// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package android import ( "android/soong/bazel" "android/soong/ui/metrics/bp2build_metrics_proto" "github.com/google/blueprint" ) // Phases: // run Pre-arch mutators // run archMutator // run Pre-deps mutators // run depsMutator // run PostDeps mutators // run FinalDeps mutators (CreateVariations disallowed in this phase) // continue on to GenerateAndroidBuildActions // RegisterMutatorsForBazelConversion is a alternate registration pipeline for bp2build. Exported for testing. func RegisterMutatorsForBazelConversion(ctx *Context, preArchMutators []RegisterMutatorFunc) { bp2buildMutators := append(preArchMutators, registerBp2buildConversionMutator) registerMutatorsForBazelConversion(ctx, bp2buildMutators) } // RegisterMutatorsForApiBazelConversion is an alternate registration pipeline for api_bp2build // This pipeline restricts generation of Bazel targets to Soong modules that contribute APIs func RegisterMutatorsForApiBazelConversion(ctx *Context, preArchMutators []RegisterMutatorFunc) { bp2buildMutators := append(preArchMutators, registerApiBp2buildConversionMutator) registerMutatorsForBazelConversion(ctx, bp2buildMutators) } func registerMutatorsForBazelConversion(ctx *Context, bp2buildMutators []RegisterMutatorFunc) { mctx := ®isterMutatorsContext{ bazelConversionMode: true, } allMutators := append([]RegisterMutatorFunc{ RegisterNamespaceMutator, RegisterDefaultsPreArchMutators, // TODO(b/165114590): this is required to resolve deps that are only prebuilts, but we should // evaluate the impact on conversion. RegisterPrebuiltsPreArchMutators, }, bp2buildMutators...) // Register bp2build mutators for _, f := range allMutators { f(mctx) } mctx.mutators.registerAll(ctx) } // collateGloballyRegisteredMutators constructs the list of mutators that have been registered // with the InitRegistrationContext and will be used at runtime. func collateGloballyRegisteredMutators() sortableComponents { // ensure mixed builds mutator is the last mutator finalDeps = append(finalDeps, registerMixedBuildsMutator) return collateRegisteredMutators(preArch, preDeps, postDeps, finalDeps) } // collateRegisteredMutators constructs a single list of mutators from the separate lists. func collateRegisteredMutators(preArch, preDeps, postDeps, finalDeps []RegisterMutatorFunc) sortableComponents { mctx := ®isterMutatorsContext{} register := func(funcs []RegisterMutatorFunc) { for _, f := range funcs { f(mctx) } } register(preArch) register(preDeps) register([]RegisterMutatorFunc{registerDepsMutator}) register(postDeps) mctx.finalPhase = true register(finalDeps) return mctx.mutators } type registerMutatorsContext struct { mutators sortableComponents finalPhase bool bazelConversionMode bool } type RegisterMutatorsContext interface { TopDown(name string, m TopDownMutator) MutatorHandle BottomUp(name string, m BottomUpMutator) MutatorHandle BottomUpBlueprint(name string, m blueprint.BottomUpMutator) MutatorHandle Transition(name string, m TransitionMutator) } type RegisterMutatorFunc func(RegisterMutatorsContext) var preArch = []RegisterMutatorFunc{ RegisterNamespaceMutator, // Check the visibility rules are valid. // // This must run after the package renamer mutators so that any issues found during // validation of the package's default_visibility property are reported using the // correct package name and not the synthetic name. // // This must also be run before defaults mutators as the rules for validation are // different before checking the rules than they are afterwards. e.g. // visibility: ["//visibility:private", "//visibility:public"] // would be invalid if specified in a module definition but is valid if it results // from something like this: // // defaults { // name: "defaults", // // Be inaccessible outside a package by default. // visibility: ["//visibility:private"] // } // // defaultable_module { // name: "defaultable_module", // defaults: ["defaults"], // // Override the default. // visibility: ["//visibility:public"] // } // RegisterVisibilityRuleChecker, // Record the default_applicable_licenses for each package. // // This must run before the defaults so that defaults modules can pick up the package default. RegisterLicensesPackageMapper, // Apply properties from defaults modules to the referencing modules. // // Any mutators that are added before this will not see any modules created by // a DefaultableHook. RegisterDefaultsPreArchMutators, // Add dependencies on any components so that any component references can be // resolved within the deps mutator. // // Must be run after defaults so it can be used to create dependencies on the // component modules that are creating in a DefaultableHook. // // Must be run before RegisterPrebuiltsPreArchMutators, i.e. before prebuilts are // renamed. That is so that if a module creates components using a prebuilt module // type that any dependencies (which must use prebuilt_ prefixes) are resolved to // the prebuilt module and not the source module. RegisterComponentsMutator, // Create an association between prebuilt modules and their corresponding source // modules (if any). // // Must be run after defaults mutators to ensure that any modules created by // a DefaultableHook can be either a prebuilt or a source module with a matching // prebuilt. RegisterPrebuiltsPreArchMutators, // Gather the licenses properties for all modules for use during expansion and enforcement. // // This must come after the defaults mutators to ensure that any licenses supplied // in a defaults module has been successfully applied before the rules are gathered. RegisterLicensesPropertyGatherer, // Gather the visibility rules for all modules for us during visibility enforcement. // // This must come after the defaults mutators to ensure that any visibility supplied // in a defaults module has been successfully applied before the rules are gathered. RegisterVisibilityRuleGatherer, } func registerArchMutator(ctx RegisterMutatorsContext) { ctx.BottomUpBlueprint("os", osMutator).Parallel() ctx.BottomUp("image", imageMutator).Parallel() ctx.BottomUpBlueprint("arch", archMutator).Parallel() } var preDeps = []RegisterMutatorFunc{ registerArchMutator, } var postDeps = []RegisterMutatorFunc{ registerPathDepsMutator, RegisterPrebuiltsPostDepsMutators, RegisterVisibilityRuleEnforcer, RegisterLicensesDependencyChecker, registerNeverallowMutator, RegisterOverridePostDepsMutators, } var finalDeps = []RegisterMutatorFunc{} func PreArchMutators(f RegisterMutatorFunc) { preArch = append(preArch, f) } func PreDepsMutators(f RegisterMutatorFunc) { preDeps = append(preDeps, f) } func PostDepsMutators(f RegisterMutatorFunc) { postDeps = append(postDeps, f) } func FinalDepsMutators(f RegisterMutatorFunc) { finalDeps = append(finalDeps, f) } var bp2buildPreArchMutators = []RegisterMutatorFunc{} // A minimal context for Bp2build conversion type Bp2buildMutatorContext interface { BazelConversionPathContext CreateBazelTargetModule(bazel.BazelTargetModuleProperties, CommonAttributes, interface{}) } // PreArchBp2BuildMutators adds mutators to be register for converting Android Blueprint modules // into Bazel BUILD targets that should run prior to deps and conversion. func PreArchBp2BuildMutators(f RegisterMutatorFunc) { bp2buildPreArchMutators = append(bp2buildPreArchMutators, f) } type BaseMutatorContext interface { BaseModuleContext // MutatorName returns the name that this mutator was registered with. MutatorName() string // Rename all variants of a module. The new name is not visible to calls to ModuleName, // AddDependency or OtherModuleName until after this mutator pass is complete. Rename(name string) } type TopDownMutator func(TopDownMutatorContext) type TopDownMutatorContext interface { BaseMutatorContext // CreateModule creates a new module by calling the factory method for the specified moduleType, and applies // the specified property structs to it as if the properties were set in a blueprint file. CreateModule(ModuleFactory, ...interface{}) Module // CreateBazelTargetModule creates a BazelTargetModule by calling the // factory method, just like in CreateModule, but also requires // BazelTargetModuleProperties containing additional metadata for the // bp2build codegenerator. CreateBazelTargetModule(bazel.BazelTargetModuleProperties, CommonAttributes, interface{}) // CreateBazelTargetModuleWithRestrictions creates a BazelTargetModule by calling the // factory method, just like in CreateModule, but also requires // BazelTargetModuleProperties containing additional metadata for the // bp2build codegenerator. The generated target is restricted to only be buildable for certain // platforms, as dictated by a given bool attribute: the target will not be buildable in // any platform for which this bool attribute is false. CreateBazelTargetModuleWithRestrictions(bazel.BazelTargetModuleProperties, CommonAttributes, interface{}, bazel.BoolAttribute) // MarkBp2buildUnconvertible registers the current module as "unconvertible to bp2build" for the // given reason. MarkBp2buildUnconvertible(reasonType bp2build_metrics_proto.UnconvertedReasonType, detail string) // CreateBazelTargetAliasInDir creates an alias definition in `dir` directory. // This function can be used to create alias definitions in a directory that is different // from the directory of the visited Soong module. CreateBazelTargetAliasInDir(dir string, name string, actual bazel.Label) // CreateBazelConfigSetting creates a config_setting in /BUILD.bazel // build/bazel has several static config_setting(s) that are used in Bazel builds. // This function can be used to createa additional config_setting(s) based on the build graph // (e.g. a config_setting specific to an apex variant) CreateBazelConfigSetting(csa bazel.ConfigSettingAttributes, ca CommonAttributes, dir string) } type topDownMutatorContext struct { bp blueprint.TopDownMutatorContext baseModuleContext } type BottomUpMutator func(BottomUpMutatorContext) type BottomUpMutatorContext interface { BaseMutatorContext // AddDependency adds a dependency to the given module. It returns a slice of modules for each // dependency (some entries may be nil). // // If the mutator is parallel (see MutatorHandle.Parallel), this method will pause until the // new dependencies have had the current mutator called on them. If the mutator is not // parallel this method does not affect the ordering of the current mutator pass, but will // be ordered correctly for all future mutator passes. AddDependency(module blueprint.Module, tag blueprint.DependencyTag, name ...string) []blueprint.Module // AddReverseDependency adds a dependency from the destination to the given module. // Does not affect the ordering of the current mutator pass, but will be ordered // correctly for all future mutator passes. All reverse dependencies for a destination module are // collected until the end of the mutator pass, sorted by name, and then appended to the destination // module's dependency list. AddReverseDependency(module blueprint.Module, tag blueprint.DependencyTag, name string) // CreateVariations splits a module into multiple variants, one for each name in the variationNames // parameter. It returns a list of new modules in the same order as the variationNames // list. // // If any of the dependencies of the module being operated on were already split // by calling CreateVariations with the same name, the dependency will automatically // be updated to point the matching variant. // // If a module is split, and then a module depending on the first module is not split // when the Mutator is later called on it, the dependency of the depending module will // automatically be updated to point to the first variant. CreateVariations(...string) []Module // CreateLocationVariations splits a module into multiple variants, one for each name in the variantNames // parameter. It returns a list of new modules in the same order as the variantNames // list. // // Local variations do not affect automatic dependency resolution - dependencies added // to the split module via deps or DynamicDependerModule must exactly match a variant // that contains all the non-local variations. CreateLocalVariations(...string) []Module // SetDependencyVariation sets all dangling dependencies on the current module to point to the variation // with given name. This function ignores the default variation set by SetDefaultDependencyVariation. SetDependencyVariation(string) // SetDefaultDependencyVariation sets the default variation when a dangling reference is detected // during the subsequent calls on Create*Variations* functions. To reset, set it to nil. SetDefaultDependencyVariation(*string) // AddVariationDependencies adds deps as dependencies of the current module, but uses the variations // argument to select which variant of the dependency to use. It returns a slice of modules for // each dependency (some entries may be nil). A variant of the dependency must exist that matches // all the non-local variations of the current module, plus the variations argument. // // If the mutator is parallel (see MutatorHandle.Parallel), this method will pause until the // new dependencies have had the current mutator called on them. If the mutator is not // parallel this method does not affect the ordering of the current mutator pass, but will // be ordered correctly for all future mutator passes. AddVariationDependencies(variations []blueprint.Variation, tag blueprint.DependencyTag, names ...string) []blueprint.Module // AddFarVariationDependencies adds deps as dependencies of the current module, but uses the // variations argument to select which variant of the dependency to use. It returns a slice of // modules for each dependency (some entries may be nil). A variant of the dependency must // exist that matches the variations argument, but may also have other variations. // For any unspecified variation the first variant will be used. // // Unlike AddVariationDependencies, the variations of the current module are ignored - the // dependency only needs to match the supplied variations. // // If the mutator is parallel (see MutatorHandle.Parallel), this method will pause until the // new dependencies have had the current mutator called on them. If the mutator is not // parallel this method does not affect the ordering of the current mutator pass, but will // be ordered correctly for all future mutator passes. AddFarVariationDependencies([]blueprint.Variation, blueprint.DependencyTag, ...string) []blueprint.Module // AddInterVariantDependency adds a dependency between two variants of the same module. Variants are always // ordered in the same orderas they were listed in CreateVariations, and AddInterVariantDependency does not change // that ordering, but it associates a DependencyTag with the dependency and makes it visible to VisitDirectDeps, // WalkDeps, etc. AddInterVariantDependency(tag blueprint.DependencyTag, from, to blueprint.Module) // ReplaceDependencies replaces all dependencies on the identical variant of the module with the // specified name with the current variant of this module. Replacements don't take effect until // after the mutator pass is finished. ReplaceDependencies(string) // ReplaceDependencies replaces all dependencies on the identical variant of the module with the // specified name with the current variant of this module as long as the supplied predicate returns // true. // // Replacements don't take effect until after the mutator pass is finished. ReplaceDependenciesIf(string, blueprint.ReplaceDependencyPredicate) // AliasVariation takes a variationName that was passed to CreateVariations for this module, // and creates an alias from the current variant (before the mutator has run) to the new // variant. The alias will be valid until the next time a mutator calls CreateVariations or // CreateLocalVariations on this module without also calling AliasVariation. The alias can // be used to add dependencies on the newly created variant using the variant map from // before CreateVariations was run. AliasVariation(variationName string) // CreateAliasVariation takes a toVariationName that was passed to CreateVariations for this // module, and creates an alias from a new fromVariationName variant the toVariationName // variant. The alias will be valid until the next time a mutator calls CreateVariations or // CreateLocalVariations on this module without also calling AliasVariation. The alias can // be used to add dependencies on the toVariationName variant using the fromVariationName // variant. CreateAliasVariation(fromVariationName, toVariationName string) // SetVariationProvider sets the value for a provider for the given newly created variant of // the current module, i.e. one of the Modules returned by CreateVariations.. It panics if // not called during the appropriate mutator or GenerateBuildActions pass for the provider, // if the value is not of the appropriate type, or if the module is not a newly created // variant of the current module. The value should not be modified after being passed to // SetVariationProvider. SetVariationProvider(module blueprint.Module, provider blueprint.ProviderKey, value interface{}) } type bottomUpMutatorContext struct { bp blueprint.BottomUpMutatorContext baseModuleContext finalPhase bool } func bottomUpMutatorContextFactory(ctx blueprint.BottomUpMutatorContext, a Module, finalPhase, bazelConversionMode bool) BottomUpMutatorContext { moduleContext := a.base().baseModuleContextFactory(ctx) moduleContext.bazelConversionMode = bazelConversionMode return &bottomUpMutatorContext{ bp: ctx, baseModuleContext: moduleContext, finalPhase: finalPhase, } } func (x *registerMutatorsContext) BottomUp(name string, m BottomUpMutator) MutatorHandle { finalPhase := x.finalPhase bazelConversionMode := x.bazelConversionMode f := func(ctx blueprint.BottomUpMutatorContext) { if a, ok := ctx.Module().(Module); ok { m(bottomUpMutatorContextFactory(ctx, a, finalPhase, bazelConversionMode)) } } mutator := &mutator{name: x.mutatorName(name), bottomUpMutator: f} x.mutators = append(x.mutators, mutator) return mutator } func (x *registerMutatorsContext) BottomUpBlueprint(name string, m blueprint.BottomUpMutator) MutatorHandle { mutator := &mutator{name: name, bottomUpMutator: m} x.mutators = append(x.mutators, mutator) return mutator } type IncomingTransitionContext interface { // Module returns the target of the dependency edge for which the transition // is being computed Module() Module // Config returns the configuration for the build. Config() Config } type OutgoingTransitionContext interface { // Module returns the target of the dependency edge for which the transition // is being computed Module() Module // DepTag() Returns the dependency tag through which this dependency is // reached DepTag() blueprint.DependencyTag } // Transition mutators implement a top-down mechanism where a module tells its // direct dependencies what variation they should be built in but the dependency // has the final say. // // When implementing a transition mutator, one needs to implement four methods: // - Split() that tells what variations a module has by itself // - OutgoingTransition() where a module tells what it wants from its // dependency // - IncomingTransition() where a module has the final say about its own // variation // - Mutate() that changes the state of a module depending on its variation // // That the effective variation of module B when depended on by module A is the // composition the outgoing transition of module A and the incoming transition // of module B. // // the outgoing transition should not take the properties of the dependency into // account, only those of the module that depends on it. For this reason, the // dependency is not even passed into it as an argument. Likewise, the incoming // transition should not take the properties of the depending module into // account and is thus not informed about it. This makes for a nice // decomposition of the decision logic. // // A given transition mutator only affects its own variation; other variations // stay unchanged along the dependency edges. // // Soong makes sure that all modules are created in the desired variations and // that dependency edges are set up correctly. This ensures that "missing // variation" errors do not happen and allows for more flexible changes in the // value of the variation among dependency edges (as oppposed to bottom-up // mutators where if module A in variation X depends on module B and module B // has that variation X, A must depend on variation X of B) // // The limited power of the context objects passed to individual mutators // methods also makes it more difficult to shoot oneself in the foot. Complete // safety is not guaranteed because no one prevents individual transition // mutators from mutating modules in illegal ways and for e.g. Split() or // Mutate() to run their own visitations of the transitive dependency of the // module and both of these are bad ideas, but it's better than no guardrails at // all. // // This model is pretty close to Bazel's configuration transitions. The mapping // between concepts in Soong and Bazel is as follows: // - Module == configured target // - Variant == configuration // - Variation name == configuration flag // - Variation == configuration flag value // - Outgoing transition == attribute transition // - Incoming transition == rule transition // // The Split() method does not have a Bazel equivalent and Bazel split // transitions do not have a Soong equivalent. // // Mutate() does not make sense in Bazel due to the different models of the // two systems: when creating new variations, Soong clones the old module and // thus some way is needed to change it state whereas Bazel creates each // configuration of a given configured target anew. type TransitionMutator interface { // Split returns the set of variations that should be created for a module no // matter who depends on it. Used when Make depends on a particular variation // or when the module knows its variations just based on information given to // it in the Blueprint file. This method should not mutate the module it is // called on. Split(ctx BaseModuleContext) []string // Called on a module to determine which variation it wants from its direct // dependencies. The dependency itself can override this decision. This method // should not mutate the module itself. OutgoingTransition(ctx OutgoingTransitionContext, sourceVariation string) string // Called on a module to determine which variation it should be in based on // the variation modules that depend on it want. This gives the module a final // say about its own variations. This method should not mutate the module // itself. IncomingTransition(ctx IncomingTransitionContext, incomingVariation string) string // Called after a module was split into multiple variations on each variation. // It should not split the module any further but adding new dependencies is // fine. Unlike all the other methods on TransitionMutator, this method is // allowed to mutate the module. Mutate(ctx BottomUpMutatorContext, variation string) } type androidTransitionMutator struct { finalPhase bool bazelConversionMode bool mutator TransitionMutator } func (a *androidTransitionMutator) Split(ctx blueprint.BaseModuleContext) []string { if m, ok := ctx.Module().(Module); ok { moduleContext := m.base().baseModuleContextFactory(ctx) moduleContext.bazelConversionMode = a.bazelConversionMode return a.mutator.Split(&moduleContext) } else { return []string{""} } } type outgoingTransitionContextImpl struct { bp blueprint.OutgoingTransitionContext } func (c *outgoingTransitionContextImpl) Module() Module { return c.bp.Module().(Module) } func (c *outgoingTransitionContextImpl) DepTag() blueprint.DependencyTag { return c.bp.DepTag() } func (a *androidTransitionMutator) OutgoingTransition(ctx blueprint.OutgoingTransitionContext, sourceVariation string) string { if _, ok := ctx.Module().(Module); ok { return a.mutator.OutgoingTransition(&outgoingTransitionContextImpl{bp: ctx}, sourceVariation) } else { return "" } } type incomingTransitionContextImpl struct { bp blueprint.IncomingTransitionContext } func (c *incomingTransitionContextImpl) Module() Module { return c.bp.Module().(Module) } func (c *incomingTransitionContextImpl) Config() Config { return c.bp.Config().(Config) } func (a *androidTransitionMutator) IncomingTransition(ctx blueprint.IncomingTransitionContext, incomingVariation string) string { if _, ok := ctx.Module().(Module); ok { return a.mutator.IncomingTransition(&incomingTransitionContextImpl{bp: ctx}, incomingVariation) } else { return "" } } func (a *androidTransitionMutator) Mutate(ctx blueprint.BottomUpMutatorContext, variation string) { if am, ok := ctx.Module().(Module); ok { a.mutator.Mutate(bottomUpMutatorContextFactory(ctx, am, a.finalPhase, a.bazelConversionMode), variation) } } func (x *registerMutatorsContext) Transition(name string, m TransitionMutator) { atm := &androidTransitionMutator{ finalPhase: x.finalPhase, bazelConversionMode: x.bazelConversionMode, mutator: m, } mutator := &mutator{ name: name, transitionMutator: atm} x.mutators = append(x.mutators, mutator) } func (x *registerMutatorsContext) mutatorName(name string) string { if x.bazelConversionMode { return name + "_bp2build" } return name } func (x *registerMutatorsContext) TopDown(name string, m TopDownMutator) MutatorHandle { f := func(ctx blueprint.TopDownMutatorContext) { if a, ok := ctx.Module().(Module); ok { moduleContext := a.base().baseModuleContextFactory(ctx) moduleContext.bazelConversionMode = x.bazelConversionMode actx := &topDownMutatorContext{ bp: ctx, baseModuleContext: moduleContext, } m(actx) } } mutator := &mutator{name: x.mutatorName(name), topDownMutator: f} x.mutators = append(x.mutators, mutator) return mutator } func (mutator *mutator) componentName() string { return mutator.name } func (mutator *mutator) register(ctx *Context) { blueprintCtx := ctx.Context var handle blueprint.MutatorHandle if mutator.bottomUpMutator != nil { handle = blueprintCtx.RegisterBottomUpMutator(mutator.name, mutator.bottomUpMutator) } else if mutator.topDownMutator != nil { handle = blueprintCtx.RegisterTopDownMutator(mutator.name, mutator.topDownMutator) } else if mutator.transitionMutator != nil { blueprintCtx.RegisterTransitionMutator(mutator.name, mutator.transitionMutator) } if mutator.parallel { handle.Parallel() } } type MutatorHandle interface { Parallel() MutatorHandle } func (mutator *mutator) Parallel() MutatorHandle { mutator.parallel = true return mutator } func RegisterComponentsMutator(ctx RegisterMutatorsContext) { ctx.BottomUp("component-deps", componentDepsMutator).Parallel() } // A special mutator that runs just prior to the deps mutator to allow the dependencies // on component modules to be added so that they can depend directly on a prebuilt // module. func componentDepsMutator(ctx BottomUpMutatorContext) { if m := ctx.Module(); m.Enabled() { m.ComponentDepsMutator(ctx) } } func depsMutator(ctx BottomUpMutatorContext) { if m := ctx.Module(); m.Enabled() { m.DepsMutator(ctx) } } func registerDepsMutator(ctx RegisterMutatorsContext) { ctx.BottomUp("deps", depsMutator).Parallel() } func registerDepsMutatorBp2Build(ctx RegisterMutatorsContext) { // TODO(b/179313531): Consider a separate mutator that only runs depsMutator for modules that are // being converted to build targets. ctx.BottomUp("deps", depsMutator).Parallel() } func (t *topDownMutatorContext) CreateBazelTargetModule( bazelProps bazel.BazelTargetModuleProperties, commonAttrs CommonAttributes, attrs interface{}) { t.createBazelTargetModule(bazelProps, commonAttrs, attrs, bazel.BoolAttribute{}) } func (t *topDownMutatorContext) CreateBazelTargetModuleWithRestrictions( bazelProps bazel.BazelTargetModuleProperties, commonAttrs CommonAttributes, attrs interface{}, enabledProperty bazel.BoolAttribute) { t.createBazelTargetModule(bazelProps, commonAttrs, attrs, enabledProperty) } func (t *topDownMutatorContext) MarkBp2buildUnconvertible( reasonType bp2build_metrics_proto.UnconvertedReasonType, detail string) { mod := t.Module() mod.base().setBp2buildUnconvertible(reasonType, detail) } var ( bazelAliasModuleProperties = bazel.BazelTargetModuleProperties{ Rule_class: "alias", } ) type bazelAliasAttributes struct { Actual *bazel.LabelAttribute } func (t *topDownMutatorContext) CreateBazelTargetAliasInDir( dir string, name string, actual bazel.Label) { mod := t.Module() attrs := &bazelAliasAttributes{ Actual: bazel.MakeLabelAttribute(actual.Label), } info := bp2buildInfo{ Dir: dir, BazelProps: bazelAliasModuleProperties, CommonAttrs: CommonAttributes{Name: name}, ConstraintAttrs: constraintAttributes{}, Attrs: attrs, } mod.base().addBp2buildInfo(info) } func (t *topDownMutatorContext) CreateBazelConfigSetting( csa bazel.ConfigSettingAttributes, ca CommonAttributes, dir string) { mod := t.Module() info := bp2buildInfo{ Dir: dir, BazelProps: bazel.BazelTargetModuleProperties{ Rule_class: "config_setting", }, CommonAttrs: ca, ConstraintAttrs: constraintAttributes{}, Attrs: &csa, } mod.base().addBp2buildInfo(info) } // ApexAvailableTags converts the apex_available property value of an ApexModule // module and returns it as a list of keyed tags. func ApexAvailableTags(mod Module) bazel.StringListAttribute { attr := bazel.StringListAttribute{} // Transform specific attributes into tags. if am, ok := mod.(ApexModule); ok { // TODO(b/218841706): hidl_interface has the apex_available prop, but it's // defined directly as a prop and not via ApexModule, so this doesn't // pick those props up. apexAvailable := am.apexModuleBase().ApexAvailable() // If a user does not specify apex_available in Android.bp, then soong provides a default. // To avoid verbosity of BUILD files, remove this default from user-facing BUILD files. if len(am.apexModuleBase().ApexProperties.Apex_available) == 0 { apexAvailable = []string{} } attr.Value = ConvertApexAvailableToTags(apexAvailable) } return attr } func ApexAvailableTagsWithoutTestApexes(ctx BaseModuleContext, mod Module) bazel.StringListAttribute { attr := bazel.StringListAttribute{} if am, ok := mod.(ApexModule); ok { apexAvailableWithoutTestApexes := removeTestApexes(ctx, am.apexModuleBase().ApexAvailable()) // If a user does not specify apex_available in Android.bp, then soong provides a default. // To avoid verbosity of BUILD files, remove this default from user-facing BUILD files. if len(am.apexModuleBase().ApexProperties.Apex_available) == 0 { apexAvailableWithoutTestApexes = []string{} } attr.Value = ConvertApexAvailableToTags(apexAvailableWithoutTestApexes) } return attr } func removeTestApexes(ctx BaseModuleContext, apex_available []string) []string { testApexes := []string{} for _, aa := range apex_available { // ignore the wildcards if InList(aa, AvailableToRecognziedWildcards) { continue } mod, _ := ctx.ModuleFromName(aa) if apex, ok := mod.(ApexTestInterface); ok && apex.IsTestApex() { testApexes = append(testApexes, aa) } } return RemoveListFromList(CopyOf(apex_available), testApexes) } func ConvertApexAvailableToTags(apexAvailable []string) []string { if len(apexAvailable) == 0 { // We need nil specifically to make bp2build not add the tags property at all, // instead of adding it with an empty list return nil } result := make([]string, 0, len(apexAvailable)) for _, a := range apexAvailable { result = append(result, "apex_available="+a) } return result } // ConvertApexAvailableToTagsWithoutTestApexes converts a list of apex names to a list of bazel tags // This function drops any test apexes from the input. func ConvertApexAvailableToTagsWithoutTestApexes(ctx BaseModuleContext, apexAvailable []string) []string { noTestApexes := removeTestApexes(ctx, apexAvailable) return ConvertApexAvailableToTags(noTestApexes) } func (t *topDownMutatorContext) createBazelTargetModule( bazelProps bazel.BazelTargetModuleProperties, commonAttrs CommonAttributes, attrs interface{}, enabledProperty bazel.BoolAttribute) { constraintAttributes := commonAttrs.fillCommonBp2BuildModuleAttrs(t, enabledProperty) mod := t.Module() info := bp2buildInfo{ Dir: t.OtherModuleDir(mod), BazelProps: bazelProps, CommonAttrs: commonAttrs, ConstraintAttrs: constraintAttributes, Attrs: attrs, } mod.base().addBp2buildInfo(info) } // android.topDownMutatorContext either has to embed blueprint.TopDownMutatorContext, in which case every method that // has an overridden version in android.BaseModuleContext has to be manually forwarded to BaseModuleContext to avoid // ambiguous method errors, or it has to store a blueprint.TopDownMutatorContext non-embedded, in which case every // non-overridden method has to be forwarded. There are fewer non-overridden methods, so use the latter. The following // methods forward to the identical blueprint versions for topDownMutatorContext and bottomUpMutatorContext. func (t *topDownMutatorContext) MutatorName() string { return t.bp.MutatorName() } func (t *topDownMutatorContext) Rename(name string) { t.bp.Rename(name) t.Module().base().commonProperties.DebugName = name } func (t *topDownMutatorContext) createModule(factory blueprint.ModuleFactory, name string, props ...interface{}) blueprint.Module { return t.bp.CreateModule(factory, name, props...) } func (t *topDownMutatorContext) CreateModule(factory ModuleFactory, props ...interface{}) Module { return createModule(t, factory, "_topDownMutatorModule", props...) } func (t *topDownMutatorContext) createModuleWithoutInheritance(factory ModuleFactory, props ...interface{}) Module { module := t.bp.CreateModule(ModuleFactoryAdaptor(factory), "", props...).(Module) return module } func (b *bottomUpMutatorContext) MutatorName() string { return b.bp.MutatorName() } func (b *bottomUpMutatorContext) Rename(name string) { b.bp.Rename(name) b.Module().base().commonProperties.DebugName = name } func (b *bottomUpMutatorContext) AddDependency(module blueprint.Module, tag blueprint.DependencyTag, name ...string) []blueprint.Module { if b.baseModuleContext.checkedMissingDeps() { panic("Adding deps not allowed after checking for missing deps") } return b.bp.AddDependency(module, tag, name...) } func (b *bottomUpMutatorContext) AddReverseDependency(module blueprint.Module, tag blueprint.DependencyTag, name string) { if b.baseModuleContext.checkedMissingDeps() { panic("Adding deps not allowed after checking for missing deps") } b.bp.AddReverseDependency(module, tag, name) } func (b *bottomUpMutatorContext) CreateVariations(variations ...string) []Module { if b.finalPhase { panic("CreateVariations not allowed in FinalDepsMutators") } modules := b.bp.CreateVariations(variations...) aModules := make([]Module, len(modules)) for i := range variations { aModules[i] = modules[i].(Module) base := aModules[i].base() base.commonProperties.DebugMutators = append(base.commonProperties.DebugMutators, b.MutatorName()) base.commonProperties.DebugVariations = append(base.commonProperties.DebugVariations, variations[i]) } return aModules } func (b *bottomUpMutatorContext) CreateLocalVariations(variations ...string) []Module { if b.finalPhase { panic("CreateLocalVariations not allowed in FinalDepsMutators") } modules := b.bp.CreateLocalVariations(variations...) aModules := make([]Module, len(modules)) for i := range variations { aModules[i] = modules[i].(Module) base := aModules[i].base() base.commonProperties.DebugMutators = append(base.commonProperties.DebugMutators, b.MutatorName()) base.commonProperties.DebugVariations = append(base.commonProperties.DebugVariations, variations[i]) } return aModules } func (b *bottomUpMutatorContext) SetDependencyVariation(variation string) { b.bp.SetDependencyVariation(variation) } func (b *bottomUpMutatorContext) SetDefaultDependencyVariation(variation *string) { b.bp.SetDefaultDependencyVariation(variation) } func (b *bottomUpMutatorContext) AddVariationDependencies(variations []blueprint.Variation, tag blueprint.DependencyTag, names ...string) []blueprint.Module { if b.baseModuleContext.checkedMissingDeps() { panic("Adding deps not allowed after checking for missing deps") } return b.bp.AddVariationDependencies(variations, tag, names...) } func (b *bottomUpMutatorContext) AddFarVariationDependencies(variations []blueprint.Variation, tag blueprint.DependencyTag, names ...string) []blueprint.Module { if b.baseModuleContext.checkedMissingDeps() { panic("Adding deps not allowed after checking for missing deps") } return b.bp.AddFarVariationDependencies(variations, tag, names...) } func (b *bottomUpMutatorContext) AddInterVariantDependency(tag blueprint.DependencyTag, from, to blueprint.Module) { b.bp.AddInterVariantDependency(tag, from, to) } func (b *bottomUpMutatorContext) ReplaceDependencies(name string) { if b.baseModuleContext.checkedMissingDeps() { panic("Adding deps not allowed after checking for missing deps") } b.bp.ReplaceDependencies(name) } func (b *bottomUpMutatorContext) ReplaceDependenciesIf(name string, predicate blueprint.ReplaceDependencyPredicate) { if b.baseModuleContext.checkedMissingDeps() { panic("Adding deps not allowed after checking for missing deps") } b.bp.ReplaceDependenciesIf(name, predicate) } func (b *bottomUpMutatorContext) AliasVariation(variationName string) { b.bp.AliasVariation(variationName) } func (b *bottomUpMutatorContext) CreateAliasVariation(fromVariationName, toVariationName string) { b.bp.CreateAliasVariation(fromVariationName, toVariationName) } func (b *bottomUpMutatorContext) SetVariationProvider(module blueprint.Module, provider blueprint.ProviderKey, value interface{}) { b.bp.SetVariationProvider(module, provider, value) }