// Copyright 2021 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Convert makefile containing device configuration to Starlark file // The conversion can handle the following constructs in a makefile: // * comments // * simple variable assignments // * $(call init-product,) // * $(call inherit-product-if-exists // * if directives // All other constructs are carried over to the output starlark file as comments. // package mk2rbc import ( "bytes" "fmt" "io" "io/fs" "io/ioutil" "os" "path/filepath" "regexp" "strconv" "strings" "text/scanner" mkparser "android/soong/androidmk/parser" ) const ( annotationCommentPrefix = "RBC#" baseUri = "//build/make/core:product_config.rbc" // The name of the struct exported by the product_config.rbc // that contains the functions and variables available to // product configuration Starlark files. baseName = "rblf" soongNsPrefix = "SOONG_CONFIG_" // And here are the functions and variables: cfnGetCfg = baseName + ".cfg" cfnMain = baseName + ".product_configuration" cfnBoardMain = baseName + ".board_configuration" cfnPrintVars = baseName + ".printvars" cfnPrintGlobals = baseName + ".printglobals" cfnWarning = baseName + ".warning" cfnLocalAppend = baseName + ".local_append" cfnLocalSetDefault = baseName + ".local_set_default" cfnInherit = baseName + ".inherit" cfnSetListDefault = baseName + ".setdefault" ) const ( // Phony makefile functions, they are eventually rewritten // according to knownFunctions map fileExistsPhony = "$file_exists" // The following two macros are obsolete, and will we deleted once // there are deleted from the makefiles: soongConfigNamespaceOld = "add_soong_config_namespace" soongConfigVarSetOld = "add_soong_config_var_value" soongConfigAppend = "soong_config_append" soongConfigAssign = "soong_config_set" soongConfigGet = "soong_config_get" wildcardExistsPhony = "$wildcard_exists" ) const ( callLoadAlways = "inherit-product" callLoadIf = "inherit-product-if-exists" ) var knownFunctions = map[string]struct { // The name of the runtime function this function call in makefiles maps to. // If it starts with !, then this makefile function call is rewritten to // something else. runtimeName string returnType starlarkType hiddenArg hiddenArgType }{ "abspath": {baseName + ".abspath", starlarkTypeString, hiddenArgNone}, fileExistsPhony: {baseName + ".file_exists", starlarkTypeBool, hiddenArgNone}, wildcardExistsPhony: {baseName + ".file_wildcard_exists", starlarkTypeBool, hiddenArgNone}, soongConfigNamespaceOld: {baseName + ".soong_config_namespace", starlarkTypeVoid, hiddenArgGlobal}, soongConfigVarSetOld: {baseName + ".soong_config_set", starlarkTypeVoid, hiddenArgGlobal}, soongConfigAssign: {baseName + ".soong_config_set", starlarkTypeVoid, hiddenArgGlobal}, soongConfigAppend: {baseName + ".soong_config_append", starlarkTypeVoid, hiddenArgGlobal}, soongConfigGet: {baseName + ".soong_config_get", starlarkTypeString, hiddenArgGlobal}, "add-to-product-copy-files-if-exists": {baseName + ".copy_if_exists", starlarkTypeList, hiddenArgNone}, "addprefix": {baseName + ".addprefix", starlarkTypeList, hiddenArgNone}, "addsuffix": {baseName + ".addsuffix", starlarkTypeList, hiddenArgNone}, "copy-files": {baseName + ".copy_files", starlarkTypeList, hiddenArgNone}, "dir": {baseName + ".dir", starlarkTypeList, hiddenArgNone}, "dist-for-goals": {baseName + ".mkdist_for_goals", starlarkTypeVoid, hiddenArgGlobal}, "enforce-product-packages-exist": {baseName + ".enforce_product_packages_exist", starlarkTypeVoid, hiddenArgNone}, "error": {baseName + ".mkerror", starlarkTypeVoid, hiddenArgNone}, "findstring": {baseName + ".findstring", starlarkTypeString, hiddenArgNone}, "find-copy-subdir-files": {baseName + ".find_and_copy", starlarkTypeList, hiddenArgNone}, "find-word-in-list": {"!find-word-in-list", starlarkTypeUnknown, hiddenArgNone}, // internal macro "filter": {baseName + ".filter", starlarkTypeList, hiddenArgNone}, "filter-out": {baseName + ".filter_out", starlarkTypeList, hiddenArgNone}, "firstword": {"!firstword", starlarkTypeString, hiddenArgNone}, "foreach": {"!foreach", starlarkTypeList, hiddenArgNone}, "get-vendor-board-platforms": {"!get-vendor-board-platforms", starlarkTypeList, hiddenArgNone}, // internal macro, used by is-board-platform, etc. "if": {"!if", starlarkTypeUnknown, hiddenArgNone}, "info": {baseName + ".mkinfo", starlarkTypeVoid, hiddenArgNone}, "is-android-codename": {"!is-android-codename", starlarkTypeBool, hiddenArgNone}, // unused by product config "is-android-codename-in-list": {"!is-android-codename-in-list", starlarkTypeBool, hiddenArgNone}, // unused by product config "is-board-platform": {"!is-board-platform", starlarkTypeBool, hiddenArgNone}, "is-board-platform2": {baseName + ".board_platform_is", starlarkTypeBool, hiddenArgGlobal}, "is-board-platform-in-list": {"!is-board-platform-in-list", starlarkTypeBool, hiddenArgNone}, "is-board-platform-in-list2": {baseName + ".board_platform_in", starlarkTypeBool, hiddenArgGlobal}, "is-chipset-in-board-platform": {"!is-chipset-in-board-platform", starlarkTypeUnknown, hiddenArgNone}, // unused by product config "is-chipset-prefix-in-board-platform": {"!is-chipset-prefix-in-board-platform", starlarkTypeBool, hiddenArgNone}, // unused by product config "is-not-board-platform": {"!is-not-board-platform", starlarkTypeBool, hiddenArgNone}, // defined but never used "is-platform-sdk-version-at-least": {"!is-platform-sdk-version-at-least", starlarkTypeBool, hiddenArgNone}, // unused by product config "is-product-in-list": {"!is-product-in-list", starlarkTypeBool, hiddenArgNone}, "is-vendor-board-platform": {"!is-vendor-board-platform", starlarkTypeBool, hiddenArgNone}, "is-vendor-board-qcom": {"!is-vendor-board-qcom", starlarkTypeBool, hiddenArgNone}, callLoadAlways: {"!inherit-product", starlarkTypeVoid, hiddenArgNone}, callLoadIf: {"!inherit-product-if-exists", starlarkTypeVoid, hiddenArgNone}, "lastword": {"!lastword", starlarkTypeString, hiddenArgNone}, "match-prefix": {"!match-prefix", starlarkTypeUnknown, hiddenArgNone}, // internal macro "match-word": {"!match-word", starlarkTypeUnknown, hiddenArgNone}, // internal macro "match-word-in-list": {"!match-word-in-list", starlarkTypeUnknown, hiddenArgNone}, // internal macro "notdir": {baseName + ".notdir", starlarkTypeString, hiddenArgNone}, "my-dir": {"!my-dir", starlarkTypeString, hiddenArgNone}, "patsubst": {baseName + ".mkpatsubst", starlarkTypeString, hiddenArgNone}, "product-copy-files-by-pattern": {baseName + ".product_copy_files_by_pattern", starlarkTypeList, hiddenArgNone}, "require-artifacts-in-path": {baseName + ".require_artifacts_in_path", starlarkTypeVoid, hiddenArgNone}, "require-artifacts-in-path-relaxed": {baseName + ".require_artifacts_in_path_relaxed", starlarkTypeVoid, hiddenArgNone}, // TODO(asmundak): remove it once all calls are removed from configuration makefiles. see b/183161002 "shell": {baseName + ".shell", starlarkTypeString, hiddenArgNone}, "strip": {baseName + ".mkstrip", starlarkTypeString, hiddenArgNone}, "tb-modules": {"!tb-modules", starlarkTypeUnknown, hiddenArgNone}, // defined in hardware/amlogic/tb_modules/tb_detect.mk, unused "subst": {baseName + ".mksubst", starlarkTypeString, hiddenArgNone}, "warning": {baseName + ".mkwarning", starlarkTypeVoid, hiddenArgNone}, "word": {baseName + "!word", starlarkTypeString, hiddenArgNone}, "wildcard": {baseName + ".expand_wildcard", starlarkTypeList, hiddenArgNone}, "words": {baseName + ".words", starlarkTypeList, hiddenArgNone}, } var identifierFullMatchRegex = regexp.MustCompile("^[a-zA-Z_][a-zA-Z0-9_]*$") // Conversion request parameters type Request struct { MkFile string // file to convert Reader io.Reader // if set, read input from this stream instead RootDir string // root directory path used to resolve included files OutputSuffix string // generated Starlark files suffix OutputDir string // if set, root of the output hierarchy ErrorLogger ErrorLogger TracedVariables []string // trace assignment to these variables TraceCalls bool SourceFS fs.FS MakefileFinder MakefileFinder } // ErrorLogger prints errors and gathers error statistics. // Its NewError function is called on every error encountered during the conversion. type ErrorLogger interface { NewError(el ErrorLocation, node mkparser.Node, text string, args ...interface{}) } type ErrorLocation struct { MkFile string MkLine int } func (el ErrorLocation) String() string { return fmt.Sprintf("%s:%d", el.MkFile, el.MkLine) } // Derives module name for a given file. It is base name // (file name without suffix), with some characters replaced to make it a Starlark identifier func moduleNameForFile(mkFile string) string { base := strings.TrimSuffix(filepath.Base(mkFile), filepath.Ext(mkFile)) // TODO(asmundak): what else can be in the product file names? return strings.NewReplacer("-", "_", ".", "_").Replace(base) } func cloneMakeString(mkString *mkparser.MakeString) *mkparser.MakeString { r := &mkparser.MakeString{StringPos: mkString.StringPos} r.Strings = append(r.Strings, mkString.Strings...) r.Variables = append(r.Variables, mkString.Variables...) return r } func isMakeControlFunc(s string) bool { return s == "error" || s == "warning" || s == "info" } // Starlark output generation context type generationContext struct { buf strings.Builder starScript *StarlarkScript indentLevel int inAssignment bool tracedCount int } func NewGenerateContext(ss *StarlarkScript) *generationContext { return &generationContext{starScript: ss} } // emit returns generated script func (gctx *generationContext) emit() string { ss := gctx.starScript // The emitted code has the following layout: // // preamble, i.e., // load statement for the runtime support // load statement for each unique submodule pulled in by this one // def init(g, handle): // cfg = rblf.cfg(handle) // // iNode := len(ss.nodes) for i, node := range ss.nodes { if _, ok := node.(*commentNode); !ok { iNode = i break } node.emit(gctx) } gctx.emitPreamble() gctx.newLine() // The arguments passed to the init function are the global dictionary // ('g') and the product configuration dictionary ('cfg') gctx.write("def init(g, handle):") gctx.indentLevel++ if gctx.starScript.traceCalls { gctx.newLine() gctx.writef(`print(">%s")`, gctx.starScript.mkFile) } gctx.newLine() gctx.writef("cfg = %s(handle)", cfnGetCfg) for _, node := range ss.nodes[iNode:] { node.emit(gctx) } if gctx.starScript.traceCalls { gctx.newLine() gctx.writef(`print("<%s")`, gctx.starScript.mkFile) } gctx.indentLevel-- gctx.write("\n") return gctx.buf.String() } func (gctx *generationContext) emitPreamble() { gctx.newLine() gctx.writef("load(%q, %q)", baseUri, baseName) // Emit exactly one load statement for each URI. loadedSubConfigs := make(map[string]string) for _, sc := range gctx.starScript.inherited { uri := sc.path if m, ok := loadedSubConfigs[uri]; ok { // No need to emit load statement, but fix module name. sc.moduleLocalName = m continue } if sc.optional { uri += "|init" } gctx.newLine() gctx.writef("load(%q, %s = \"init\")", uri, sc.entryName()) loadedSubConfigs[uri] = sc.moduleLocalName } gctx.write("\n") } func (gctx *generationContext) emitPass() { gctx.newLine() gctx.write("pass") } func (gctx *generationContext) write(ss ...string) { for _, s := range ss { gctx.buf.WriteString(s) } } func (gctx *generationContext) writef(format string, args ...interface{}) { gctx.write(fmt.Sprintf(format, args...)) } func (gctx *generationContext) newLine() { if gctx.buf.Len() == 0 { return } gctx.write("\n") gctx.writef("%*s", 2*gctx.indentLevel, "") } func (gctx *generationContext) emitConversionError(el ErrorLocation, message string) { gctx.writef(`rblf.mk2rbc_error("%s", %q)`, el, message) } type knownVariable struct { name string class varClass valueType starlarkType } type knownVariables map[string]knownVariable func (pcv knownVariables) NewVariable(name string, varClass varClass, valueType starlarkType) { v, exists := pcv[name] if !exists { pcv[name] = knownVariable{name, varClass, valueType} return } // Conflict resolution: // * config class trumps everything // * any type trumps unknown type match := varClass == v.class if !match { if varClass == VarClassConfig { v.class = VarClassConfig match = true } else if v.class == VarClassConfig { match = true } } if valueType != v.valueType { if valueType != starlarkTypeUnknown { if v.valueType == starlarkTypeUnknown { v.valueType = valueType } else { match = false } } } if !match { fmt.Fprintf(os.Stderr, "cannot redefine %s as %v/%v (already defined as %v/%v)\n", name, varClass, valueType, v.class, v.valueType) } } // All known product variables. var KnownVariables = make(knownVariables) func init() { for _, kv := range []string{ // Kernel-related variables that we know are lists. "BOARD_VENDOR_KERNEL_MODULES", "BOARD_VENDOR_RAMDISK_KERNEL_MODULES", "BOARD_VENDOR_RAMDISK_KERNEL_MODULES_LOAD", "BOARD_RECOVERY_KERNEL_MODULES", // Other variables we knwo are lists "ART_APEX_JARS", } { KnownVariables.NewVariable(kv, VarClassSoong, starlarkTypeList) } } type nodeReceiver interface { newNode(node starlarkNode) } // Information about the generated Starlark script. type StarlarkScript struct { mkFile string moduleName string mkPos scanner.Position nodes []starlarkNode inherited []*moduleInfo hasErrors bool topDir string traceCalls bool // print enter/exit each init function sourceFS fs.FS makefileFinder MakefileFinder nodeLocator func(pos mkparser.Pos) int } func (ss *StarlarkScript) newNode(node starlarkNode) { ss.nodes = append(ss.nodes, node) } // varAssignmentScope points to the last assignment for each variable // in the current block. It is used during the parsing to chain // the assignments to a variable together. type varAssignmentScope struct { outer *varAssignmentScope vars map[string]*assignmentNode } // parseContext holds the script we are generating and all the ephemeral data // needed during the parsing. type parseContext struct { script *StarlarkScript nodes []mkparser.Node // Makefile as parsed by mkparser currentNodeIndex int // Node in it we are processing ifNestLevel int moduleNameCount map[string]int // count of imported modules with given basename fatalError error outputSuffix string errorLogger ErrorLogger tracedVariables map[string]bool // variables to be traced in the generated script variables map[string]variable varAssignments *varAssignmentScope receiver nodeReceiver // receptacle for the generated starlarkNode's receiverStack []nodeReceiver outputDir string dependentModules map[string]*moduleInfo soongNamespaces map[string]map[string]bool includeTops []string } func newParseContext(ss *StarlarkScript, nodes []mkparser.Node) *parseContext { topdir, _ := filepath.Split(filepath.Join(ss.topDir, "foo")) predefined := []struct{ name, value string }{ {"SRC_TARGET_DIR", filepath.Join("build", "make", "target")}, {"LOCAL_PATH", filepath.Dir(ss.mkFile)}, {"TOPDIR", topdir}, // TODO(asmundak): maybe read it from build/make/core/envsetup.mk? {"TARGET_COPY_OUT_SYSTEM", "system"}, {"TARGET_COPY_OUT_SYSTEM_OTHER", "system_other"}, {"TARGET_COPY_OUT_DATA", "data"}, {"TARGET_COPY_OUT_ASAN", filepath.Join("data", "asan")}, {"TARGET_COPY_OUT_OEM", "oem"}, {"TARGET_COPY_OUT_RAMDISK", "ramdisk"}, {"TARGET_COPY_OUT_DEBUG_RAMDISK", "debug_ramdisk"}, {"TARGET_COPY_OUT_VENDOR_DEBUG_RAMDISK", "vendor_debug_ramdisk"}, {"TARGET_COPY_OUT_TEST_HARNESS_RAMDISK", "test_harness_ramdisk"}, {"TARGET_COPY_OUT_ROOT", "root"}, {"TARGET_COPY_OUT_RECOVERY", "recovery"}, {"TARGET_COPY_OUT_VENDOR_RAMDISK", "vendor_ramdisk"}, // TODO(asmundak): to process internal config files, we need the following variables: // BOARD_CONFIG_VENDOR_PATH // TARGET_VENDOR // target_base_product // // the following utility variables are set in build/make/common/core.mk: {"empty", ""}, {"space", " "}, {"comma", ","}, {"newline", "\n"}, {"pound", "#"}, {"backslash", "\\"}, } ctx := &parseContext{ script: ss, nodes: nodes, currentNodeIndex: 0, ifNestLevel: 0, moduleNameCount: make(map[string]int), variables: make(map[string]variable), dependentModules: make(map[string]*moduleInfo), soongNamespaces: make(map[string]map[string]bool), includeTops: []string{"vendor/google-devices"}, } ctx.pushVarAssignments() for _, item := range predefined { ctx.variables[item.name] = &predefinedVariable{ baseVariable: baseVariable{nam: item.name, typ: starlarkTypeString}, value: &stringLiteralExpr{item.value}, } } return ctx } func (ctx *parseContext) lastAssignment(name string) *assignmentNode { for va := ctx.varAssignments; va != nil; va = va.outer { if v, ok := va.vars[name]; ok { return v } } return nil } func (ctx *parseContext) setLastAssignment(name string, asgn *assignmentNode) { ctx.varAssignments.vars[name] = asgn } func (ctx *parseContext) pushVarAssignments() { va := &varAssignmentScope{ outer: ctx.varAssignments, vars: make(map[string]*assignmentNode), } ctx.varAssignments = va } func (ctx *parseContext) popVarAssignments() { ctx.varAssignments = ctx.varAssignments.outer } func (ctx *parseContext) pushReceiver(rcv nodeReceiver) { ctx.receiverStack = append(ctx.receiverStack, ctx.receiver) ctx.receiver = rcv } func (ctx *parseContext) popReceiver() { last := len(ctx.receiverStack) - 1 if last < 0 { panic(fmt.Errorf("popReceiver: receiver stack empty")) } ctx.receiver = ctx.receiverStack[last] ctx.receiverStack = ctx.receiverStack[0:last] } func (ctx *parseContext) hasNodes() bool { return ctx.currentNodeIndex < len(ctx.nodes) } func (ctx *parseContext) getNode() mkparser.Node { if !ctx.hasNodes() { return nil } node := ctx.nodes[ctx.currentNodeIndex] ctx.currentNodeIndex++ return node } func (ctx *parseContext) backNode() { if ctx.currentNodeIndex <= 0 { panic("Cannot back off") } ctx.currentNodeIndex-- } func (ctx *parseContext) handleAssignment(a *mkparser.Assignment) { // Handle only simple variables if !a.Name.Const() { ctx.errorf(a, "Only simple variables are handled") return } name := a.Name.Strings[0] // The `override` directive // override FOO := // is parsed as an assignment to a variable named `override FOO`. // There are very few places where `override` is used, just flag it. if strings.HasPrefix(name, "override ") { ctx.errorf(a, "cannot handle override directive") } // Soong configuration if strings.HasPrefix(name, soongNsPrefix) { ctx.handleSoongNsAssignment(strings.TrimPrefix(name, soongNsPrefix), a) return } lhs := ctx.addVariable(name) if lhs == nil { ctx.errorf(a, "unknown variable %s", name) return } _, isTraced := ctx.tracedVariables[name] asgn := &assignmentNode{lhs: lhs, mkValue: a.Value, isTraced: isTraced, location: ctx.errorLocation(a)} if lhs.valueType() == starlarkTypeUnknown { // Try to divine variable type from the RHS asgn.value = ctx.parseMakeString(a, a.Value) if xBad, ok := asgn.value.(*badExpr); ok { ctx.wrapBadExpr(xBad) return } inferred_type := asgn.value.typ() if inferred_type != starlarkTypeUnknown { lhs.setValueType(inferred_type) } } if lhs.valueType() == starlarkTypeList { xConcat := ctx.buildConcatExpr(a) if xConcat == nil { return } switch len(xConcat.items) { case 0: asgn.value = &listExpr{} case 1: asgn.value = xConcat.items[0] default: asgn.value = xConcat } } else { asgn.value = ctx.parseMakeString(a, a.Value) if xBad, ok := asgn.value.(*badExpr); ok { ctx.wrapBadExpr(xBad) return } } asgn.previous = ctx.lastAssignment(name) ctx.setLastAssignment(name, asgn) switch a.Type { case "=", ":=": asgn.flavor = asgnSet case "+=": if asgn.previous == nil && !asgn.lhs.isPreset() { asgn.flavor = asgnMaybeAppend } else { asgn.flavor = asgnAppend } case "?=": asgn.flavor = asgnMaybeSet default: panic(fmt.Errorf("unexpected assignment type %s", a.Type)) } ctx.receiver.newNode(asgn) } func (ctx *parseContext) handleSoongNsAssignment(name string, asgn *mkparser.Assignment) { val := ctx.parseMakeString(asgn, asgn.Value) if xBad, ok := val.(*badExpr); ok { ctx.wrapBadExpr(xBad) return } // Unfortunately, Soong namespaces can be set up by directly setting corresponding Make // variables instead of via add_soong_config_namespace + add_soong_config_var_value. // Try to divine the call from the assignment as follows: if name == "NAMESPACES" { // Upon seeng // SOONG_CONFIG_NAMESPACES += foo // remember that there is a namespace `foo` and act as we saw // $(call add_soong_config_namespace,foo) s, ok := maybeString(val) if !ok { ctx.errorf(asgn, "cannot handle variables in SOONG_CONFIG_NAMESPACES assignment, please use add_soong_config_namespace instead") return } for _, ns := range strings.Fields(s) { ctx.addSoongNamespace(ns) ctx.receiver.newNode(&exprNode{&callExpr{ name: soongConfigNamespaceOld, args: []starlarkExpr{&stringLiteralExpr{ns}}, returnType: starlarkTypeVoid, }}) } } else { // Upon seeing // SOONG_CONFIG_x_y = v // find a namespace called `x` and act as if we encountered // $(call soong_config_set,x,y,v) // or check that `x_y` is a namespace, and then add the RHS of this assignment as variables in // it. // Emit an error in the ambiguous situation (namespaces `foo_bar` with a variable `baz` // and `foo` with a variable `bar_baz`. namespaceName := "" if ctx.hasSoongNamespace(name) { namespaceName = name } var varName string for pos, ch := range name { if !(ch == '_' && ctx.hasSoongNamespace(name[0:pos])) { continue } if namespaceName != "" { ctx.errorf(asgn, "ambiguous soong namespace (may be either `%s` or `%s`)", namespaceName, name[0:pos]) return } namespaceName = name[0:pos] varName = name[pos+1:] } if namespaceName == "" { ctx.errorf(asgn, "cannot figure out Soong namespace, please use add_soong_config_var_value macro instead") return } if varName == "" { // Remember variables in this namespace s, ok := maybeString(val) if !ok { ctx.errorf(asgn, "cannot handle variables in SOONG_CONFIG_ assignment, please use add_soong_config_var_value instead") return } ctx.updateSoongNamespace(asgn.Type != "+=", namespaceName, strings.Fields(s)) return } // Finally, handle assignment to a namespace variable if !ctx.hasNamespaceVar(namespaceName, varName) { ctx.errorf(asgn, "no %s variable in %s namespace, please use add_soong_config_var_value instead", varName, namespaceName) return } fname := soongConfigAssign if asgn.Type == "+=" { fname = soongConfigAppend } ctx.receiver.newNode(&exprNode{&callExpr{ name: fname, args: []starlarkExpr{&stringLiteralExpr{namespaceName}, &stringLiteralExpr{varName}, val}, returnType: starlarkTypeVoid, }}) } } func (ctx *parseContext) buildConcatExpr(a *mkparser.Assignment) *concatExpr { xConcat := &concatExpr{} var xItemList *listExpr addToItemList := func(x ...starlarkExpr) { if xItemList == nil { xItemList = &listExpr{[]starlarkExpr{}} } xItemList.items = append(xItemList.items, x...) } finishItemList := func() { if xItemList != nil { xConcat.items = append(xConcat.items, xItemList) xItemList = nil } } items := a.Value.Words() for _, item := range items { // A function call in RHS is supposed to return a list, all other item // expressions return individual elements. switch x := ctx.parseMakeString(a, item).(type) { case *badExpr: ctx.wrapBadExpr(x) return nil case *stringLiteralExpr: addToItemList(maybeConvertToStringList(x).(*listExpr).items...) default: switch x.typ() { case starlarkTypeList: finishItemList() xConcat.items = append(xConcat.items, x) case starlarkTypeString: finishItemList() xConcat.items = append(xConcat.items, &callExpr{ object: x, name: "split", args: nil, returnType: starlarkTypeList, }) default: addToItemList(x) } } } if xItemList != nil { xConcat.items = append(xConcat.items, xItemList) } return xConcat } func (ctx *parseContext) newDependentModule(path string, optional bool) *moduleInfo { modulePath := ctx.loadedModulePath(path) if mi, ok := ctx.dependentModules[modulePath]; ok { mi.optional = mi.optional && optional return mi } moduleName := moduleNameForFile(path) moduleLocalName := "_" + moduleName n, found := ctx.moduleNameCount[moduleName] if found { moduleLocalName += fmt.Sprintf("%d", n) } ctx.moduleNameCount[moduleName] = n + 1 mi := &moduleInfo{ path: modulePath, originalPath: path, moduleLocalName: moduleLocalName, optional: optional, } ctx.dependentModules[modulePath] = mi ctx.script.inherited = append(ctx.script.inherited, mi) return mi } func (ctx *parseContext) handleSubConfig( v mkparser.Node, pathExpr starlarkExpr, loadAlways bool, processModule func(inheritedModule)) { // In a simple case, the name of a module to inherit/include is known statically. if path, ok := maybeString(pathExpr); ok { // Note that even if this directive loads a module unconditionally, a module may be // absent without causing any harm if this directive is inside an if/else block. moduleShouldExist := loadAlways && ctx.ifNestLevel == 0 if strings.Contains(path, "*") { if paths, err := fs.Glob(ctx.script.sourceFS, path); err == nil { for _, p := range paths { mi := ctx.newDependentModule(p, !moduleShouldExist) processModule(inheritedStaticModule{mi, loadAlways}) } } else { ctx.errorf(v, "cannot glob wildcard argument") } } else { mi := ctx.newDependentModule(path, !moduleShouldExist) processModule(inheritedStaticModule{mi, loadAlways}) } return } // If module path references variables (e.g., $(v1)/foo/$(v2)/device-config.mk), find all the paths in the // source tree that may be a match and the corresponding variable values. For instance, if the source tree // contains vendor1/foo/abc/dev.mk and vendor2/foo/def/dev.mk, the first one will be inherited when // (v1, v2) == ('vendor1', 'abc'), and the second one when (v1, v2) == ('vendor2', 'def'). // We then emit the code that loads all of them, e.g.: // load("//vendor1/foo/abc:dev.rbc", _dev1_init="init") // load("//vendor2/foo/def/dev.rbc", _dev2_init="init") // And then inherit it as follows: // _e = { // "vendor1/foo/abc/dev.mk": ("vendor1/foo/abc/dev", _dev1_init), // "vendor2/foo/def/dev.mk": ("vendor2/foo/def/dev", _dev_init2) }.get("%s/foo/%s/dev.mk" % (v1, v2)) // if _e: // rblf.inherit(handle, _e[0], _e[1]) // var matchingPaths []string varPath, ok := pathExpr.(*interpolateExpr) if !ok { ctx.errorf(v, "inherit-product/include argument is too complex") return } pathPattern := []string{varPath.chunks[0]} for _, chunk := range varPath.chunks[1:] { if chunk != "" { pathPattern = append(pathPattern, chunk) } } if pathPattern[0] == "" { // If pattern starts from the top. restrict it to the directories where // we know inherit-product uses dynamically calculated path. for _, p := range ctx.includeTops { pathPattern[0] = p matchingPaths = append(matchingPaths, ctx.findMatchingPaths(pathPattern)...) } } else { matchingPaths = ctx.findMatchingPaths(pathPattern) } // Safeguard against $(call inherit-product,$(PRODUCT_PATH)) const maxMatchingFiles = 150 if len(matchingPaths) > maxMatchingFiles { ctx.errorf(v, "there are >%d files matching the pattern, please rewrite it", maxMatchingFiles) return } res := inheritedDynamicModule{*varPath, []*moduleInfo{}, loadAlways} for _, p := range matchingPaths { // A product configuration files discovered dynamically may attempt to inherit // from another one which does not exist in this source tree. Prevent load errors // by always loading the dynamic files as optional. res.candidateModules = append(res.candidateModules, ctx.newDependentModule(p, true)) } processModule(res) } func (ctx *parseContext) findMatchingPaths(pattern []string) []string { files := ctx.script.makefileFinder.Find(ctx.script.topDir) if len(pattern) == 0 { return files } // Create regular expression from the pattern s_regexp := "^" + regexp.QuoteMeta(pattern[0]) for _, s := range pattern[1:] { s_regexp += ".*" + regexp.QuoteMeta(s) } s_regexp += "$" rex := regexp.MustCompile(s_regexp) // Now match var res []string for _, p := range files { if rex.MatchString(p) { res = append(res, p) } } return res } func (ctx *parseContext) handleInheritModule(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) { ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) { ctx.receiver.newNode(&inheritNode{im, loadAlways}) }) } func (ctx *parseContext) handleInclude(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) { ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) { ctx.receiver.newNode(&includeNode{im, loadAlways}) }) } func (ctx *parseContext) handleVariable(v *mkparser.Variable) { // Handle: // $(call inherit-product,...) // $(call inherit-product-if-exists,...) // $(info xxx) // $(warning xxx) // $(error xxx) expr := ctx.parseReference(v, v.Name) switch x := expr.(type) { case *callExpr: if x.name == callLoadAlways || x.name == callLoadIf { ctx.handleInheritModule(v, x.args[0], x.name == callLoadAlways) } else if isMakeControlFunc(x.name) { // File name is the first argument args := []starlarkExpr{ &stringLiteralExpr{ctx.script.mkFile}, x.args[0], } ctx.receiver.newNode(&exprNode{ &callExpr{name: x.name, args: args, returnType: starlarkTypeUnknown}, }) } else { ctx.receiver.newNode(&exprNode{expr}) } case *badExpr: ctx.wrapBadExpr(x) return default: ctx.errorf(v, "cannot handle %s", v.Dump()) return } } func (ctx *parseContext) handleDefine(directive *mkparser.Directive) { macro_name := strings.Fields(directive.Args.Strings[0])[0] // Ignore the macros that we handle if _, ok := knownFunctions[macro_name]; !ok { ctx.errorf(directive, "define is not supported: %s", macro_name) } } func (ctx *parseContext) handleIfBlock(ifDirective *mkparser.Directive) { ssSwitch := &switchNode{} ctx.pushReceiver(ssSwitch) for ctx.processBranch(ifDirective); ctx.hasNodes() && ctx.fatalError == nil; { node := ctx.getNode() switch x := node.(type) { case *mkparser.Directive: switch x.Name { case "else", "elifdef", "elifndef", "elifeq", "elifneq": ctx.processBranch(x) case "endif": ctx.popReceiver() ctx.receiver.newNode(ssSwitch) return default: ctx.errorf(node, "unexpected directive %s", x.Name) } default: ctx.errorf(ifDirective, "unexpected statement") } } if ctx.fatalError == nil { ctx.fatalError = fmt.Errorf("no matching endif for %s", ifDirective.Dump()) } ctx.popReceiver() } // processBranch processes a single branch (if/elseif/else) until the next directive // on the same level. func (ctx *parseContext) processBranch(check *mkparser.Directive) { block := switchCase{gate: ctx.parseCondition(check)} defer func() { ctx.popVarAssignments() ctx.ifNestLevel-- }() ctx.pushVarAssignments() ctx.ifNestLevel++ ctx.pushReceiver(&block) for ctx.hasNodes() { node := ctx.getNode() if d, ok := node.(*mkparser.Directive); ok { switch d.Name { case "else", "elifdef", "elifndef", "elifeq", "elifneq", "endif": ctx.popReceiver() ctx.receiver.newNode(&block) ctx.backNode() return } } ctx.handleSimpleStatement(node) } ctx.fatalError = fmt.Errorf("no matching endif for %s", check.Dump()) ctx.popReceiver() } func (ctx *parseContext) newIfDefinedNode(check *mkparser.Directive) (starlarkExpr, bool) { if !check.Args.Const() { return ctx.newBadExpr(check, "ifdef variable ref too complex: %s", check.Args.Dump()), false } v := ctx.addVariable(check.Args.Strings[0]) return &variableDefinedExpr{v}, true } func (ctx *parseContext) parseCondition(check *mkparser.Directive) starlarkNode { switch check.Name { case "ifdef", "ifndef", "elifdef", "elifndef": v, ok := ctx.newIfDefinedNode(check) if ok && strings.HasSuffix(check.Name, "ndef") { v = ¬Expr{v} } return &ifNode{ isElif: strings.HasPrefix(check.Name, "elif"), expr: v, } case "ifeq", "ifneq", "elifeq", "elifneq": return &ifNode{ isElif: strings.HasPrefix(check.Name, "elif"), expr: ctx.parseCompare(check), } case "else": return &elseNode{} default: panic(fmt.Errorf("%s: unknown directive: %s", ctx.script.mkFile, check.Dump())) } } func (ctx *parseContext) newBadExpr(node mkparser.Node, text string, args ...interface{}) starlarkExpr { message := fmt.Sprintf(text, args...) if ctx.errorLogger != nil { ctx.errorLogger.NewError(ctx.errorLocation(node), node, text, args...) } ctx.script.hasErrors = true return &badExpr{errorLocation: ctx.errorLocation(node), message: message} } func (ctx *parseContext) parseCompare(cond *mkparser.Directive) starlarkExpr { // Strip outer parentheses mkArg := cloneMakeString(cond.Args) mkArg.Strings[0] = strings.TrimLeft(mkArg.Strings[0], "( ") n := len(mkArg.Strings) mkArg.Strings[n-1] = strings.TrimRight(mkArg.Strings[n-1], ") ") args := mkArg.Split(",") // TODO(asmundak): handle the case where the arguments are in quotes and space-separated if len(args) != 2 { return ctx.newBadExpr(cond, "ifeq/ifneq len(args) != 2 %s", cond.Dump()) } args[0].TrimRightSpaces() args[1].TrimLeftSpaces() isEq := !strings.HasSuffix(cond.Name, "neq") xLeft := ctx.parseMakeString(cond, args[0]) xRight := ctx.parseMakeString(cond, args[1]) if bad, ok := xLeft.(*badExpr); ok { return bad } if bad, ok := xRight.(*badExpr); ok { return bad } if expr, ok := ctx.parseCompareSpecialCases(cond, xLeft, xRight); ok { return expr } return &eqExpr{left: xLeft, right: xRight, isEq: isEq} } // Given an if statement's directive and the left/right starlarkExprs, // check if the starlarkExprs are one of a few hardcoded special cases // that can be converted to a simpler equalify expression than simply comparing // the two. func (ctx *parseContext) parseCompareSpecialCases(directive *mkparser.Directive, left starlarkExpr, right starlarkExpr) (starlarkExpr, bool) { isEq := !strings.HasSuffix(directive.Name, "neq") // All the special cases require a call on one side and a // string literal/variable on the other. Turn the left/right variables into // call/value variables, and return false if that's not possible. var value starlarkExpr = nil call, ok := left.(*callExpr) if ok { switch right.(type) { case *stringLiteralExpr, *variableRefExpr: value = right } } else { call, _ = right.(*callExpr) switch left.(type) { case *stringLiteralExpr, *variableRefExpr: value = left } } if call == nil || value == nil { return nil, false } checkIsSomethingFunction := func(xCall *callExpr) starlarkExpr { s, ok := maybeString(value) if !ok || s != "true" { return ctx.newBadExpr(directive, fmt.Sprintf("the result of %s can be compared only to 'true'", xCall.name)) } if len(xCall.args) < 1 { return ctx.newBadExpr(directive, "%s requires an argument", xCall.name) } return nil } switch call.name { case "filter", "filter-out": return ctx.parseCompareFilterFuncResult(directive, call, value, isEq), true case "wildcard": return ctx.parseCompareWildcardFuncResult(directive, call, value, !isEq), true case "findstring": return ctx.parseCheckFindstringFuncResult(directive, call, value, !isEq), true case "strip": return ctx.parseCompareStripFuncResult(directive, call, value, !isEq), true case "is-board-platform": if xBad := checkIsSomethingFunction(call); xBad != nil { return xBad, true } return &eqExpr{ left: NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM"), false), right: call.args[0], isEq: isEq, }, true case "is-board-platform-in-list": if xBad := checkIsSomethingFunction(call); xBad != nil { return xBad, true } return &inExpr{ expr: NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM"), false), list: maybeConvertToStringList(call.args[0]), isNot: !isEq, }, true case "is-product-in-list": if xBad := checkIsSomethingFunction(call); xBad != nil { return xBad, true } return &inExpr{ expr: NewVariableRefExpr(ctx.addVariable("TARGET_PRODUCT"), true), list: maybeConvertToStringList(call.args[0]), isNot: !isEq, }, true case "is-vendor-board-platform": if xBad := checkIsSomethingFunction(call); xBad != nil { return xBad, true } s, ok := maybeString(call.args[0]) if !ok { return ctx.newBadExpr(directive, "cannot handle non-constant argument to is-vendor-board-platform"), true } return &inExpr{ expr: NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM"), false), list: NewVariableRefExpr(ctx.addVariable(s+"_BOARD_PLATFORMS"), true), isNot: !isEq, }, true case "is-board-platform2", "is-board-platform-in-list2": if s, ok := maybeString(value); !ok || s != "" { return ctx.newBadExpr(directive, fmt.Sprintf("the result of %s can be compared only to empty", call.name)), true } if len(call.args) != 1 { return ctx.newBadExpr(directive, "%s requires an argument", call.name), true } cc := &callExpr{ name: call.name, args: []starlarkExpr{call.args[0]}, returnType: starlarkTypeBool, } if isEq { return ¬Expr{cc}, true } return cc, true case "is-vendor-board-qcom": if s, ok := maybeString(value); !ok || s != "" { return ctx.newBadExpr(directive, fmt.Sprintf("the result of %s can be compared only to empty", call.name)), true } // if the expression is ifneq (,$(call is-vendor-board-platform,...)), negate==true, // so we should set inExpr.isNot to false return &inExpr{ expr: NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM"), false), list: NewVariableRefExpr(ctx.addVariable("QCOM_BOARD_PLATFORMS"), true), isNot: isEq, }, true } return nil, false } func (ctx *parseContext) parseCompareFilterFuncResult(cond *mkparser.Directive, filterFuncCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { // We handle: // * ifeq/ifneq (,$(filter v1 v2 ..., EXPR) becomes if EXPR not in/in ["v1", "v2", ...] // * ifeq/ifneq (,$(filter EXPR, v1 v2 ...) becomes if EXPR not in/in ["v1", "v2", ...] // * ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...) becomes if VAR in/not in ["v1", "v2"] // TODO(Asmundak): check the last case works for filter-out, too. xPattern := filterFuncCall.args[0] xText := filterFuncCall.args[1] var xInList *stringLiteralExpr var expr starlarkExpr var ok bool switch x := xValue.(type) { case *stringLiteralExpr: if x.literal != "" { return ctx.newBadExpr(cond, "filter comparison to non-empty value: %s", xValue) } // Either pattern or text should be const, and the // non-const one should be varRefExpr if xInList, ok = xPattern.(*stringLiteralExpr); ok && !strings.ContainsRune(xInList.literal, '%') && xText.typ() == starlarkTypeList { expr = xText } else if xInList, ok = xText.(*stringLiteralExpr); ok { expr = xPattern } else { expr = &callExpr{ object: nil, name: filterFuncCall.name, args: filterFuncCall.args, returnType: starlarkTypeBool, } if negate { expr = ¬Expr{expr: expr} } return expr } case *variableRefExpr: if v, ok := xPattern.(*variableRefExpr); ok { if xInList, ok = xText.(*stringLiteralExpr); ok && v.ref.name() == x.ref.name() { // ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...), flip negate, // it's the opposite to what is done when comparing to empty. expr = xPattern negate = !negate } } } if expr != nil && xInList != nil { slExpr := newStringListExpr(strings.Fields(xInList.literal)) // Generate simpler code for the common cases: if expr.typ() == starlarkTypeList { if len(slExpr.items) == 1 { // Checking that a string belongs to list return &inExpr{isNot: negate, list: expr, expr: slExpr.items[0]} } else { // TODO(asmundak): panic("TBD") } } else if len(slExpr.items) == 1 { return &eqExpr{left: expr, right: slExpr.items[0], isEq: !negate} } else { return &inExpr{isNot: negate, list: newStringListExpr(strings.Fields(xInList.literal)), expr: expr} } } return ctx.newBadExpr(cond, "filter arguments are too complex: %s", cond.Dump()) } func (ctx *parseContext) parseCompareWildcardFuncResult(directive *mkparser.Directive, xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { if !isEmptyString(xValue) { return ctx.newBadExpr(directive, "wildcard result can be compared only to empty: %s", xValue) } callFunc := wildcardExistsPhony if s, ok := xCall.args[0].(*stringLiteralExpr); ok && !strings.ContainsAny(s.literal, "*?{[") { callFunc = fileExistsPhony } var cc starlarkExpr = &callExpr{name: callFunc, args: xCall.args, returnType: starlarkTypeBool} if !negate { cc = ¬Expr{cc} } return cc } func (ctx *parseContext) parseCheckFindstringFuncResult(directive *mkparser.Directive, xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { if isEmptyString(xValue) { return &eqExpr{ left: &callExpr{ object: xCall.args[1], name: "find", args: []starlarkExpr{xCall.args[0]}, returnType: starlarkTypeInt, }, right: &intLiteralExpr{-1}, isEq: !negate, } } else if s, ok := maybeString(xValue); ok { if s2, ok := maybeString(xCall.args[0]); ok && s == s2 { return &eqExpr{ left: &callExpr{ object: xCall.args[1], name: "find", args: []starlarkExpr{xCall.args[0]}, returnType: starlarkTypeInt, }, right: &intLiteralExpr{-1}, isEq: negate, } } } return ctx.newBadExpr(directive, "$(findstring) can only be compared to nothing or its first argument") } func (ctx *parseContext) parseCompareStripFuncResult(directive *mkparser.Directive, xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { if _, ok := xValue.(*stringLiteralExpr); !ok { return ctx.newBadExpr(directive, "strip result can be compared only to string: %s", xValue) } return &eqExpr{ left: &callExpr{ name: "strip", args: xCall.args, returnType: starlarkTypeString, }, right: xValue, isEq: !negate} } // parses $(...), returning an expression func (ctx *parseContext) parseReference(node mkparser.Node, ref *mkparser.MakeString) starlarkExpr { ref.TrimLeftSpaces() ref.TrimRightSpaces() refDump := ref.Dump() // Handle only the case where the first (or only) word is constant words := ref.SplitN(" ", 2) if !words[0].Const() { return ctx.newBadExpr(node, "reference is too complex: %s", refDump) } // If it is a single word, it can be a simple variable // reference or a function call if len(words) == 1 { if isMakeControlFunc(refDump) || refDump == "shell" { return &callExpr{ name: refDump, args: []starlarkExpr{&stringLiteralExpr{""}}, returnType: starlarkTypeUnknown, } } if strings.HasPrefix(refDump, soongNsPrefix) { // TODO (asmundak): if we find many, maybe handle them. return ctx.newBadExpr(node, "SOONG_CONFIG_ variables cannot be referenced, use soong_config_get instead: %s", refDump) } // Handle substitution references: https://www.gnu.org/software/make/manual/html_node/Substitution-Refs.html if strings.Contains(refDump, ":") { parts := strings.SplitN(refDump, ":", 2) substParts := strings.SplitN(parts[1], "=", 2) if len(substParts) < 2 || strings.Count(substParts[0], "%") > 1 { return ctx.newBadExpr(node, "Invalid substitution reference") } if !strings.Contains(substParts[0], "%") { if strings.Contains(substParts[1], "%") { return ctx.newBadExpr(node, "A substitution reference must have a %% in the \"before\" part of the substitution if it has one in the \"after\" part.") } substParts[0] = "%" + substParts[0] substParts[1] = "%" + substParts[1] } v := ctx.addVariable(parts[0]) if v == nil { return ctx.newBadExpr(node, "unknown variable %s", refDump) } return &callExpr{ name: "patsubst", returnType: knownFunctions["patsubst"].returnType, args: []starlarkExpr{ &stringLiteralExpr{literal: substParts[0]}, &stringLiteralExpr{literal: substParts[1]}, NewVariableRefExpr(v, ctx.lastAssignment(v.name()) != nil), }, } } if v := ctx.addVariable(refDump); v != nil { return NewVariableRefExpr(v, ctx.lastAssignment(v.name()) != nil) } return ctx.newBadExpr(node, "unknown variable %s", refDump) } expr := &callExpr{name: words[0].Dump(), returnType: starlarkTypeUnknown} args := words[1] args.TrimLeftSpaces() // Make control functions and shell need special treatment as everything // after the name is a single text argument if isMakeControlFunc(expr.name) || expr.name == "shell" { x := ctx.parseMakeString(node, args) if xBad, ok := x.(*badExpr); ok { return xBad } expr.args = []starlarkExpr{x} return expr } if expr.name == "call" { words = args.SplitN(",", 2) if words[0].Empty() || !words[0].Const() { return ctx.newBadExpr(node, "cannot handle %s", refDump) } expr.name = words[0].Dump() if len(words) < 2 { args = &mkparser.MakeString{} } else { args = words[1] } } if kf, found := knownFunctions[expr.name]; found { expr.returnType = kf.returnType } else { return ctx.newBadExpr(node, "cannot handle invoking %s", expr.name) } switch expr.name { case "if": return ctx.parseIfFunc(node, args) case "foreach": return ctx.parseForeachFunc(node, args) case "word": return ctx.parseWordFunc(node, args) case "firstword", "lastword": return ctx.parseFirstOrLastwordFunc(node, expr.name, args) case "my-dir": return NewVariableRefExpr(ctx.addVariable("LOCAL_PATH"), true) case "subst", "patsubst": return ctx.parseSubstFunc(node, expr.name, args) default: for _, arg := range args.Split(",") { arg.TrimLeftSpaces() arg.TrimRightSpaces() x := ctx.parseMakeString(node, arg) if xBad, ok := x.(*badExpr); ok { return xBad } expr.args = append(expr.args, x) } } return expr } func (ctx *parseContext) parseSubstFunc(node mkparser.Node, fname string, args *mkparser.MakeString) starlarkExpr { words := args.Split(",") if len(words) != 3 { return ctx.newBadExpr(node, "%s function should have 3 arguments", fname) } from := ctx.parseMakeString(node, words[0]) if xBad, ok := from.(*badExpr); ok { return xBad } to := ctx.parseMakeString(node, words[1]) if xBad, ok := to.(*badExpr); ok { return xBad } words[2].TrimLeftSpaces() words[2].TrimRightSpaces() obj := ctx.parseMakeString(node, words[2]) typ := obj.typ() if typ == starlarkTypeString && fname == "subst" { // Optimization: if it's $(subst from, to, string), emit string.replace(from, to) return &callExpr{ object: obj, name: "replace", args: []starlarkExpr{from, to}, returnType: typ, } } return &callExpr{ name: fname, args: []starlarkExpr{from, to, obj}, returnType: obj.typ(), } } func (ctx *parseContext) parseIfFunc(node mkparser.Node, args *mkparser.MakeString) starlarkExpr { words := args.Split(",") if len(words) != 2 && len(words) != 3 { return ctx.newBadExpr(node, "if function should have 2 or 3 arguments, found "+strconv.Itoa(len(words))) } condition := ctx.parseMakeString(node, words[0]) ifTrue := ctx.parseMakeString(node, words[1]) var ifFalse starlarkExpr if len(words) == 3 { ifFalse = ctx.parseMakeString(node, words[2]) } else { switch ifTrue.typ() { case starlarkTypeList: ifFalse = &listExpr{items: []starlarkExpr{}} case starlarkTypeInt: ifFalse = &intLiteralExpr{literal: 0} case starlarkTypeBool: ifFalse = &boolLiteralExpr{literal: false} default: ifFalse = &stringLiteralExpr{literal: ""} } } return &ifExpr{ condition, ifTrue, ifFalse, } } func (ctx *parseContext) parseForeachFunc(node mkparser.Node, args *mkparser.MakeString) starlarkExpr { words := args.Split(",") if len(words) != 3 { return ctx.newBadExpr(node, "foreach function should have 3 arguments, found "+strconv.Itoa(len(words))) } if !words[0].Const() || words[0].Empty() || !identifierFullMatchRegex.MatchString(words[0].Strings[0]) { return ctx.newBadExpr(node, "first argument to foreach function must be a simple string identifier") } loopVarName := words[0].Strings[0] list := ctx.parseMakeString(node, words[1]) action := ctx.parseMakeString(node, words[2]).transform(func(expr starlarkExpr) starlarkExpr { if varRefExpr, ok := expr.(*variableRefExpr); ok && varRefExpr.ref.name() == loopVarName { return &identifierExpr{loopVarName} } return nil }) if list.typ() != starlarkTypeList { list = &callExpr{ name: "words", returnType: knownFunctions["words"].returnType, args: []starlarkExpr{list}, } } return &foreachExpr{ varName: loopVarName, list: list, action: action, } } func (ctx *parseContext) parseWordFunc(node mkparser.Node, args *mkparser.MakeString) starlarkExpr { words := args.Split(",") if len(words) != 2 { return ctx.newBadExpr(node, "word function should have 2 arguments") } var index uint64 = 0 if words[0].Const() { index, _ = strconv.ParseUint(strings.TrimSpace(words[0].Strings[0]), 10, 64) } if index < 1 { return ctx.newBadExpr(node, "word index should be constant positive integer") } words[1].TrimLeftSpaces() words[1].TrimRightSpaces() array := ctx.parseMakeString(node, words[1]) if xBad, ok := array.(*badExpr); ok { return xBad } if array.typ() != starlarkTypeList { array = &callExpr{object: array, name: "split", returnType: starlarkTypeList} } return &indexExpr{array, &intLiteralExpr{int(index - 1)}} } func (ctx *parseContext) parseFirstOrLastwordFunc(node mkparser.Node, name string, args *mkparser.MakeString) starlarkExpr { arg := ctx.parseMakeString(node, args) if bad, ok := arg.(*badExpr); ok { return bad } index := &intLiteralExpr{0} if name == "lastword" { if v, ok := arg.(*variableRefExpr); ok && v.ref.name() == "MAKEFILE_LIST" { return &stringLiteralExpr{ctx.script.mkFile} } index.literal = -1 } if arg.typ() == starlarkTypeList { return &indexExpr{arg, index} } return &indexExpr{&callExpr{object: arg, name: "split", returnType: starlarkTypeList}, index} } func (ctx *parseContext) parseMakeString(node mkparser.Node, mk *mkparser.MakeString) starlarkExpr { if mk.Const() { return &stringLiteralExpr{mk.Dump()} } if mkRef, ok := mk.SingleVariable(); ok { return ctx.parseReference(node, mkRef) } // If we reached here, it's neither string literal nor a simple variable, // we need a full-blown interpolation node that will generate // "a%b%c" % (X, Y) for a$(X)b$(Y)c parts := make([]starlarkExpr, len(mk.Variables)+len(mk.Strings)) for i := 0; i < len(parts); i++ { if i%2 == 0 { parts[i] = &stringLiteralExpr{literal: mk.Strings[i/2]} } else { parts[i] = ctx.parseReference(node, mk.Variables[i/2].Name) if x, ok := parts[i].(*badExpr); ok { return x } } } return NewInterpolateExpr(parts) } // Handles the statements whose treatment is the same in all contexts: comment, // assignment, variable (which is a macro call in reality) and all constructs that // do not handle in any context ('define directive and any unrecognized stuff). func (ctx *parseContext) handleSimpleStatement(node mkparser.Node) { switch x := node.(type) { case *mkparser.Comment: ctx.maybeHandleAnnotation(x) ctx.insertComment("#" + x.Comment) case *mkparser.Assignment: ctx.handleAssignment(x) case *mkparser.Variable: ctx.handleVariable(x) case *mkparser.Directive: switch x.Name { case "define": ctx.handleDefine(x) case "include", "-include": ctx.handleInclude(node, ctx.parseMakeString(node, x.Args), x.Name[0] != '-') case "ifeq", "ifneq", "ifdef", "ifndef": ctx.handleIfBlock(x) default: ctx.errorf(x, "unexpected directive %s", x.Name) } default: ctx.errorf(x, "unsupported line %s", strings.ReplaceAll(x.Dump(), "\n", "\n#")) } } // Processes annotation. An annotation is a comment that starts with #RBC# and provides // a conversion hint -- say, where to look for the dynamically calculated inherit/include // paths. func (ctx *parseContext) maybeHandleAnnotation(cnode *mkparser.Comment) { maybeTrim := func(s, prefix string) (string, bool) { if strings.HasPrefix(s, prefix) { return strings.TrimSpace(strings.TrimPrefix(s, prefix)), true } return s, false } annotation, ok := maybeTrim(cnode.Comment, annotationCommentPrefix) if !ok { return } if p, ok := maybeTrim(annotation, "include_top"); ok { // Don't allow duplicate include tops, because then we will generate // invalid starlark code. (duplicate keys in the _entry dictionary) for _, top := range ctx.includeTops { if top == p { return } } ctx.includeTops = append(ctx.includeTops, p) return } ctx.errorf(cnode, "unsupported annotation %s", cnode.Comment) } func (ctx *parseContext) insertComment(s string) { ctx.receiver.newNode(&commentNode{strings.TrimSpace(s)}) } func (ctx *parseContext) carryAsComment(failedNode mkparser.Node) { for _, line := range strings.Split(failedNode.Dump(), "\n") { ctx.insertComment("# " + line) } } // records that the given node failed to be converted and includes an explanatory message func (ctx *parseContext) errorf(failedNode mkparser.Node, message string, args ...interface{}) { if ctx.errorLogger != nil { ctx.errorLogger.NewError(ctx.errorLocation(failedNode), failedNode, message, args...) } ctx.receiver.newNode(&exprNode{ctx.newBadExpr(failedNode, message, args...)}) ctx.script.hasErrors = true } func (ctx *parseContext) wrapBadExpr(xBad *badExpr) { ctx.receiver.newNode(&exprNode{xBad}) } func (ctx *parseContext) loadedModulePath(path string) string { // During the transition to Roboleaf some of the product configuration files // will be converted and checked in while the others will be generated on the fly // and run. The runner (rbcrun application) accommodates this by allowing three // different ways to specify the loaded file location: // 1) load(":",...) loads from the same directory // 2) load("//path/relative/to/source/root:", ...) loads source tree // 3) load("/absolute/path/to/ absolute path // If the file being generated and the file it wants to load are in the same directory, // generate option 1. // Otherwise, if output directory is not specified, generate 2) // Finally, if output directory has been specified and the file being generated and // the file it wants to load from are in the different directories, generate 2) or 3): // * if the file being loaded exists in the source tree, generate 2) // * otherwise, generate 3) // Finally, figure out the loaded module path and name and create a node for it loadedModuleDir := filepath.Dir(path) base := filepath.Base(path) loadedModuleName := strings.TrimSuffix(base, filepath.Ext(base)) + ctx.outputSuffix if loadedModuleDir == filepath.Dir(ctx.script.mkFile) { return ":" + loadedModuleName } if ctx.outputDir == "" { return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName) } if _, err := os.Stat(filepath.Join(loadedModuleDir, loadedModuleName)); err == nil { return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName) } return filepath.Join(ctx.outputDir, loadedModuleDir, loadedModuleName) } func (ctx *parseContext) addSoongNamespace(ns string) { if _, ok := ctx.soongNamespaces[ns]; ok { return } ctx.soongNamespaces[ns] = make(map[string]bool) } func (ctx *parseContext) hasSoongNamespace(name string) bool { _, ok := ctx.soongNamespaces[name] return ok } func (ctx *parseContext) updateSoongNamespace(replace bool, namespaceName string, varNames []string) { ctx.addSoongNamespace(namespaceName) vars := ctx.soongNamespaces[namespaceName] if replace { vars = make(map[string]bool) ctx.soongNamespaces[namespaceName] = vars } for _, v := range varNames { vars[v] = true } } func (ctx *parseContext) hasNamespaceVar(namespaceName string, varName string) bool { vars, ok := ctx.soongNamespaces[namespaceName] if ok { _, ok = vars[varName] } return ok } func (ctx *parseContext) errorLocation(node mkparser.Node) ErrorLocation { return ErrorLocation{ctx.script.mkFile, ctx.script.nodeLocator(node.Pos())} } func (ss *StarlarkScript) String() string { return NewGenerateContext(ss).emit() } func (ss *StarlarkScript) SubConfigFiles() []string { var subs []string for _, src := range ss.inherited { subs = append(subs, src.originalPath) } return subs } func (ss *StarlarkScript) HasErrors() bool { return ss.hasErrors } // Convert reads and parses a makefile. If successful, parsed tree // is returned and then can be passed to String() to get the generated // Starlark file. func Convert(req Request) (*StarlarkScript, error) { reader := req.Reader if reader == nil { mkContents, err := ioutil.ReadFile(req.MkFile) if err != nil { return nil, err } reader = bytes.NewBuffer(mkContents) } parser := mkparser.NewParser(req.MkFile, reader) nodes, errs := parser.Parse() if len(errs) > 0 { for _, e := range errs { fmt.Fprintln(os.Stderr, "ERROR:", e) } return nil, fmt.Errorf("bad makefile %s", req.MkFile) } starScript := &StarlarkScript{ moduleName: moduleNameForFile(req.MkFile), mkFile: req.MkFile, topDir: req.RootDir, traceCalls: req.TraceCalls, sourceFS: req.SourceFS, makefileFinder: req.MakefileFinder, nodeLocator: func(pos mkparser.Pos) int { return parser.Unpack(pos).Line }, } ctx := newParseContext(starScript, nodes) ctx.outputSuffix = req.OutputSuffix ctx.outputDir = req.OutputDir ctx.errorLogger = req.ErrorLogger if len(req.TracedVariables) > 0 { ctx.tracedVariables = make(map[string]bool) for _, v := range req.TracedVariables { ctx.tracedVariables[v] = true } } ctx.pushReceiver(starScript) for ctx.hasNodes() && ctx.fatalError == nil { ctx.handleSimpleStatement(ctx.getNode()) } if ctx.fatalError != nil { return nil, ctx.fatalError } return starScript, nil } func Launcher(mainModuleUri, inputVariablesUri, mainModuleName string) string { var buf bytes.Buffer fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName) fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri) fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri) fmt.Fprintf(&buf, "%s(%s(%q, init, input_variables_init))\n", cfnPrintVars, cfnMain, mainModuleName) return buf.String() } func BoardLauncher(mainModuleUri string, inputVariablesUri string) string { var buf bytes.Buffer fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName) fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri) fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri) fmt.Fprintf(&buf, "globals, cfg, globals_base = %s(init, input_variables_init)\n", cfnBoardMain) fmt.Fprintf(&buf, "# TODO: Some product config variables need to be printed, but most are readonly so we can't just print cfg here.\n") fmt.Fprintf(&buf, "%s((globals, cfg, globals_base))\n", cfnPrintVars) return buf.String() } func MakePath2ModuleName(mkPath string) string { return strings.TrimSuffix(mkPath, filepath.Ext(mkPath)) }