
|
||||
func (b *DepSetBuilder) Build() *DepSet {
|
||||
return NewDepSet(b.order, b.direct, b.transitive)
|
||||
}
|
||||
|
||||
// walk calls the visit method in depth-first order on a DepSet, preordered if d.preorder is set,
|
||||
// otherwise postordered.
|
||||
func (d *DepSet) walk(visit func(Paths)) {
|
||||
visited := make(map[*DepSet]bool)
|
||||
|
||||
var dfs func(d *DepSet)
|
||||
dfs = func(d *DepSet) {
|
||||
visited[d] = true
|
||||
if d.preorder {
|
||||
visit(d.direct)
|
||||
}
|
||||
for _, dep := range d.transitive {
|
||||
if !visited[dep] {
|
||||
dfs(dep)
|
||||
}
|
||||
}
|
||||
|
||||
if !d.preorder {
|
||||
visit(d.direct)
|
||||
}
|
||||
}
|
||||
|
||||
dfs(d)
|
||||
return &DepSet{*b.depSetBuilder.Build()}
|
||||
}
|
||||
|
||||
// ToList returns the DepSet flattened to a list. The order in the list is based on the order
|
||||
|
@ -162,33 +78,17 @@ func (d *DepSet) ToList() Paths {
|
|||
if d == nil {
|
||||
return nil
|
||||
}
|
||||
var list Paths
|
||||
d.walk(func(paths Paths) {
|
||||
list = append(list, paths...)
|
||||
})
|
||||
list = FirstUniquePaths(list)
|
||||
if d.reverse {
|
||||
reversePathsInPlace(list)
|
||||
}
|
||||
return list
|
||||
return d.toList(func(paths interface{}) interface{} {
|
||||
return FirstUniquePaths(paths.(Paths))
|
||||
}).(Paths)
|
||||
}
|
||||
|
||||
// ToSortedList returns the direct and transitive contents of a DepSet in lexically sorted order
|
||||
// with duplicates removed.
|
||||
func (d *DepSet) ToSortedList() Paths {
|
||||
list := d.ToList()
|
||||
return SortedUniquePaths(list)
|
||||
}
|
||||
|
||||
func reversePathsInPlace(list Paths) {
|
||||
for i, j := 0, len(list)-1; i < j; i, j = i+1, j-1 {
|
||||
list[i], list[j] = list[j], list[i]
|
||||
if d == nil {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
func reverseDepSetsInPlace(list []*DepSet) {
|
||||
for i, j := 0, len(list)-1; i < j; i, j = i+1, j-1 {
|
||||
list[i], list[j] = list[j], list[i]
|
||||
}
|
||||
|
||||
paths := d.ToList()
|
||||
return SortedUniquePaths(paths)
|
||||
}
|
|
@ -17,6 +17,7 @@ package android
|
|||
import (
|
||||
"fmt"
|
||||
"reflect"
|
||||
"strconv"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
@ -108,6 +109,7 @@ func TestDepSet(t *testing.T) {
|
|||
name: "builderReuse",
|
||||
depSet: func(t *testing.T, order DepSetOrder) *DepSet {
|
||||
assertEquals := func(t *testing.T, w, g Paths) {
|
||||
t.Helper()
|
||||
if !reflect.DeepEqual(w, g) {
|
||||
t.Errorf("want %q, got %q", w, g)
|
||||
}
|
||||
|
@ -302,3 +304,87 @@ func TestDepSetInvalidOrder(t *testing.T) {
|
|||
})
|
||||
}
|
||||
}
|
||||
|
||||
func Test_firstUnique(t *testing.T) {
|
||||
f := func(t *testing.T, imp func([]string) []string, in, want []string) {
|
||||
t.Helper()
|
||||
out := imp(in)
|
||||
if !reflect.DeepEqual(out, want) {
|
||||
t.Errorf("incorrect output:")
|
||||
t.Errorf(" input: %#v", in)
|
||||
t.Errorf(" expected: %#v", want)
|
||||
t.Errorf(" got: %#v", out)
|
||||
}
|
||||
}
|
||||
|
||||
for _, testCase := range firstUniqueStringsTestCases {
|
||||
t.Run("list", func(t *testing.T) {
|
||||
f(t, func(s []string) []string {
|
||||
return firstUniqueList(s).([]string)
|
||||
}, testCase.in, testCase.out)
|
||||
})
|
||||
t.Run("map", func(t *testing.T) {
|
||||
f(t, func(s []string) []string {
|
||||
return firstUniqueMap(s).([]string)
|
||||
}, testCase.in, testCase.out)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func Benchmark_firstUnique(b *testing.B) {
|
||||
implementations := []struct {
|
||||
name string
|
||||
f func([]string) []string
|
||||
}{
|
||||
{
|
||||
name: "list",
|
||||
f: func(slice []string) []string {
|
||||
return firstUniqueList(slice).([]string)
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "map",
|
||||
f: func(slice []string) []string {
|
||||
return firstUniqueMap(slice).([]string)
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "optimal",
|
||||
f: func(slice []string) []string {
|
||||
return firstUnique(slice).([]string)
|
||||
},
|
||||
},
|
||||
}
|
||||
const maxSize = 1024
|
||||
uniqueStrings := make([]string, maxSize)
|
||||
for i := range uniqueStrings {
|
||||
uniqueStrings[i] = strconv.Itoa(i)
|
||||
}
|
||||
sameString := make([]string, maxSize)
|
||||
for i := range sameString {
|
||||
sameString[i] = uniqueStrings[0]
|
||||
}
|
||||
|
||||
f := func(b *testing.B, imp func([]string) []string, s []string) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
b.ReportAllocs()
|
||||
s = append([]string(nil), s...)
|
||||
imp(s)
|
||||
}
|
||||
}
|
||||
|
||||
for n := 1; n <= maxSize; n <<= 1 {
|
||||
b.Run(strconv.Itoa(n), func(b *testing.B) {
|
||||
for _, implementation := range implementations {
|
||||
b.Run(implementation.name, func(b *testing.B) {
|
||||
b.Run("same", func(b *testing.B) {
|
||||
f(b, implementation.f, sameString[:n])
|
||||
})
|
||||
b.Run("unique", func(b *testing.B) {
|
||||
f(b, implementation.f, uniqueStrings[:n])
|
||||
})
|
||||
})
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
|
|
@ -593,6 +593,10 @@ func BenchmarkFirstUniqueStrings(b *testing.B) {
|
|||
name: "map",
|
||||
f: firstUniqueStringsMap,
|
||||
},
|
||||
{
|
||||
name: "optimal",
|
||||
f: FirstUniqueStrings,
|
||||
},
|
||||
}
|
||||
const maxSize = 1024
|
||||
uniqueStrings := make([]string, maxSize)
|
||||
|
|
Loading…
Reference in a new issue