// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package android import ( "fmt" "reflect" "runtime" "strings" "github.com/google/blueprint/proptools" ) var ( archTypeList []ArchType Arm = newArch("arm", "lib32") Arm64 = newArch("arm64", "lib64") Mips = newArch("mips", "lib32") Mips64 = newArch("mips64", "lib64") X86 = newArch("x86", "lib32") X86_64 = newArch("x86_64", "lib64") Common = ArchType{ Name: "common", } ) var archTypeMap = map[string]ArchType{ "arm": Arm, "arm64": Arm64, "mips": Mips, "mips64": Mips64, "x86": X86, "x86_64": X86_64, } /* Example blueprints file containing all variant property groups, with comment listing what type of variants get properties in that group: module { arch: { arm: { // Host or device variants with arm architecture }, arm64: { // Host or device variants with arm64 architecture }, mips: { // Host or device variants with mips architecture }, mips64: { // Host or device variants with mips64 architecture }, x86: { // Host or device variants with x86 architecture }, x86_64: { // Host or device variants with x86_64 architecture }, }, multilib: { lib32: { // Host or device variants for 32-bit architectures }, lib64: { // Host or device variants for 64-bit architectures }, }, target: { android: { // Device variants }, host: { // Host variants }, linux_glibc: { // Linux host variants }, darwin: { // Darwin host variants }, windows: { // Windows host variants }, not_windows: { // Non-windows host variants }, }, } */ var archVariants = map[ArchType][]string{} var archFeatures = map[ArchType][]string{} var archFeatureMap = map[ArchType]map[string][]string{} func RegisterArchVariants(arch ArchType, variants ...string) { checkCalledFromInit() archVariants[arch] = append(archVariants[arch], variants...) } func RegisterArchFeatures(arch ArchType, features ...string) { checkCalledFromInit() archFeatures[arch] = append(archFeatures[arch], features...) } func RegisterArchVariantFeatures(arch ArchType, variant string, features ...string) { checkCalledFromInit() if variant != "" && !InList(variant, archVariants[arch]) { panic(fmt.Errorf("Invalid variant %q for arch %q", variant, arch)) } for _, feature := range features { if !InList(feature, archFeatures[arch]) { panic(fmt.Errorf("Invalid feature %q for arch %q variant %q", feature, arch, variant)) } } if archFeatureMap[arch] == nil { archFeatureMap[arch] = make(map[string][]string) } archFeatureMap[arch][variant] = features } // An Arch indicates a single CPU architecture. type Arch struct { ArchType ArchType ArchVariant string CpuVariant string Abi []string ArchFeatures []string Native bool } func (a Arch) String() string { s := a.ArchType.String() if a.ArchVariant != "" { s += "_" + a.ArchVariant } if a.CpuVariant != "" { s += "_" + a.CpuVariant } return s } type ArchType struct { Name string Field string Multilib string } func newArch(name, multilib string) ArchType { archType := ArchType{ Name: name, Field: proptools.FieldNameForProperty(name), Multilib: multilib, } archTypeList = append(archTypeList, archType) return archType } func (a ArchType) String() string { return a.Name } var BuildOs = func() OsType { switch runtime.GOOS { case "linux": return Linux case "darwin": return Darwin default: panic(fmt.Sprintf("unsupported OS: %s", runtime.GOOS)) } }() var ( osTypeList []OsType commonTargetMap = make(map[string]Target) NoOsType OsType Linux = NewOsType("linux_glibc", Host, false) Darwin = NewOsType("darwin", Host, false) LinuxBionic = NewOsType("linux_bionic", Host, false) Windows = NewOsType("windows", HostCross, true) Android = NewOsType("android", Device, false) osArchTypeMap = map[OsType][]ArchType{ Linux: []ArchType{X86, X86_64}, LinuxBionic: []ArchType{X86_64}, Darwin: []ArchType{X86_64}, Windows: []ArchType{X86, X86_64}, Android: []ArchType{Arm, Arm64, Mips, Mips64, X86, X86_64}, } ) type OsType struct { Name, Field string Class OsClass DefaultDisabled bool } type OsClass int const ( Generic OsClass = iota Device Host HostCross ) func (class OsClass) String() string { switch class { case Generic: return "generic" case Device: return "device" case Host: return "host" case HostCross: return "host cross" default: panic(fmt.Errorf("unknown class %d", class)) } } func (os OsType) String() string { return os.Name } func (os OsType) Bionic() bool { return os == Android || os == LinuxBionic } func (os OsType) Linux() bool { return os == Android || os == Linux || os == LinuxBionic } func NewOsType(name string, class OsClass, defDisabled bool) OsType { os := OsType{ Name: name, Field: strings.Title(name), Class: class, DefaultDisabled: defDisabled, } osTypeList = append(osTypeList, os) if _, found := commonTargetMap[name]; found { panic(fmt.Errorf("Found Os type duplicate during OsType registration: %q", name)) } else { commonTargetMap[name] = Target{Os: os, Arch: Arch{ArchType: Common}} } return os } func osByName(name string) OsType { for _, os := range osTypeList { if os.Name == name { return os } } return NoOsType } type Target struct { Os OsType Arch Arch } func (target Target) String() string { return target.Os.String() + "_" + target.Arch.String() } // archMutator splits a module into a variant for each Target requested by the module. Target selection // for a module is in three levels, OsClass, mulitlib, and then Target. // OsClass selection is determined by: // - The HostOrDeviceSupported value passed in to InitAndroidArchModule by the module type factory, which selects // whether the module type can compile for host, device or both. // - The host_supported and device_supported properties on the module. // If host is supported for the module, the Host and HostCross OsClasses are are selected. If device is supported // for the module, the Device OsClass is selected. // Within each selected OsClass, the multilib selection is determined by: // - The compile_multilib property if it set (which may be overriden by target.android.compile_multlib or // target.host.compile_multilib). // - The default multilib passed to InitAndroidArchModule if compile_multilib was not set. // Valid multilib values include: // "both": compile for all Targets supported by the OsClass (generally x86_64 and x86, or arm64 and arm). // "first": compile for only a single preferred Target supported by the OsClass. This is generally x86_64 or arm64, // but may be arm for a 32-bit only build or a build with TARGET_PREFER_32_BIT=true set. // "32": compile for only a single 32-bit Target supported by the OsClass. // "64": compile for only a single 64-bit Target supported by the OsClass. // "common": compile a for a single Target that will work on all Targets suported by the OsClass (for example Java). // // Once the list of Targets is determined, the module is split into a variant for each Target. // // Modules can be initialized with InitAndroidMultiTargetsArchModule, in which case they will be split by OsClass, // but will have a common Target that is expected to handle all other selected Targets via ctx.MultiTargets(). func archMutator(mctx BottomUpMutatorContext) { var module Module var ok bool if module, ok = mctx.Module().(Module); !ok { return } base := module.base() if !base.ArchSpecific() { return } var moduleTargets []Target moduleMultiTargets := make(map[int][]Target) primaryModules := make(map[int]bool) osClasses := base.OsClassSupported() for _, os := range osTypeList { supportedClass := false for _, osClass := range osClasses { if os.Class == osClass { supportedClass = true } } if !supportedClass { continue } osTargets := mctx.Config().Targets[os] if len(osTargets) == 0 { continue } // only the primary arch in the recovery partition if os == Android && module.InstallInRecovery() { osTargets = []Target{osTargets[0]} } prefer32 := false if base.prefer32 != nil { prefer32 = base.prefer32(mctx, base, os.Class) } multilib, extraMultilib := decodeMultilib(base, os.Class) targets, err := decodeMultilibTargets(multilib, osTargets, prefer32) if err != nil { mctx.ModuleErrorf("%s", err.Error()) } var multiTargets []Target if extraMultilib != "" { multiTargets, err = decodeMultilibTargets(extraMultilib, osTargets, prefer32) if err != nil { mctx.ModuleErrorf("%s", err.Error()) } } if len(targets) > 0 { primaryModules[len(moduleTargets)] = true moduleMultiTargets[len(moduleTargets)] = multiTargets moduleTargets = append(moduleTargets, targets...) } } if len(moduleTargets) == 0 { base.commonProperties.Enabled = boolPtr(false) return } targetNames := make([]string, len(moduleTargets)) for i, target := range moduleTargets { targetNames[i] = target.String() } modules := mctx.CreateVariations(targetNames...) for i, m := range modules { m.(Module).base().SetTarget(moduleTargets[i], moduleMultiTargets[i], primaryModules[i]) m.(Module).base().setArchProperties(mctx) } } func decodeMultilib(base *ModuleBase, class OsClass) (multilib, extraMultilib string) { switch class { case Device: multilib = String(base.commonProperties.Target.Android.Compile_multilib) case Host, HostCross: multilib = String(base.commonProperties.Target.Host.Compile_multilib) } if multilib == "" { multilib = String(base.commonProperties.Compile_multilib) } if multilib == "" { multilib = base.commonProperties.Default_multilib } if base.commonProperties.UseTargetVariants { return multilib, "" } else { // For app modules a single arch variant will be created per OS class which is expected to handle all the // selected arches. Return the common-type as multilib and any Android.bp provided multilib as extraMultilib if multilib == base.commonProperties.Default_multilib { multilib = "first" } return base.commonProperties.Default_multilib, multilib } } func filterArchStructFields(fields []reflect.StructField) []reflect.StructField { var ret []reflect.StructField for _, field := range fields { if !proptools.HasTag(field, "android", "arch_variant") { continue } // The arch_variant field isn't necessary past this point // Instead of wasting space, just remove it. Go also has a // 16-bit limit on structure name length. The name is constructed // based on the Go source representation of the structure, so // the tag names count towards that length. // // TODO: handle the uncommon case of other tags being involved if field.Tag == `android:"arch_variant"` { field.Tag = "" } // Recurse into structs switch field.Type.Kind() { case reflect.Struct: var ok bool field.Type, ok = filterArchStruct(field.Type) if !ok { continue } case reflect.Ptr: if field.Type.Elem().Kind() == reflect.Struct { nestedType, ok := filterArchStruct(field.Type.Elem()) if !ok { continue } field.Type = reflect.PtrTo(nestedType) } case reflect.Interface: panic("Interfaces are not supported in arch_variant properties") } ret = append(ret, field) } return ret } func filterArchStruct(prop reflect.Type) (reflect.Type, bool) { var fields []reflect.StructField ptr := prop.Kind() == reflect.Ptr if ptr { prop = prop.Elem() } for i := 0; i < prop.NumField(); i++ { fields = append(fields, prop.Field(i)) } fields = filterArchStructFields(fields) if len(fields) == 0 { return nil, false } ret := reflect.StructOf(fields) if ptr { ret = reflect.PtrTo(ret) } return ret, true } func filterArchStructSharded(prop reflect.Type) ([]reflect.Type, bool) { var fields []reflect.StructField ptr := prop.Kind() == reflect.Ptr if ptr { prop = prop.Elem() } for i := 0; i < prop.NumField(); i++ { fields = append(fields, prop.Field(i)) } fields = filterArchStructFields(fields) if len(fields) == 0 { return nil, false } shards := shardFields(fields, 10) var ret []reflect.Type for _, shard := range shards { s := reflect.StructOf(shard) if ptr { s = reflect.PtrTo(s) } ret = append(ret, s) } return ret, true } func shardFields(fields []reflect.StructField, shardSize int) [][]reflect.StructField { ret := make([][]reflect.StructField, 0, (len(fields)+shardSize-1)/shardSize) for len(fields) > shardSize { ret = append(ret, fields[0:shardSize]) fields = fields[shardSize:] } if len(fields) > 0 { ret = append(ret, fields) } return ret } func createArchType(props reflect.Type) []reflect.Type { propShards, ok := filterArchStructSharded(props) if !ok { return nil } var ret []reflect.Type for _, props := range propShards { variantFields := func(names []string) []reflect.StructField { ret := make([]reflect.StructField, len(names)) for i, name := range names { ret[i].Name = name ret[i].Type = props } return ret } archFields := make([]reflect.StructField, len(archTypeList)) for i, arch := range archTypeList { variants := []string{} for _, archVariant := range archVariants[arch] { archVariant := variantReplacer.Replace(archVariant) variants = append(variants, proptools.FieldNameForProperty(archVariant)) } for _, feature := range archFeatures[arch] { feature := variantReplacer.Replace(feature) variants = append(variants, proptools.FieldNameForProperty(feature)) } fields := variantFields(variants) fields = append([]reflect.StructField{{ Name: "BlueprintEmbed", Type: props, Anonymous: true, }}, fields...) archFields[i] = reflect.StructField{ Name: arch.Field, Type: reflect.StructOf(fields), } } archType := reflect.StructOf(archFields) multilibType := reflect.StructOf(variantFields([]string{"Lib32", "Lib64"})) targets := []string{ "Host", "Android64", "Android32", "Bionic", "Linux", "Not_windows", "Arm_on_x86", "Arm_on_x86_64", } for _, os := range osTypeList { targets = append(targets, os.Field) for _, archType := range osArchTypeMap[os] { targets = append(targets, os.Field+"_"+archType.Name) if os.Linux() { target := "Linux_" + archType.Name if !InList(target, targets) { targets = append(targets, target) } } if os.Bionic() { target := "Bionic_" + archType.Name if !InList(target, targets) { targets = append(targets, target) } } } } targetType := reflect.StructOf(variantFields(targets)) ret = append(ret, reflect.StructOf([]reflect.StructField{ { Name: "Arch", Type: archType, }, { Name: "Multilib", Type: multilibType, }, { Name: "Target", Type: targetType, }, })) } return ret } var archPropTypeMap OncePer func InitArchModule(m Module) { base := m.base() base.generalProperties = m.GetProperties() for _, properties := range base.generalProperties { propertiesValue := reflect.ValueOf(properties) t := propertiesValue.Type() if propertiesValue.Kind() != reflect.Ptr { panic(fmt.Errorf("properties must be a pointer to a struct, got %T", propertiesValue.Interface())) } propertiesValue = propertiesValue.Elem() if propertiesValue.Kind() != reflect.Struct { panic(fmt.Errorf("properties must be a pointer to a struct, got %T", propertiesValue.Interface())) } archPropTypes := archPropTypeMap.Once(t, func() interface{} { return createArchType(t) }).([]reflect.Type) var archProperties []interface{} for _, t := range archPropTypes { archProperties = append(archProperties, reflect.New(t).Interface()) } base.archProperties = append(base.archProperties, archProperties) m.AddProperties(archProperties...) } base.customizableProperties = m.GetProperties() } var variantReplacer = strings.NewReplacer("-", "_", ".", "_") func (a *ModuleBase) appendProperties(ctx BottomUpMutatorContext, dst interface{}, src reflect.Value, field, srcPrefix string) reflect.Value { src = src.FieldByName(field) if !src.IsValid() { ctx.ModuleErrorf("field %q does not exist", srcPrefix) return src } ret := src if src.Kind() == reflect.Struct { src = src.FieldByName("BlueprintEmbed") } order := func(property string, dstField, srcField reflect.StructField, dstValue, srcValue interface{}) (proptools.Order, error) { if proptools.HasTag(dstField, "android", "variant_prepend") { return proptools.Prepend, nil } else { return proptools.Append, nil } } err := proptools.ExtendMatchingProperties([]interface{}{dst}, src.Interface(), nil, order) if err != nil { if propertyErr, ok := err.(*proptools.ExtendPropertyError); ok { ctx.PropertyErrorf(propertyErr.Property, "%s", propertyErr.Err.Error()) } else { panic(err) } } return ret } // Rewrite the module's properties structs to contain arch-specific values. func (a *ModuleBase) setArchProperties(ctx BottomUpMutatorContext) { arch := a.Arch() os := a.Os() for i := range a.generalProperties { genProps := a.generalProperties[i] if a.archProperties[i] == nil { continue } for _, archProperties := range a.archProperties[i] { archPropValues := reflect.ValueOf(archProperties).Elem() archProp := archPropValues.FieldByName("Arch") multilibProp := archPropValues.FieldByName("Multilib") targetProp := archPropValues.FieldByName("Target") var field string var prefix string // Handle arch-specific properties in the form: // arch: { // arm64: { // key: value, // }, // }, t := arch.ArchType if arch.ArchType != Common { field := proptools.FieldNameForProperty(t.Name) prefix := "arch." + t.Name archStruct := a.appendProperties(ctx, genProps, archProp, field, prefix) // Handle arch-variant-specific properties in the form: // arch: { // variant: { // key: value, // }, // }, v := variantReplacer.Replace(arch.ArchVariant) if v != "" { field := proptools.FieldNameForProperty(v) prefix := "arch." + t.Name + "." + v a.appendProperties(ctx, genProps, archStruct, field, prefix) } // Handle cpu-variant-specific properties in the form: // arch: { // variant: { // key: value, // }, // }, if arch.CpuVariant != arch.ArchVariant { c := variantReplacer.Replace(arch.CpuVariant) if c != "" { field := proptools.FieldNameForProperty(c) prefix := "arch." + t.Name + "." + c a.appendProperties(ctx, genProps, archStruct, field, prefix) } } // Handle arch-feature-specific properties in the form: // arch: { // feature: { // key: value, // }, // }, for _, feature := range arch.ArchFeatures { field := proptools.FieldNameForProperty(feature) prefix := "arch." + t.Name + "." + feature a.appendProperties(ctx, genProps, archStruct, field, prefix) } // Handle multilib-specific properties in the form: // multilib: { // lib32: { // key: value, // }, // }, field = proptools.FieldNameForProperty(t.Multilib) prefix = "multilib." + t.Multilib a.appendProperties(ctx, genProps, multilibProp, field, prefix) } // Handle host-specific properties in the form: // target: { // host: { // key: value, // }, // }, if os.Class == Host || os.Class == HostCross { field = "Host" prefix = "target.host" a.appendProperties(ctx, genProps, targetProp, field, prefix) } // Handle target OS generalities of the form: // target: { // bionic: { // key: value, // }, // bionic_x86: { // key: value, // }, // } if os.Linux() { field = "Linux" prefix = "target.linux" a.appendProperties(ctx, genProps, targetProp, field, prefix) if arch.ArchType != Common { field = "Linux_" + arch.ArchType.Name prefix = "target.linux_" + arch.ArchType.Name a.appendProperties(ctx, genProps, targetProp, field, prefix) } } if os.Bionic() { field = "Bionic" prefix = "target.bionic" a.appendProperties(ctx, genProps, targetProp, field, prefix) if arch.ArchType != Common { field = "Bionic_" + t.Name prefix = "target.bionic_" + t.Name a.appendProperties(ctx, genProps, targetProp, field, prefix) } } // Handle target OS properties in the form: // target: { // linux_glibc: { // key: value, // }, // not_windows: { // key: value, // }, // linux_glibc_x86: { // key: value, // }, // linux_glibc_arm: { // key: value, // }, // android { // key: value, // }, // android_arm { // key: value, // }, // android_x86 { // key: value, // }, // }, field = os.Field prefix = "target." + os.Name a.appendProperties(ctx, genProps, targetProp, field, prefix) if arch.ArchType != Common { field = os.Field + "_" + t.Name prefix = "target." + os.Name + "_" + t.Name a.appendProperties(ctx, genProps, targetProp, field, prefix) } if (os.Class == Host || os.Class == HostCross) && os != Windows { field := "Not_windows" prefix := "target.not_windows" a.appendProperties(ctx, genProps, targetProp, field, prefix) } // Handle 64-bit device properties in the form: // target { // android64 { // key: value, // }, // android32 { // key: value, // }, // }, // WARNING: this is probably not what you want to use in your blueprints file, it selects // options for all targets on a device that supports 64-bit binaries, not just the targets // that are being compiled for 64-bit. Its expected use case is binaries like linker and // debuggerd that need to know when they are a 32-bit process running on a 64-bit device if os.Class == Device { if ctx.Config().Android64() { field := "Android64" prefix := "target.android64" a.appendProperties(ctx, genProps, targetProp, field, prefix) } else { field := "Android32" prefix := "target.android32" a.appendProperties(ctx, genProps, targetProp, field, prefix) } if (arch.ArchType == X86 && (hasArmAbi(arch) || hasArmAndroidArch(ctx.Config().Targets[Android]))) || (arch.ArchType == Arm && hasX86AndroidArch(ctx.Config().Targets[Android])) { field := "Arm_on_x86" prefix := "target.arm_on_x86" a.appendProperties(ctx, genProps, targetProp, field, prefix) } if (arch.ArchType == X86_64 && (hasArmAbi(arch) || hasArmAndroidArch(ctx.Config().Targets[Android]))) || (arch.ArchType == Arm && hasX8664AndroidArch(ctx.Config().Targets[Android])) { field := "Arm_on_x86_64" prefix := "target.arm_on_x86_64" a.appendProperties(ctx, genProps, targetProp, field, prefix) } } } } } func forEachInterface(v reflect.Value, f func(reflect.Value)) { switch v.Kind() { case reflect.Interface: f(v) case reflect.Struct: for i := 0; i < v.NumField(); i++ { forEachInterface(v.Field(i), f) } case reflect.Ptr: forEachInterface(v.Elem(), f) default: panic(fmt.Errorf("Unsupported kind %s", v.Kind())) } } // Convert the arch product variables into a list of targets for each os class structs func decodeTargetProductVariables(config *config) (map[OsType][]Target, error) { variables := config.productVariables targets := make(map[OsType][]Target) var targetErr error addTarget := func(os OsType, archName string, archVariant, cpuVariant *string, abi *[]string) { if targetErr != nil { return } arch, err := decodeArch(archName, archVariant, cpuVariant, abi) if err != nil { targetErr = err return } targets[os] = append(targets[os], Target{ Os: os, Arch: arch, }) } if variables.HostArch == nil { return nil, fmt.Errorf("No host primary architecture set") } addTarget(BuildOs, *variables.HostArch, nil, nil, nil) if variables.HostSecondaryArch != nil && *variables.HostSecondaryArch != "" { addTarget(BuildOs, *variables.HostSecondaryArch, nil, nil, nil) } if Bool(config.Host_bionic) { addTarget(LinuxBionic, "x86_64", nil, nil, nil) } if String(variables.CrossHost) != "" { crossHostOs := osByName(*variables.CrossHost) if crossHostOs == NoOsType { return nil, fmt.Errorf("Unknown cross host OS %q", *variables.CrossHost) } if String(variables.CrossHostArch) == "" { return nil, fmt.Errorf("No cross-host primary architecture set") } addTarget(crossHostOs, *variables.CrossHostArch, nil, nil, nil) if variables.CrossHostSecondaryArch != nil && *variables.CrossHostSecondaryArch != "" { addTarget(crossHostOs, *variables.CrossHostSecondaryArch, nil, nil, nil) } } if variables.DeviceArch != nil && *variables.DeviceArch != "" { addTarget(Android, *variables.DeviceArch, variables.DeviceArchVariant, variables.DeviceCpuVariant, variables.DeviceAbi) if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" { addTarget(Android, *variables.DeviceSecondaryArch, variables.DeviceSecondaryArchVariant, variables.DeviceSecondaryCpuVariant, variables.DeviceSecondaryAbi) deviceArches := targets[Android] if deviceArches[0].Arch.ArchType.Multilib == deviceArches[1].Arch.ArchType.Multilib { deviceArches[1].Arch.Native = false } } } if targetErr != nil { return nil, targetErr } return targets, nil } // hasArmAbi returns true if arch has at least one arm ABI func hasArmAbi(arch Arch) bool { for _, abi := range arch.Abi { if strings.HasPrefix(abi, "arm") { return true } } return false } // hasArmArch returns true if targets has at least arm Android arch func hasArmAndroidArch(targets []Target) bool { for _, target := range targets { if target.Os == Android && target.Arch.ArchType == Arm { return true } } return false } // hasX86Arch returns true if targets has at least x86 Android arch func hasX86AndroidArch(targets []Target) bool { for _, target := range targets { if target.Os == Android && target.Arch.ArchType == X86 { return true } } return false } // hasX8664Arch returns true if targets has at least x86_64 Android arch func hasX8664AndroidArch(targets []Target) bool { for _, target := range targets { if target.Os == Android && target.Arch.ArchType == X86_64 { return true } } return false } type archConfig struct { arch string archVariant string cpuVariant string abi []string } func getMegaDeviceConfig() []archConfig { return []archConfig{ {"arm", "armv7-a", "generic", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "generic", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a7", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a8", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a9", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a15", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a53", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a53.a57", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a72", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a73", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a75", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "cortex-a76", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "krait", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "kryo", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "kryo385", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "exynos-m1", []string{"armeabi-v7a"}}, {"arm", "armv7-a-neon", "exynos-m2", []string{"armeabi-v7a"}}, {"arm64", "armv8-a", "cortex-a53", []string{"arm64-v8a"}}, {"arm64", "armv8-a", "cortex-a72", []string{"arm64-v8a"}}, {"arm64", "armv8-a", "cortex-a73", []string{"arm64-v8a"}}, {"arm64", "armv8-a", "kryo", []string{"arm64-v8a"}}, {"arm64", "armv8-a", "exynos-m1", []string{"arm64-v8a"}}, {"arm64", "armv8-a", "exynos-m2", []string{"arm64-v8a"}}, {"arm64", "armv8-2a", "cortex-a75", []string{"arm64-v8a"}}, {"arm64", "armv8-2a", "cortex-a76", []string{"arm64-v8a"}}, {"arm64", "armv8-2a", "kryo385", []string{"arm64-v8a"}}, {"mips", "mips32-fp", "", []string{"mips"}}, {"mips", "mips32r2-fp", "", []string{"mips"}}, {"mips", "mips32r2-fp-xburst", "", []string{"mips"}}, //{"mips", "mips32r6", "", []string{"mips"}}, {"mips", "mips32r2dsp-fp", "", []string{"mips"}}, {"mips", "mips32r2dspr2-fp", "", []string{"mips"}}, // mips64r2 is mismatching 64r2 and 64r6 libraries during linking to libgcc //{"mips64", "mips64r2", "", []string{"mips64"}}, {"mips64", "mips64r6", "", []string{"mips64"}}, {"x86", "", "", []string{"x86"}}, {"x86", "atom", "", []string{"x86"}}, {"x86", "haswell", "", []string{"x86"}}, {"x86", "ivybridge", "", []string{"x86"}}, {"x86", "sandybridge", "", []string{"x86"}}, {"x86", "silvermont", "", []string{"x86"}}, {"x86", "x86_64", "", []string{"x86"}}, {"x86_64", "", "", []string{"x86_64"}}, {"x86_64", "haswell", "", []string{"x86_64"}}, {"x86_64", "ivybridge", "", []string{"x86_64"}}, {"x86_64", "sandybridge", "", []string{"x86_64"}}, {"x86_64", "silvermont", "", []string{"x86_64"}}, } } func getNdkAbisConfig() []archConfig { return []archConfig{ {"arm", "armv7-a", "", []string{"armeabi"}}, {"arm64", "armv8-a", "", []string{"arm64-v8a"}}, {"x86", "", "", []string{"x86"}}, {"x86_64", "", "", []string{"x86_64"}}, } } func decodeArchSettings(archConfigs []archConfig) ([]Target, error) { var ret []Target for _, config := range archConfigs { arch, err := decodeArch(config.arch, &config.archVariant, &config.cpuVariant, &config.abi) if err != nil { return nil, err } arch.Native = false ret = append(ret, Target{ Os: Android, Arch: arch, }) } return ret, nil } // Convert a set of strings from product variables into a single Arch struct func decodeArch(arch string, archVariant, cpuVariant *string, abi *[]string) (Arch, error) { stringPtr := func(p *string) string { if p != nil { return *p } return "" } slicePtr := func(p *[]string) []string { if p != nil { return *p } return nil } archType, ok := archTypeMap[arch] if !ok { return Arch{}, fmt.Errorf("unknown arch %q", arch) } a := Arch{ ArchType: archType, ArchVariant: stringPtr(archVariant), CpuVariant: stringPtr(cpuVariant), Abi: slicePtr(abi), Native: true, } if a.ArchVariant == a.ArchType.Name || a.ArchVariant == "generic" { a.ArchVariant = "" } if a.CpuVariant == a.ArchType.Name || a.CpuVariant == "generic" { a.CpuVariant = "" } for i := 0; i < len(a.Abi); i++ { if a.Abi[i] == "" { a.Abi = append(a.Abi[:i], a.Abi[i+1:]...) i-- } } if featureMap, ok := archFeatureMap[archType]; ok { a.ArchFeatures = featureMap[a.ArchVariant] } return a, nil } func filterMultilibTargets(targets []Target, multilib string) []Target { var ret []Target for _, t := range targets { if t.Arch.ArchType.Multilib == multilib { ret = append(ret, t) } } return ret } func getCommonTargets(targets []Target) []Target { var ret []Target set := make(map[string]bool) for _, t := range targets { if _, found := set[t.Os.String()]; !found { set[t.Os.String()] = true ret = append(ret, commonTargetMap[t.Os.String()]) } } return ret } func firstTarget(targets []Target, filters ...string) []Target { for _, filter := range filters { buildTargets := filterMultilibTargets(targets, filter) if len(buildTargets) > 0 { return buildTargets[:1] } } return nil } // Use the module multilib setting to select one or more targets from a target list func decodeMultilibTargets(multilib string, targets []Target, prefer32 bool) ([]Target, error) { buildTargets := []Target{} switch multilib { case "common": buildTargets = getCommonTargets(targets) case "common_first": buildTargets = getCommonTargets(targets) if prefer32 { buildTargets = append(buildTargets, firstTarget(targets, "lib32", "lib64")...) } else { buildTargets = append(buildTargets, firstTarget(targets, "lib64", "lib32")...) } case "both": if prefer32 { buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...) buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...) } else { buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...) buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...) } case "32": buildTargets = filterMultilibTargets(targets, "lib32") case "64": buildTargets = filterMultilibTargets(targets, "lib64") case "first": if prefer32 { buildTargets = firstTarget(targets, "lib32", "lib64") } else { buildTargets = firstTarget(targets, "lib64", "lib32") } case "prefer32": buildTargets = filterMultilibTargets(targets, "lib32") if len(buildTargets) == 0 { buildTargets = filterMultilibTargets(targets, "lib64") } default: return nil, fmt.Errorf(`compile_multilib must be "both", "first", "32", "64", or "prefer32" found %q`, multilib) } return buildTargets, nil }