// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package android import ( "cmp" "fmt" "path/filepath" "reflect" "regexp" "runtime" "sort" "strings" "sync" ) // CopyOf returns a new slice that has the same contents as s. func CopyOf[T any](s []T) []T { // If the input is nil, return nil and not an empty list if s == nil { return s } return append([]T{}, s...) } // Concat returns a new slice concatenated from the two input slices. It does not change the input // slices. func Concat[T any](s1, s2 []T) []T { res := make([]T, 0, len(s1)+len(s2)) res = append(res, s1...) res = append(res, s2...) return res } // JoinPathsWithPrefix converts the paths to strings, prefixes them // with prefix and then joins them separated by " ". func JoinPathsWithPrefix(paths []Path, prefix string) string { strs := make([]string, len(paths)) for i := range paths { strs[i] = paths[i].String() } return JoinWithPrefixAndSeparator(strs, prefix, " ") } // JoinWithPrefix prepends the prefix to each string in the list and // returns them joined together with " " as separator. func JoinWithPrefix(strs []string, prefix string) string { return JoinWithPrefixAndSeparator(strs, prefix, " ") } // JoinWithPrefixAndSeparator prepends the prefix to each string in the list and // returns them joined together with the given separator. func JoinWithPrefixAndSeparator(strs []string, prefix string, sep string) string { return JoinWithPrefixSuffixAndSeparator(strs, prefix, "", sep) } // JoinWithSuffixAndSeparator appends the suffix to each string in the list and // returns them joined together with the given separator. func JoinWithSuffixAndSeparator(strs []string, suffix string, sep string) string { return JoinWithPrefixSuffixAndSeparator(strs, "", suffix, sep) } // JoinWithPrefixSuffixAndSeparator appends the prefix/suffix to each string in the list and // returns them joined together with the given separator. func JoinWithPrefixSuffixAndSeparator(strs []string, prefix, suffix, sep string) string { if len(strs) == 0 { return "" } // Pre-calculate the length of the result length := 0 for _, s := range strs { length += len(s) } length += (len(prefix)+len(suffix))*len(strs) + len(sep)*(len(strs)-1) var buf strings.Builder buf.Grow(length) buf.WriteString(prefix) buf.WriteString(strs[0]) buf.WriteString(suffix) for i := 1; i < len(strs); i++ { buf.WriteString(sep) buf.WriteString(prefix) buf.WriteString(strs[i]) buf.WriteString(suffix) } return buf.String() } // SortedStringKeys returns the keys of the given map in the ascending order. // // Deprecated: Use SortedKeys instead. func SortedStringKeys[V any](m map[string]V) []string { return SortedKeys(m) } // SortedKeys returns the keys of the given map in the ascending order. func SortedKeys[T cmp.Ordered, V any](m map[T]V) []T { if len(m) == 0 { return nil } ret := make([]T, 0, len(m)) for k := range m { ret = append(ret, k) } sort.Slice(ret, func(i, j int) bool { return ret[i] < ret[j] }) return ret } // stringValues returns the values of the given string-valued map in randomized map order. func stringValues(m interface{}) []string { v := reflect.ValueOf(m) if v.Kind() != reflect.Map { panic(fmt.Sprintf("%#v is not a map", m)) } if v.Len() == 0 { return nil } iter := v.MapRange() s := make([]string, 0, v.Len()) for iter.Next() { s = append(s, iter.Value().String()) } return s } // SortedStringValues returns the values of the given string-valued map in the ascending order. func SortedStringValues(m interface{}) []string { s := stringValues(m) sort.Strings(s) return s } // SortedUniqueStringValues returns the values of the given string-valued map in the ascending order // with duplicates removed. func SortedUniqueStringValues(m interface{}) []string { s := stringValues(m) return SortedUniqueStrings(s) } // IndexList returns the index of the first occurrence of the given string in the list or -1 func IndexList[T comparable](t T, list []T) int { for i, l := range list { if l == t { return i } } return -1 } func InList[T comparable](t T, list []T) bool { return IndexList(t, list) != -1 } func setFromList[T comparable](l []T) map[T]bool { m := make(map[T]bool, len(l)) for _, t := range l { m[t] = true } return m } // ListSetDifference checks if the two lists contain the same elements. It returns // a boolean which is true if there is a difference, and then returns lists of elements // that are in l1 but not l2, and l2 but not l1. func ListSetDifference[T comparable](l1, l2 []T) (bool, []T, []T) { listsDiffer := false diff1 := []T{} diff2 := []T{} m1 := setFromList(l1) m2 := setFromList(l2) for t := range m1 { if _, ok := m2[t]; !ok { diff1 = append(diff1, t) listsDiffer = true } } for t := range m2 { if _, ok := m1[t]; !ok { diff2 = append(diff2, t) listsDiffer = true } } return listsDiffer, diff1, diff2 } // Returns true if the given string s is prefixed with any string in the given prefix list. func HasAnyPrefix(s string, prefixList []string) bool { for _, prefix := range prefixList { if strings.HasPrefix(s, prefix) { return true } } return false } // Returns true if any string in the given list has the given substring. func SubstringInList(list []string, substr string) bool { for _, s := range list { if strings.Contains(s, substr) { return true } } return false } // Returns true if any string in the given list has the given prefix. func PrefixInList(list []string, prefix string) bool { for _, s := range list { if strings.HasPrefix(s, prefix) { return true } } return false } // Returns true if any string in the given list has the given suffix. func SuffixInList(list []string, suffix string) bool { for _, s := range list { if strings.HasSuffix(s, suffix) { return true } } return false } // IndexListPred returns the index of the element which in the given `list` satisfying the predicate, or -1 if there is no such element. func IndexListPred(pred func(s string) bool, list []string) int { for i, l := range list { if pred(l) { return i } } return -1 } // FilterList divides the string list into two lists: one with the strings belonging // to the given filter list, and the other with the remaining ones func FilterList(list []string, filter []string) (remainder []string, filtered []string) { // InList is O(n). May be worth using more efficient lookup for longer lists. for _, l := range list { if InList(l, filter) { filtered = append(filtered, l) } else { remainder = append(remainder, l) } } return } // FilterListPred returns the elements of the given list for which the predicate // returns true. Order is kept. func FilterListPred(list []string, pred func(s string) bool) (filtered []string) { for _, l := range list { if pred(l) { filtered = append(filtered, l) } } return } // RemoveListFromList removes the strings belonging to the filter list from the // given list and returns the result func RemoveListFromList(list []string, filter_out []string) (result []string) { result = make([]string, 0, len(list)) for _, l := range list { if !InList(l, filter_out) { result = append(result, l) } } return } // RemoveFromList removes given string from the string list. func RemoveFromList(s string, list []string) (bool, []string) { result := make([]string, 0, len(list)) var removed bool for _, item := range list { if item != s { result = append(result, item) } else { removed = true } } return removed, result } // FirstUniqueStrings returns all unique elements of a slice of strings, keeping the first copy of // each. It does not modify the input slice. func FirstUniqueStrings(list []string) []string { return firstUnique(list) } // firstUnique returns all unique elements of a slice, keeping the first copy of each. It // does not modify the input slice. func firstUnique[T comparable](slice []T) []T { // Do not modify the input in-place, operate on a copy instead. slice = CopyOf(slice) return firstUniqueInPlace(slice) } // firstUniqueInPlace returns all unique elements of a slice, keeping the first copy of // each. It modifies the slice contents in place, and returns a subslice of the original // slice. func firstUniqueInPlace[T comparable](slice []T) []T { // 128 was chosen based on BenchmarkFirstUniqueStrings results. if len(slice) > 128 { return firstUniqueMap(slice) } return firstUniqueList(slice) } // firstUniqueList is an implementation of firstUnique using an O(N^2) list comparison to look for // duplicates. func firstUniqueList[T any](in []T) []T { writeIndex := 0 outer: for readIndex := 0; readIndex < len(in); readIndex++ { for compareIndex := 0; compareIndex < writeIndex; compareIndex++ { if interface{}(in[readIndex]) == interface{}(in[compareIndex]) { // The value at readIndex already exists somewhere in the output region // of the slice before writeIndex, skip it. continue outer } } if readIndex != writeIndex { in[writeIndex] = in[readIndex] } writeIndex++ } return in[0:writeIndex] } // firstUniqueMap is an implementation of firstUnique using an O(N) hash set lookup to look for // duplicates. func firstUniqueMap[T comparable](in []T) []T { writeIndex := 0 seen := make(map[T]bool, len(in)) for readIndex := 0; readIndex < len(in); readIndex++ { if _, exists := seen[in[readIndex]]; exists { continue } seen[in[readIndex]] = true if readIndex != writeIndex { in[writeIndex] = in[readIndex] } writeIndex++ } return in[0:writeIndex] } // ReverseSliceInPlace reverses the elements of a slice in place and returns it. func ReverseSliceInPlace[T any](in []T) []T { for i, j := 0, len(in)-1; i < j; i, j = i+1, j-1 { in[i], in[j] = in[j], in[i] } return in } // ReverseSlice returns a copy of a slice in reverse order. func ReverseSlice[T any](in []T) []T { if in == nil { return in } out := make([]T, len(in)) for i := 0; i < len(in); i++ { out[i] = in[len(in)-1-i] } return out } // LastUniqueStrings returns all unique elements of a slice of strings, keeping the last copy of // each. It modifies the slice contents in place, and returns a subslice of the original slice. func LastUniqueStrings(list []string) []string { totalSkip := 0 for i := len(list) - 1; i >= totalSkip; i-- { skip := 0 for j := i - 1; j >= totalSkip; j-- { if list[i] == list[j] { skip++ } else { list[j+skip] = list[j] } } totalSkip += skip } return list[totalSkip:] } // SortedUniqueStrings returns what the name says func SortedUniqueStrings(list []string) []string { // FirstUniqueStrings creates a copy of `list`, so the input remains untouched. unique := FirstUniqueStrings(list) sort.Strings(unique) return unique } // checkCalledFromInit panics if a Go package's init function is not on the // call stack. func checkCalledFromInit() { for skip := 3; ; skip++ { _, funcName, ok := callerName(skip) if !ok { panic("not called from an init func") } if funcName == "init" || strings.HasPrefix(funcName, "init·") || strings.HasPrefix(funcName, "init.") { return } } } // A regex to find a package path within a function name. It finds the shortest string that is // followed by '.' and doesn't have any '/'s left. var pkgPathRe = regexp.MustCompile(`^(.*?)\.([^/]+)$`) // callerName returns the package path and function name of the calling // function. The skip argument has the same meaning as the skip argument of // runtime.Callers. func callerName(skip int) (pkgPath, funcName string, ok bool) { var pc [1]uintptr n := runtime.Callers(skip+1, pc[:]) if n != 1 { return "", "", false } f := runtime.FuncForPC(pc[0]).Name() s := pkgPathRe.FindStringSubmatch(f) if len(s) < 3 { panic(fmt.Errorf("failed to extract package path and function name from %q", f)) } return s[1], s[2], true } // GetNumericSdkVersion removes the first occurrence of system_ in a string, // which is assumed to be something like "system_1.2.3" func GetNumericSdkVersion(v string) string { return strings.Replace(v, "system_", "", 1) } // copied from build/kati/strutil.go func substPattern(pat, repl, str string) string { ps := strings.SplitN(pat, "%", 2) if len(ps) != 2 { if str == pat { return repl } return str } in := str trimmed := str if ps[0] != "" { trimmed = strings.TrimPrefix(in, ps[0]) if trimmed == in { return str } } in = trimmed if ps[1] != "" { trimmed = strings.TrimSuffix(in, ps[1]) if trimmed == in { return str } } rs := strings.SplitN(repl, "%", 2) if len(rs) != 2 { return repl } return rs[0] + trimmed + rs[1] } // copied from build/kati/strutil.go func matchPattern(pat, str string) bool { i := strings.IndexByte(pat, '%') if i < 0 { return pat == str } return strings.HasPrefix(str, pat[:i]) && strings.HasSuffix(str, pat[i+1:]) } var shlibVersionPattern = regexp.MustCompile("(?:\\.\\d+(?:svn)?)+") // splitFileExt splits a file name into root, suffix and ext. root stands for the file name without // the file extension and the version number (e.g. "libexample"). suffix stands for the // concatenation of the file extension and the version number (e.g. ".so.1.0"). ext stands for the // file extension after the version numbers are trimmed (e.g. ".so"). func SplitFileExt(name string) (string, string, string) { // Extract and trim the shared lib version number if the file name ends with dot digits. suffix := "" matches := shlibVersionPattern.FindAllStringIndex(name, -1) if len(matches) > 0 { lastMatch := matches[len(matches)-1] if lastMatch[1] == len(name) { suffix = name[lastMatch[0]:lastMatch[1]] name = name[0:lastMatch[0]] } } // Extract the file name root and the file extension. ext := filepath.Ext(name) root := strings.TrimSuffix(name, ext) suffix = ext + suffix return root, suffix, ext } // ShardPaths takes a Paths, and returns a slice of Paths where each one has at most shardSize paths. func ShardPaths(paths Paths, shardSize int) []Paths { if len(paths) == 0 { return nil } ret := make([]Paths, 0, (len(paths)+shardSize-1)/shardSize) for len(paths) > shardSize { ret = append(ret, paths[0:shardSize]) paths = paths[shardSize:] } if len(paths) > 0 { ret = append(ret, paths) } return ret } // ShardString takes a string and returns a slice of strings where the length of each one is // at most shardSize. func ShardString(s string, shardSize int) []string { if len(s) == 0 { return nil } ret := make([]string, 0, (len(s)+shardSize-1)/shardSize) for len(s) > shardSize { ret = append(ret, s[0:shardSize]) s = s[shardSize:] } if len(s) > 0 { ret = append(ret, s) } return ret } // ShardStrings takes a slice of strings, and returns a slice of slices of strings where each one has at most shardSize // elements. func ShardStrings(s []string, shardSize int) [][]string { if len(s) == 0 { return nil } ret := make([][]string, 0, (len(s)+shardSize-1)/shardSize) for len(s) > shardSize { ret = append(ret, s[0:shardSize]) s = s[shardSize:] } if len(s) > 0 { ret = append(ret, s) } return ret } // CheckDuplicate checks if there are duplicates in given string list. // If there are, it returns first such duplicate and true. func CheckDuplicate(values []string) (duplicate string, found bool) { seen := make(map[string]string) for _, v := range values { if duplicate, found = seen[v]; found { return duplicate, true } seen[v] = v } return "", false } func AddToStringSet(set map[string]bool, items []string) { for _, item := range items { set[item] = true } } // SyncMap is a wrapper around sync.Map that provides type safety via generics. type SyncMap[K comparable, V any] struct { sync.Map } // Load returns the value stored in the map for a key, or the zero value if no // value is present. // The ok result indicates whether value was found in the map. func (m *SyncMap[K, V]) Load(key K) (value V, ok bool) { v, ok := m.Map.Load(key) if !ok { return *new(V), false } return v.(V), true } // Store sets the value for a key. func (m *SyncMap[K, V]) Store(key K, value V) { m.Map.Store(key, value) } // LoadOrStore returns the existing value for the key if present. // Otherwise, it stores and returns the given value. // The loaded result is true if the value was loaded, false if stored. func (m *SyncMap[K, V]) LoadOrStore(key K, value V) (actual V, loaded bool) { v, loaded := m.Map.LoadOrStore(key, value) return v.(V), loaded }