// Copyright 2020 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package android import ( "fmt" "reflect" "strconv" "strings" "testing" ) func ExampleDepSet_ToList_postordered() { a := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("a")).Build() b := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("b")).Transitive(a).Build() c := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("c")).Transitive(a).Build() d := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("d")).Transitive(b, c).Build() fmt.Println(d.ToList().Strings()) // Output: [a b c d] } func ExampleDepSet_ToList_preordered() { a := NewDepSetBuilder(PREORDER).Direct(PathForTesting("a")).Build() b := NewDepSetBuilder(PREORDER).Direct(PathForTesting("b")).Transitive(a).Build() c := NewDepSetBuilder(PREORDER).Direct(PathForTesting("c")).Transitive(a).Build() d := NewDepSetBuilder(PREORDER).Direct(PathForTesting("d")).Transitive(b, c).Build() fmt.Println(d.ToList().Strings()) // Output: [d b a c] } func ExampleDepSet_ToList_topological() { a := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("a")).Build() b := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("b")).Transitive(a).Build() c := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("c")).Transitive(a).Build() d := NewDepSetBuilder(TOPOLOGICAL).Direct(PathForTesting("d")).Transitive(b, c).Build() fmt.Println(d.ToList().Strings()) // Output: [d b c a] } func ExampleDepSet_ToSortedList() { a := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("a")).Build() b := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("b")).Transitive(a).Build() c := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("c")).Transitive(a).Build() d := NewDepSetBuilder(POSTORDER).Direct(PathForTesting("d")).Transitive(b, c).Build() fmt.Println(d.ToSortedList().Strings()) // Output: [a b c d] } // Tests based on Bazel's ExpanderTestBase.java to ensure compatibility // https://github.com/bazelbuild/bazel/blob/master/src/test/java/com/google/devtools/build/lib/collect/nestedset/ExpanderTestBase.java func TestDepSet(t *testing.T) { a := PathForTesting("a") b := PathForTesting("b") c := PathForTesting("c") c2 := PathForTesting("c2") d := PathForTesting("d") e := PathForTesting("e") tests := []struct { name string depSet func(t *testing.T, order DepSetOrder) *DepSet postorder, preorder, topological []string }{ { name: "simple", depSet: func(t *testing.T, order DepSetOrder) *DepSet { return NewDepSet(order, Paths{c, a, b}, nil) }, postorder: []string{"c", "a", "b"}, preorder: []string{"c", "a", "b"}, topological: []string{"c", "a", "b"}, }, { name: "simpleNoDuplicates", depSet: func(t *testing.T, order DepSetOrder) *DepSet { return NewDepSet(order, Paths{c, a, a, a, b}, nil) }, postorder: []string{"c", "a", "b"}, preorder: []string{"c", "a", "b"}, topological: []string{"c", "a", "b"}, }, { name: "nesting", depSet: func(t *testing.T, order DepSetOrder) *DepSet { subset := NewDepSet(order, Paths{c, a, e}, nil) return NewDepSet(order, Paths{b, d}, []*DepSet{subset}) }, postorder: []string{"c", "a", "e", "b", "d"}, preorder: []string{"b", "d", "c", "a", "e"}, topological: []string{"b", "d", "c", "a", "e"}, }, { name: "builderReuse", depSet: func(t *testing.T, order DepSetOrder) *DepSet { assertEquals := func(t *testing.T, w, g Paths) { t.Helper() if !reflect.DeepEqual(w, g) { t.Errorf("want %q, got %q", w, g) } } builder := NewDepSetBuilder(order) assertEquals(t, nil, builder.Build().ToList()) builder.Direct(b) assertEquals(t, Paths{b}, builder.Build().ToList()) builder.Direct(d) assertEquals(t, Paths{b, d}, builder.Build().ToList()) child := NewDepSetBuilder(order).Direct(c, a, e).Build() builder.Transitive(child) return builder.Build() }, postorder: []string{"c", "a", "e", "b", "d"}, preorder: []string{"b", "d", "c", "a", "e"}, topological: []string{"b", "d", "c", "a", "e"}, }, { name: "builderChaining", depSet: func(t *testing.T, order DepSetOrder) *DepSet { return NewDepSetBuilder(order).Direct(b).Direct(d). Transitive(NewDepSetBuilder(order).Direct(c, a, e).Build()).Build() }, postorder: []string{"c", "a", "e", "b", "d"}, preorder: []string{"b", "d", "c", "a", "e"}, topological: []string{"b", "d", "c", "a", "e"}, }, { name: "transitiveDepsHandledSeparately", depSet: func(t *testing.T, order DepSetOrder) *DepSet { subset := NewDepSetBuilder(order).Direct(c, a, e).Build() builder := NewDepSetBuilder(order) // The fact that we add the transitive subset between the Direct(b) and Direct(d) // calls should not change the result. builder.Direct(b) builder.Transitive(subset) builder.Direct(d) return builder.Build() }, postorder: []string{"c", "a", "e", "b", "d"}, preorder: []string{"b", "d", "c", "a", "e"}, topological: []string{"b", "d", "c", "a", "e"}, }, { name: "nestingNoDuplicates", depSet: func(t *testing.T, order DepSetOrder) *DepSet { subset := NewDepSetBuilder(order).Direct(c, a, e).Build() return NewDepSetBuilder(order).Direct(b, d, e).Transitive(subset).Build() }, postorder: []string{"c", "a", "e", "b", "d"}, preorder: []string{"b", "d", "e", "c", "a"}, topological: []string{"b", "d", "c", "a", "e"}, }, { name: "chain", depSet: func(t *testing.T, order DepSetOrder) *DepSet { c := NewDepSetBuilder(order).Direct(c).Build() b := NewDepSetBuilder(order).Direct(b).Transitive(c).Build() a := NewDepSetBuilder(order).Direct(a).Transitive(b).Build() return a }, postorder: []string{"c", "b", "a"}, preorder: []string{"a", "b", "c"}, topological: []string{"a", "b", "c"}, }, { name: "diamond", depSet: func(t *testing.T, order DepSetOrder) *DepSet { d := NewDepSetBuilder(order).Direct(d).Build() c := NewDepSetBuilder(order).Direct(c).Transitive(d).Build() b := NewDepSetBuilder(order).Direct(b).Transitive(d).Build() a := NewDepSetBuilder(order).Direct(a).Transitive(b).Transitive(c).Build() return a }, postorder: []string{"d", "b", "c", "a"}, preorder: []string{"a", "b", "d", "c"}, topological: []string{"a", "b", "c", "d"}, }, { name: "extendedDiamond", depSet: func(t *testing.T, order DepSetOrder) *DepSet { d := NewDepSetBuilder(order).Direct(d).Build() e := NewDepSetBuilder(order).Direct(e).Build() b := NewDepSetBuilder(order).Direct(b).Transitive(d).Transitive(e).Build() c := NewDepSetBuilder(order).Direct(c).Transitive(e).Transitive(d).Build() a := NewDepSetBuilder(order).Direct(a).Transitive(b).Transitive(c).Build() return a }, postorder: []string{"d", "e", "b", "c", "a"}, preorder: []string{"a", "b", "d", "e", "c"}, topological: []string{"a", "b", "c", "e", "d"}, }, { name: "extendedDiamondRightArm", depSet: func(t *testing.T, order DepSetOrder) *DepSet { d := NewDepSetBuilder(order).Direct(d).Build() e := NewDepSetBuilder(order).Direct(e).Build() b := NewDepSetBuilder(order).Direct(b).Transitive(d).Transitive(e).Build() c2 := NewDepSetBuilder(order).Direct(c2).Transitive(e).Transitive(d).Build() c := NewDepSetBuilder(order).Direct(c).Transitive(c2).Build() a := NewDepSetBuilder(order).Direct(a).Transitive(b).Transitive(c).Build() return a }, postorder: []string{"d", "e", "b", "c2", "c", "a"}, preorder: []string{"a", "b", "d", "e", "c", "c2"}, topological: []string{"a", "b", "c", "c2", "e", "d"}, }, { name: "orderConflict", depSet: func(t *testing.T, order DepSetOrder) *DepSet { child1 := NewDepSetBuilder(order).Direct(a, b).Build() child2 := NewDepSetBuilder(order).Direct(b, a).Build() parent := NewDepSetBuilder(order).Transitive(child1).Transitive(child2).Build() return parent }, postorder: []string{"a", "b"}, preorder: []string{"a", "b"}, topological: []string{"b", "a"}, }, { name: "orderConflictNested", depSet: func(t *testing.T, order DepSetOrder) *DepSet { a := NewDepSetBuilder(order).Direct(a).Build() b := NewDepSetBuilder(order).Direct(b).Build() child1 := NewDepSetBuilder(order).Transitive(a).Transitive(b).Build() child2 := NewDepSetBuilder(order).Transitive(b).Transitive(a).Build() parent := NewDepSetBuilder(order).Transitive(child1).Transitive(child2).Build() return parent }, postorder: []string{"a", "b"}, preorder: []string{"a", "b"}, topological: []string{"b", "a"}, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { t.Run("postorder", func(t *testing.T) { depSet := tt.depSet(t, POSTORDER) if g, w := depSet.ToList().Strings(), tt.postorder; !reflect.DeepEqual(g, w) { t.Errorf("expected ToList() = %q, got %q", w, g) } }) t.Run("preorder", func(t *testing.T) { depSet := tt.depSet(t, PREORDER) if g, w := depSet.ToList().Strings(), tt.preorder; !reflect.DeepEqual(g, w) { t.Errorf("expected ToList() = %q, got %q", w, g) } }) t.Run("topological", func(t *testing.T) { depSet := tt.depSet(t, TOPOLOGICAL) if g, w := depSet.ToList().Strings(), tt.topological; !reflect.DeepEqual(g, w) { t.Errorf("expected ToList() = %q, got %q", w, g) } }) }) } } func TestDepSetInvalidOrder(t *testing.T) { orders := []DepSetOrder{POSTORDER, PREORDER, TOPOLOGICAL} run := func(t *testing.T, order1, order2 DepSetOrder) { defer func() { if r := recover(); r != nil { if err, ok := r.(error); !ok { t.Fatalf("expected panic error, got %v", err) } else if !strings.Contains(err.Error(), "incompatible order") { t.Fatalf("expected incompatible order error, got %v", err) } } }() NewDepSet(order1, nil, []*DepSet{NewDepSet(order2, nil, nil)}) t.Fatal("expected panic") } for _, order1 := range orders { t.Run(order1.String(), func(t *testing.T) { for _, order2 := range orders { t.Run(order2.String(), func(t *testing.T) { if order1 != order2 { run(t, order1, order2) } }) } }) } } func Test_firstUnique(t *testing.T) { f := func(t *testing.T, imp func([]string) []string, in, want []string) { t.Helper() out := imp(in) if !reflect.DeepEqual(out, want) { t.Errorf("incorrect output:") t.Errorf(" input: %#v", in) t.Errorf(" expected: %#v", want) t.Errorf(" got: %#v", out) } } for _, testCase := range firstUniqueStringsTestCases { t.Run("list", func(t *testing.T) { f(t, func(s []string) []string { return firstUniqueList(s).([]string) }, testCase.in, testCase.out) }) t.Run("map", func(t *testing.T) { f(t, func(s []string) []string { return firstUniqueMap(s).([]string) }, testCase.in, testCase.out) }) } } func Benchmark_firstUnique(b *testing.B) { implementations := []struct { name string f func([]string) []string }{ { name: "list", f: func(slice []string) []string { return firstUniqueList(slice).([]string) }, }, { name: "map", f: func(slice []string) []string { return firstUniqueMap(slice).([]string) }, }, { name: "optimal", f: func(slice []string) []string { return firstUnique(slice).([]string) }, }, } const maxSize = 1024 uniqueStrings := make([]string, maxSize) for i := range uniqueStrings { uniqueStrings[i] = strconv.Itoa(i) } sameString := make([]string, maxSize) for i := range sameString { sameString[i] = uniqueStrings[0] } f := func(b *testing.B, imp func([]string) []string, s []string) { for i := 0; i < b.N; i++ { b.ReportAllocs() s = append([]string(nil), s...) imp(s) } } for n := 1; n <= maxSize; n <<= 1 { b.Run(strconv.Itoa(n), func(b *testing.B) { for _, implementation := range implementations { b.Run(implementation.name, func(b *testing.B) { b.Run("same", func(b *testing.B) { f(b, implementation.f, sameString[:n]) }) b.Run("unique", func(b *testing.B) { f(b, implementation.f, uniqueStrings[:n]) }) }) } }) } }