// Copyright 2021 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Convert makefile containing device configuration to Starlark file // The conversion can handle the following constructs in a makefile: // * comments // * simple variable assignments // * $(call init-product,) // * $(call inherit-product-if-exists // * if directives // All other constructs are carried over to the output starlark file as comments. // package mk2rbc import ( "bytes" "fmt" "io" "io/ioutil" "os" "path/filepath" "regexp" "strconv" "strings" "text/scanner" mkparser "android/soong/androidmk/parser" ) const ( baseUri = "//build/make/core:product_config.rbc" // The name of the struct exported by the product_config.rbc // that contains the functions and variables available to // product configuration Starlark files. baseName = "rblf" // And here are the functions and variables: cfnGetCfg = baseName + ".cfg" cfnMain = baseName + ".product_configuration" cfnPrintVars = baseName + ".printvars" cfnWarning = baseName + ".warning" cfnLocalAppend = baseName + ".local_append" cfnLocalSetDefault = baseName + ".local_set_default" cfnInherit = baseName + ".inherit" cfnSetListDefault = baseName + ".setdefault" ) const ( // Phony makefile functions, they are eventually rewritten // according to knownFunctions map fileExistsPhony = "$file_exists" wildcardExistsPhony = "$wildcard_exists" ) const ( callLoadAlways = "inherit-product" callLoadIf = "inherit-product-if-exists" ) var knownFunctions = map[string]struct { // The name of the runtime function this function call in makefiles maps to. // If it starts with !, then this makefile function call is rewritten to // something else. runtimeName string returnType starlarkType }{ fileExistsPhony: {baseName + ".file_exists", starlarkTypeBool}, wildcardExistsPhony: {baseName + ".file_wildcard_exists", starlarkTypeBool}, "add-to-product-copy-files-if-exists": {baseName + ".copy_if_exists", starlarkTypeList}, "addprefix": {baseName + ".addprefix", starlarkTypeList}, "addsuffix": {baseName + ".addsuffix", starlarkTypeList}, "enforce-product-packages-exist": {baseName + ".enforce_product_packages_exist", starlarkTypeVoid}, "error": {baseName + ".mkerror", starlarkTypeVoid}, "findstring": {"!findstring", starlarkTypeInt}, "find-copy-subdir-files": {baseName + ".find_and_copy", starlarkTypeList}, "filter": {baseName + ".filter", starlarkTypeList}, "filter-out": {baseName + ".filter_out", starlarkTypeList}, "info": {baseName + ".mkinfo", starlarkTypeVoid}, "is-board-platform": {"!is-board-platform", starlarkTypeBool}, "is-board-platform-in-list": {"!is-board-platform-in-list", starlarkTypeBool}, "is-product-in-list": {"!is-product-in-list", starlarkTypeBool}, "is-vendor-board-platform": {"!is-vendor-board-platform", starlarkTypeBool}, callLoadAlways: {"!inherit-product", starlarkTypeVoid}, callLoadIf: {"!inherit-product-if-exists", starlarkTypeVoid}, "patsubst": {baseName + ".mkpatsubst", starlarkTypeString}, "produce_copy_files": {baseName + ".produce_copy_files", starlarkTypeList}, "require-artifacts-in-path": {baseName + ".require_artifacts_in_path", starlarkTypeVoid}, "require-artifacts-in-path-relaxed": {baseName + ".require_artifacts_in_path_relaxed", starlarkTypeVoid}, // TODO(asmundak): remove it once all calls are removed from configuration makefiles. see b/183161002 "shell": {baseName + ".shell", starlarkTypeString}, "strip": {baseName + ".mkstrip", starlarkTypeString}, "subst": {baseName + ".mksubst", starlarkTypeString}, "warning": {baseName + ".mkwarning", starlarkTypeVoid}, "word": {baseName + "!word", starlarkTypeString}, "wildcard": {baseName + ".expand_wildcard", starlarkTypeList}, } var builtinFuncRex = regexp.MustCompile( "^(addprefix|addsuffix|abspath|and|basename|call|dir|error|eval" + "|flavor|foreach|file|filter|filter-out|findstring|firstword|guile" + "|if|info|join|lastword|notdir|or|origin|patsubst|realpath" + "|shell|sort|strip|subst|suffix|value|warning|word|wordlist|words" + "|wildcard)") // Conversion request parameters type Request struct { MkFile string // file to convert Reader io.Reader // if set, read input from this stream instead RootDir string // root directory path used to resolve included files OutputSuffix string // generated Starlark files suffix OutputDir string // if set, root of the output hierarchy ErrorLogger ErrorMonitorCB TracedVariables []string // trace assignment to these variables TraceCalls bool WarnPartialSuccess bool } // An error sink allowing to gather error statistics. // NewError is called on every error encountered during processing. type ErrorMonitorCB interface { NewError(s string, node mkparser.Node, args ...interface{}) } // Derives module name for a given file. It is base name // (file name without suffix), with some characters replaced to make it a Starlark identifier func moduleNameForFile(mkFile string) string { base := strings.TrimSuffix(filepath.Base(mkFile), filepath.Ext(mkFile)) // TODO(asmundak): what else can be in the product file names? return strings.ReplaceAll(base, "-", "_") } func cloneMakeString(mkString *mkparser.MakeString) *mkparser.MakeString { r := &mkparser.MakeString{StringPos: mkString.StringPos} r.Strings = append(r.Strings, mkString.Strings...) r.Variables = append(r.Variables, mkString.Variables...) return r } func isMakeControlFunc(s string) bool { return s == "error" || s == "warning" || s == "info" } // Starlark output generation context type generationContext struct { buf strings.Builder starScript *StarlarkScript indentLevel int inAssignment bool tracedCount int } func NewGenerateContext(ss *StarlarkScript) *generationContext { return &generationContext{starScript: ss} } // emit returns generated script func (gctx *generationContext) emit() string { ss := gctx.starScript // The emitted code has the following layout: // // preamble, i.e., // load statement for the runtime support // load statement for each unique submodule pulled in by this one // def init(g, handle): // cfg = rblf.cfg(handle) // // iNode := len(ss.nodes) for i, node := range ss.nodes { if _, ok := node.(*commentNode); !ok { iNode = i break } node.emit(gctx) } gctx.emitPreamble() gctx.newLine() // The arguments passed to the init function are the global dictionary // ('g') and the product configuration dictionary ('cfg') gctx.write("def init(g, handle):") gctx.indentLevel++ if gctx.starScript.traceCalls { gctx.newLine() gctx.writef(`print(">%s")`, gctx.starScript.mkFile) } gctx.newLine() gctx.writef("cfg = %s(handle)", cfnGetCfg) for _, node := range ss.nodes[iNode:] { node.emit(gctx) } if ss.hasErrors && ss.warnPartialSuccess { gctx.newLine() gctx.writef("%s(%q, %q)", cfnWarning, filepath.Base(ss.mkFile), "partially successful conversion") } if gctx.starScript.traceCalls { gctx.newLine() gctx.writef(`print("<%s")`, gctx.starScript.mkFile) } gctx.indentLevel-- gctx.write("\n") return gctx.buf.String() } func (gctx *generationContext) emitPreamble() { gctx.newLine() gctx.writef("load(%q, %q)", baseUri, baseName) // Emit exactly one load statement for each URI. loadedSubConfigs := make(map[string]string) for _, sc := range gctx.starScript.inherited { uri := sc.path if m, ok := loadedSubConfigs[uri]; ok { // No need to emit load statement, but fix module name. sc.moduleLocalName = m continue } if !sc.loadAlways { uri += "|init" } gctx.newLine() gctx.writef("load(%q, %s = \"init\")", uri, sc.entryName()) loadedSubConfigs[uri] = sc.moduleLocalName } gctx.write("\n") } func (gctx *generationContext) emitPass() { gctx.newLine() gctx.write("pass") } func (gctx *generationContext) write(ss ...string) { for _, s := range ss { gctx.buf.WriteString(s) } } func (gctx *generationContext) writef(format string, args ...interface{}) { gctx.write(fmt.Sprintf(format, args...)) } func (gctx *generationContext) newLine() { if gctx.buf.Len() == 0 { return } gctx.write("\n") gctx.writef("%*s", 2*gctx.indentLevel, "") } type knownVariable struct { name string class varClass valueType starlarkType } type knownVariables map[string]knownVariable func (pcv knownVariables) NewVariable(name string, varClass varClass, valueType starlarkType) { v, exists := pcv[name] if !exists { pcv[name] = knownVariable{name, varClass, valueType} return } // Conflict resolution: // * config class trumps everything // * any type trumps unknown type match := varClass == v.class if !match { if varClass == VarClassConfig { v.class = VarClassConfig match = true } else if v.class == VarClassConfig { match = true } } if valueType != v.valueType { if valueType != starlarkTypeUnknown { if v.valueType == starlarkTypeUnknown { v.valueType = valueType } else { match = false } } } if !match { fmt.Fprintf(os.Stderr, "cannot redefine %s as %v/%v (already defined as %v/%v)\n", name, varClass, valueType, v.class, v.valueType) } } // All known product variables. var KnownVariables = make(knownVariables) func init() { for _, kv := range []string{ // Kernel-related variables that we know are lists. "BOARD_VENDOR_KERNEL_MODULES", "BOARD_VENDOR_RAMDISK_KERNEL_MODULES", "BOARD_VENDOR_RAMDISK_KERNEL_MODULES_LOAD", "BOARD_RECOVERY_KERNEL_MODULES", // Other variables we knwo are lists "ART_APEX_JARS", } { KnownVariables.NewVariable(kv, VarClassSoong, starlarkTypeList) } } type nodeReceiver interface { newNode(node starlarkNode) } // Information about the generated Starlark script. type StarlarkScript struct { mkFile string moduleName string mkPos scanner.Position nodes []starlarkNode inherited []*inheritedModule hasErrors bool topDir string traceCalls bool // print enter/exit each init function warnPartialSuccess bool } func (ss *StarlarkScript) newNode(node starlarkNode) { ss.nodes = append(ss.nodes, node) } // varAssignmentScope points to the last assignment for each variable // in the current block. It is used during the parsing to chain // the assignments to a variable together. type varAssignmentScope struct { outer *varAssignmentScope vars map[string]*assignmentNode } // parseContext holds the script we are generating and all the ephemeral data // needed during the parsing. type parseContext struct { script *StarlarkScript nodes []mkparser.Node // Makefile as parsed by mkparser currentNodeIndex int // Node in it we are processing ifNestLevel int moduleNameCount map[string]int // count of imported modules with given basename fatalError error builtinMakeVars map[string]starlarkExpr outputSuffix string errorLogger ErrorMonitorCB tracedVariables map[string]bool // variables to be traced in the generated script variables map[string]variable varAssignments *varAssignmentScope receiver nodeReceiver // receptacle for the generated starlarkNode's receiverStack []nodeReceiver outputDir string } func newParseContext(ss *StarlarkScript, nodes []mkparser.Node) *parseContext { predefined := []struct{ name, value string }{ {"SRC_TARGET_DIR", filepath.Join("build", "make", "target")}, {"LOCAL_PATH", filepath.Dir(ss.mkFile)}, {"TOPDIR", ss.topDir}, // TODO(asmundak): maybe read it from build/make/core/envsetup.mk? {"TARGET_COPY_OUT_SYSTEM", "system"}, {"TARGET_COPY_OUT_SYSTEM_OTHER", "system_other"}, {"TARGET_COPY_OUT_DATA", "data"}, {"TARGET_COPY_OUT_ASAN", filepath.Join("data", "asan")}, {"TARGET_COPY_OUT_OEM", "oem"}, {"TARGET_COPY_OUT_RAMDISK", "ramdisk"}, {"TARGET_COPY_OUT_DEBUG_RAMDISK", "debug_ramdisk"}, {"TARGET_COPY_OUT_VENDOR_DEBUG_RAMDISK", "vendor_debug_ramdisk"}, {"TARGET_COPY_OUT_TEST_HARNESS_RAMDISK", "test_harness_ramdisk"}, {"TARGET_COPY_OUT_ROOT", "root"}, {"TARGET_COPY_OUT_RECOVERY", "recovery"}, {"TARGET_COPY_OUT_VENDOR", "||VENDOR-PATH-PH||"}, {"TARGET_COPY_OUT_VENDOR_RAMDISK", "vendor_ramdisk"}, {"TARGET_COPY_OUT_PRODUCT", "||PRODUCT-PATH-PH||"}, {"TARGET_COPY_OUT_PRODUCT_SERVICES", "||PRODUCT-PATH-PH||"}, {"TARGET_COPY_OUT_SYSTEM_EXT", "||SYSTEM_EXT-PATH-PH||"}, {"TARGET_COPY_OUT_ODM", "||ODM-PATH-PH||"}, {"TARGET_COPY_OUT_VENDOR_DLKM", "||VENDOR_DLKM-PATH-PH||"}, {"TARGET_COPY_OUT_ODM_DLKM", "||ODM_DLKM-PATH-PH||"}, // TODO(asmundak): to process internal config files, we need the following variables: // BOARD_CONFIG_VENDOR_PATH // TARGET_VENDOR // target_base_product // // the following utility variables are set in build/make/common/core.mk: {"empty", ""}, {"space", " "}, {"comma", ","}, {"newline", "\n"}, {"pound", "#"}, {"backslash", "\\"}, } ctx := &parseContext{ script: ss, nodes: nodes, currentNodeIndex: 0, ifNestLevel: 0, moduleNameCount: make(map[string]int), builtinMakeVars: map[string]starlarkExpr{}, variables: make(map[string]variable), } ctx.pushVarAssignments() for _, item := range predefined { ctx.variables[item.name] = &predefinedVariable{ baseVariable: baseVariable{nam: item.name, typ: starlarkTypeString}, value: &stringLiteralExpr{item.value}, } } return ctx } func (ctx *parseContext) lastAssignment(name string) *assignmentNode { for va := ctx.varAssignments; va != nil; va = va.outer { if v, ok := va.vars[name]; ok { return v } } return nil } func (ctx *parseContext) setLastAssignment(name string, asgn *assignmentNode) { ctx.varAssignments.vars[name] = asgn } func (ctx *parseContext) pushVarAssignments() { va := &varAssignmentScope{ outer: ctx.varAssignments, vars: make(map[string]*assignmentNode), } ctx.varAssignments = va } func (ctx *parseContext) popVarAssignments() { ctx.varAssignments = ctx.varAssignments.outer } func (ctx *parseContext) pushReceiver(rcv nodeReceiver) { ctx.receiverStack = append(ctx.receiverStack, ctx.receiver) ctx.receiver = rcv } func (ctx *parseContext) popReceiver() { last := len(ctx.receiverStack) - 1 if last < 0 { panic(fmt.Errorf("popReceiver: receiver stack empty")) } ctx.receiver = ctx.receiverStack[last] ctx.receiverStack = ctx.receiverStack[0:last] } func (ctx *parseContext) hasNodes() bool { return ctx.currentNodeIndex < len(ctx.nodes) } func (ctx *parseContext) getNode() mkparser.Node { if !ctx.hasNodes() { return nil } node := ctx.nodes[ctx.currentNodeIndex] ctx.currentNodeIndex++ return node } func (ctx *parseContext) backNode() { if ctx.currentNodeIndex <= 0 { panic("Cannot back off") } ctx.currentNodeIndex-- } func (ctx *parseContext) handleAssignment(a *mkparser.Assignment) { // Handle only simple variables if !a.Name.Const() { ctx.errorf(a, "Only simple variables are handled") return } name := a.Name.Strings[0] lhs := ctx.addVariable(name) if lhs == nil { ctx.errorf(a, "unknown variable %s", name) return } _, isTraced := ctx.tracedVariables[name] asgn := &assignmentNode{lhs: lhs, mkValue: a.Value, isTraced: isTraced} if lhs.valueType() == starlarkTypeUnknown { // Try to divine variable type from the RHS asgn.value = ctx.parseMakeString(a, a.Value) if xBad, ok := asgn.value.(*badExpr); ok { ctx.wrapBadExpr(xBad) return } inferred_type := asgn.value.typ() if inferred_type != starlarkTypeUnknown { lhs.setValueType(inferred_type) } } if lhs.valueType() == starlarkTypeList { xConcat := ctx.buildConcatExpr(a) if xConcat == nil { return } switch len(xConcat.items) { case 0: asgn.value = &listExpr{} case 1: asgn.value = xConcat.items[0] default: asgn.value = xConcat } } else { asgn.value = ctx.parseMakeString(a, a.Value) if xBad, ok := asgn.value.(*badExpr); ok { ctx.wrapBadExpr(xBad) return } } // TODO(asmundak): move evaluation to a separate pass asgn.value, _ = asgn.value.eval(ctx.builtinMakeVars) asgn.previous = ctx.lastAssignment(name) ctx.setLastAssignment(name, asgn) switch a.Type { case "=", ":=": asgn.flavor = asgnSet case "+=": if asgn.previous == nil && !asgn.lhs.isPreset() { asgn.flavor = asgnMaybeAppend } else { asgn.flavor = asgnAppend } case "?=": asgn.flavor = asgnMaybeSet default: panic(fmt.Errorf("unexpected assignment type %s", a.Type)) } ctx.receiver.newNode(asgn) } func (ctx *parseContext) buildConcatExpr(a *mkparser.Assignment) *concatExpr { xConcat := &concatExpr{} var xItemList *listExpr addToItemList := func(x ...starlarkExpr) { if xItemList == nil { xItemList = &listExpr{[]starlarkExpr{}} } xItemList.items = append(xItemList.items, x...) } finishItemList := func() { if xItemList != nil { xConcat.items = append(xConcat.items, xItemList) xItemList = nil } } items := a.Value.Words() for _, item := range items { // A function call in RHS is supposed to return a list, all other item // expressions return individual elements. switch x := ctx.parseMakeString(a, item).(type) { case *badExpr: ctx.wrapBadExpr(x) return nil case *stringLiteralExpr: addToItemList(maybeConvertToStringList(x).(*listExpr).items...) default: switch x.typ() { case starlarkTypeList: finishItemList() xConcat.items = append(xConcat.items, x) case starlarkTypeString: finishItemList() xConcat.items = append(xConcat.items, &callExpr{ object: x, name: "split", args: nil, returnType: starlarkTypeList, }) default: addToItemList(x) } } } if xItemList != nil { xConcat.items = append(xConcat.items, xItemList) } return xConcat } func (ctx *parseContext) newInheritedModule(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) *inheritedModule { var path string x, _ := pathExpr.eval(ctx.builtinMakeVars) s, ok := x.(*stringLiteralExpr) if !ok { ctx.errorf(v, "inherit-product/include argument is too complex") return nil } path = s.literal moduleName := moduleNameForFile(path) moduleLocalName := "_" + moduleName n, found := ctx.moduleNameCount[moduleName] if found { moduleLocalName += fmt.Sprintf("%d", n) } ctx.moduleNameCount[moduleName] = n + 1 ln := &inheritedModule{ path: ctx.loadedModulePath(path), originalPath: path, moduleName: moduleName, moduleLocalName: moduleLocalName, loadAlways: loadAlways, } ctx.script.inherited = append(ctx.script.inherited, ln) return ln } func (ctx *parseContext) handleInheritModule(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) { if im := ctx.newInheritedModule(v, pathExpr, loadAlways); im != nil { ctx.receiver.newNode(&inheritNode{im}) } } func (ctx *parseContext) handleInclude(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) { if ln := ctx.newInheritedModule(v, pathExpr, loadAlways); ln != nil { ctx.receiver.newNode(&includeNode{ln}) } } func (ctx *parseContext) handleVariable(v *mkparser.Variable) { // Handle: // $(call inherit-product,...) // $(call inherit-product-if-exists,...) // $(info xxx) // $(warning xxx) // $(error xxx) expr := ctx.parseReference(v, v.Name) switch x := expr.(type) { case *callExpr: if x.name == callLoadAlways || x.name == callLoadIf { ctx.handleInheritModule(v, x.args[0], x.name == callLoadAlways) } else if isMakeControlFunc(x.name) { // File name is the first argument args := []starlarkExpr{ &stringLiteralExpr{ctx.script.mkFile}, x.args[0], } ctx.receiver.newNode(&exprNode{ &callExpr{name: x.name, args: args, returnType: starlarkTypeUnknown}, }) } else { ctx.receiver.newNode(&exprNode{expr}) } case *badExpr: ctx.wrapBadExpr(x) return default: ctx.errorf(v, "cannot handle %s", v.Dump()) return } } func (ctx *parseContext) handleDefine(directive *mkparser.Directive) { tokens := strings.Fields(directive.Args.Strings[0]) ctx.errorf(directive, "define is not supported: %s", tokens[0]) } func (ctx *parseContext) handleIfBlock(ifDirective *mkparser.Directive) { ssSwitch := &switchNode{} ctx.pushReceiver(ssSwitch) for ctx.processBranch(ifDirective); ctx.hasNodes() && ctx.fatalError == nil; { node := ctx.getNode() switch x := node.(type) { case *mkparser.Directive: switch x.Name { case "else", "elifdef", "elifndef", "elifeq", "elifneq": ctx.processBranch(x) case "endif": ctx.popReceiver() ctx.receiver.newNode(ssSwitch) return default: ctx.errorf(node, "unexpected directive %s", x.Name) } default: ctx.errorf(ifDirective, "unexpected statement") } } if ctx.fatalError == nil { ctx.fatalError = fmt.Errorf("no matching endif for %s", ifDirective.Dump()) } ctx.popReceiver() } // processBranch processes a single branch (if/elseif/else) until the next directive // on the same level. func (ctx *parseContext) processBranch(check *mkparser.Directive) { block := switchCase{gate: ctx.parseCondition(check)} defer func() { ctx.popVarAssignments() ctx.ifNestLevel-- }() ctx.pushVarAssignments() ctx.ifNestLevel++ ctx.pushReceiver(&block) for ctx.hasNodes() { node := ctx.getNode() if ctx.handleSimpleStatement(node) { continue } switch d := node.(type) { case *mkparser.Directive: switch d.Name { case "else", "elifdef", "elifndef", "elifeq", "elifneq", "endif": ctx.popReceiver() ctx.receiver.newNode(&block) ctx.backNode() return case "ifdef", "ifndef", "ifeq", "ifneq": ctx.handleIfBlock(d) default: ctx.errorf(d, "unexpected directive %s", d.Name) } default: ctx.errorf(node, "unexpected statement") } } ctx.fatalError = fmt.Errorf("no matching endif for %s", check.Dump()) ctx.popReceiver() } func (ctx *parseContext) newIfDefinedNode(check *mkparser.Directive) (starlarkExpr, bool) { if !check.Args.Const() { return ctx.newBadExpr(check, "ifdef variable ref too complex: %s", check.Args.Dump()), false } v := ctx.addVariable(check.Args.Strings[0]) return &variableDefinedExpr{v}, true } func (ctx *parseContext) parseCondition(check *mkparser.Directive) starlarkNode { switch check.Name { case "ifdef", "ifndef", "elifdef", "elifndef": v, ok := ctx.newIfDefinedNode(check) if ok && strings.HasSuffix(check.Name, "ndef") { v = ¬Expr{v} } return &ifNode{ isElif: strings.HasPrefix(check.Name, "elif"), expr: v, } case "ifeq", "ifneq", "elifeq", "elifneq": return &ifNode{ isElif: strings.HasPrefix(check.Name, "elif"), expr: ctx.parseCompare(check), } case "else": return &elseNode{} default: panic(fmt.Errorf("%s: unknown directive: %s", ctx.script.mkFile, check.Dump())) } } func (ctx *parseContext) newBadExpr(node mkparser.Node, text string, args ...interface{}) starlarkExpr { message := fmt.Sprintf(text, args...) if ctx.errorLogger != nil { ctx.errorLogger.NewError(text, node, args) } ctx.script.hasErrors = true return &badExpr{node, message} } func (ctx *parseContext) parseCompare(cond *mkparser.Directive) starlarkExpr { // Strip outer parentheses mkArg := cloneMakeString(cond.Args) mkArg.Strings[0] = strings.TrimLeft(mkArg.Strings[0], "( ") n := len(mkArg.Strings) mkArg.Strings[n-1] = strings.TrimRight(mkArg.Strings[n-1], ") ") args := mkArg.Split(",") // TODO(asmundak): handle the case where the arguments are in quotes and space-separated if len(args) != 2 { return ctx.newBadExpr(cond, "ifeq/ifneq len(args) != 2 %s", cond.Dump()) } args[0].TrimRightSpaces() args[1].TrimLeftSpaces() isEq := !strings.HasSuffix(cond.Name, "neq") switch xLeft := ctx.parseMakeString(cond, args[0]).(type) { case *stringLiteralExpr, *variableRefExpr: switch xRight := ctx.parseMakeString(cond, args[1]).(type) { case *stringLiteralExpr, *variableRefExpr: return &eqExpr{left: xLeft, right: xRight, isEq: isEq} case *badExpr: return xRight default: expr, ok := ctx.parseCheckFunctionCallResult(cond, xLeft, args[1]) if ok { return expr } return ctx.newBadExpr(cond, "right operand is too complex: %s", args[1].Dump()) } case *badExpr: return xLeft default: switch xRight := ctx.parseMakeString(cond, args[1]).(type) { case *stringLiteralExpr, *variableRefExpr: expr, ok := ctx.parseCheckFunctionCallResult(cond, xRight, args[0]) if ok { return expr } return ctx.newBadExpr(cond, "left operand is too complex: %s", args[0].Dump()) case *badExpr: return xRight default: return ctx.newBadExpr(cond, "operands are too complex: (%s,%s)", args[0].Dump(), args[1].Dump()) } } } func (ctx *parseContext) parseCheckFunctionCallResult(directive *mkparser.Directive, xValue starlarkExpr, varArg *mkparser.MakeString) (starlarkExpr, bool) { mkSingleVar, ok := varArg.SingleVariable() if !ok { return nil, false } expr := ctx.parseReference(directive, mkSingleVar) negate := strings.HasSuffix(directive.Name, "neq") checkIsSomethingFunction := func(xCall *callExpr) starlarkExpr { s, ok := maybeString(xValue) if !ok || s != "true" { return ctx.newBadExpr(directive, fmt.Sprintf("the result of %s can be compared only to 'true'", xCall.name)) } if len(xCall.args) < 1 { return ctx.newBadExpr(directive, "%s requires an argument", xCall.name) } return nil } switch x := expr.(type) { case *callExpr: switch x.name { case "filter": return ctx.parseCompareFilterFuncResult(directive, x, xValue, !negate), true case "filter-out": return ctx.parseCompareFilterFuncResult(directive, x, xValue, negate), true case "wildcard": return ctx.parseCompareWildcardFuncResult(directive, x, xValue, negate), true case "findstring": return ctx.parseCheckFindstringFuncResult(directive, x, xValue, negate), true case "strip": return ctx.parseCompareStripFuncResult(directive, x, xValue, negate), true case "is-board-platform": if xBad := checkIsSomethingFunction(x); xBad != nil { return xBad, true } return &eqExpr{ left: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false}, right: x.args[0], isEq: !negate, }, true case "is-board-platform-in-list": if xBad := checkIsSomethingFunction(x); xBad != nil { return xBad, true } return &inExpr{ expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false}, list: maybeConvertToStringList(x.args[0]), isNot: negate, }, true case "is-product-in-list": if xBad := checkIsSomethingFunction(x); xBad != nil { return xBad, true } return &inExpr{ expr: &variableRefExpr{ctx.addVariable("TARGET_PRODUCT"), true}, list: maybeConvertToStringList(x.args[0]), isNot: negate, }, true case "is-vendor-board-platform": if xBad := checkIsSomethingFunction(x); xBad != nil { return xBad, true } s, ok := maybeString(x.args[0]) if !ok { return ctx.newBadExpr(directive, "cannot handle non-constant argument to is-vendor-board-platform"), true } return &inExpr{ expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false}, list: &variableRefExpr{ctx.addVariable(s + "_BOARD_PLATFORMS"), true}, isNot: negate, }, true default: return ctx.newBadExpr(directive, "Unknown function in ifeq: %s", x.name), true } case *badExpr: return x, true default: return nil, false } } func (ctx *parseContext) parseCompareFilterFuncResult(cond *mkparser.Directive, filterFuncCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { // We handle: // * ifeq/ifneq (,$(filter v1 v2 ..., $(VAR)) becomes if VAR not in/in ["v1", "v2", ...] // * ifeq/ifneq (,$(filter $(VAR), v1 v2 ...) becomes if VAR not in/in ["v1", "v2", ...] // * ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...) becomes if VAR in/not in ["v1", "v2"] // TODO(Asmundak): check the last case works for filter-out, too. xPattern := filterFuncCall.args[0] xText := filterFuncCall.args[1] var xInList *stringLiteralExpr var xVar starlarkExpr var ok bool switch x := xValue.(type) { case *stringLiteralExpr: if x.literal != "" { return ctx.newBadExpr(cond, "filter comparison to non-empty value: %s", xValue) } // Either pattern or text should be const, and the // non-const one should be varRefExpr if xInList, ok = xPattern.(*stringLiteralExpr); ok { xVar = xText } else if xInList, ok = xText.(*stringLiteralExpr); ok { xVar = xPattern } case *variableRefExpr: if v, ok := xPattern.(*variableRefExpr); ok { if xInList, ok = xText.(*stringLiteralExpr); ok && v.ref.name() == x.ref.name() { // ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...), flip negate, // it's the opposite to what is done when comparing to empty. xVar = xPattern negate = !negate } } } if xVar != nil && xInList != nil { if _, ok := xVar.(*variableRefExpr); ok { slExpr := newStringListExpr(strings.Fields(xInList.literal)) // Generate simpler code for the common cases: if xVar.typ() == starlarkTypeList { if len(slExpr.items) == 1 { // Checking that a string belongs to list return &inExpr{isNot: negate, list: xVar, expr: slExpr.items[0]} } else { // TODO(asmundak): panic("TBD") } } return &inExpr{isNot: negate, list: newStringListExpr(strings.Fields(xInList.literal)), expr: xVar} } } return ctx.newBadExpr(cond, "filter arguments are too complex: %s", cond.Dump()) } func (ctx *parseContext) parseCompareWildcardFuncResult(directive *mkparser.Directive, xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { if x, ok := xValue.(*stringLiteralExpr); !ok || x.literal != "" { return ctx.newBadExpr(directive, "wildcard result can be compared only to empty: %s", xValue) } callFunc := wildcardExistsPhony if s, ok := xCall.args[0].(*stringLiteralExpr); ok && !strings.ContainsAny(s.literal, "*?{[") { callFunc = fileExistsPhony } var cc starlarkExpr = &callExpr{name: callFunc, args: xCall.args, returnType: starlarkTypeBool} if !negate { cc = ¬Expr{cc} } return cc } func (ctx *parseContext) parseCheckFindstringFuncResult(directive *mkparser.Directive, xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { if x, ok := xValue.(*stringLiteralExpr); !ok || x.literal != "" { return ctx.newBadExpr(directive, "findstring result can be compared only to empty: %s", xValue) } return &eqExpr{ left: &callExpr{ object: xCall.args[1], name: "find", args: []starlarkExpr{xCall.args[0]}, returnType: starlarkTypeInt, }, right: &intLiteralExpr{-1}, isEq: !negate, } } func (ctx *parseContext) parseCompareStripFuncResult(directive *mkparser.Directive, xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { if _, ok := xValue.(*stringLiteralExpr); !ok { return ctx.newBadExpr(directive, "strip result can be compared only to string: %s", xValue) } return &eqExpr{ left: &callExpr{ name: "strip", args: xCall.args, returnType: starlarkTypeString, }, right: xValue, isEq: !negate} } // parses $(...), returning an expression func (ctx *parseContext) parseReference(node mkparser.Node, ref *mkparser.MakeString) starlarkExpr { ref.TrimLeftSpaces() ref.TrimRightSpaces() refDump := ref.Dump() // Handle only the case where the first (or only) word is constant words := ref.SplitN(" ", 2) if !words[0].Const() { return ctx.newBadExpr(node, "reference is too complex: %s", refDump) } // If it is a single word, it can be a simple variable // reference or a function call if len(words) == 1 { if isMakeControlFunc(refDump) || refDump == "shell" { return &callExpr{ name: refDump, args: []starlarkExpr{&stringLiteralExpr{""}}, returnType: starlarkTypeUnknown, } } if v := ctx.addVariable(refDump); v != nil { return &variableRefExpr{v, ctx.lastAssignment(v.name()) != nil} } return ctx.newBadExpr(node, "unknown variable %s", refDump) } expr := &callExpr{name: words[0].Dump(), returnType: starlarkTypeUnknown} args := words[1] args.TrimLeftSpaces() // Make control functions and shell need special treatment as everything // after the name is a single text argument if isMakeControlFunc(expr.name) || expr.name == "shell" { x := ctx.parseMakeString(node, args) if xBad, ok := x.(*badExpr); ok { return xBad } expr.args = []starlarkExpr{x} return expr } if expr.name == "call" { words = args.SplitN(",", 2) if words[0].Empty() || !words[0].Const() { return ctx.newBadExpr(nil, "cannot handle %s", refDump) } expr.name = words[0].Dump() if len(words) < 2 { return expr } args = words[1] } if kf, found := knownFunctions[expr.name]; found { expr.returnType = kf.returnType } else { return ctx.newBadExpr(node, "cannot handle invoking %s", expr.name) } switch expr.name { case "word": return ctx.parseWordFunc(node, args) case "subst", "patsubst": return ctx.parseSubstFunc(node, expr.name, args) default: for _, arg := range args.Split(",") { arg.TrimLeftSpaces() arg.TrimRightSpaces() x := ctx.parseMakeString(node, arg) if xBad, ok := x.(*badExpr); ok { return xBad } expr.args = append(expr.args, x) } } return expr } func (ctx *parseContext) parseSubstFunc(node mkparser.Node, fname string, args *mkparser.MakeString) starlarkExpr { words := args.Split(",") if len(words) != 3 { return ctx.newBadExpr(node, "%s function should have 3 arguments", fname) } if !words[0].Const() || !words[1].Const() { return ctx.newBadExpr(node, "%s function's from and to arguments should be constant", fname) } from := words[0].Strings[0] to := words[1].Strings[0] words[2].TrimLeftSpaces() words[2].TrimRightSpaces() obj := ctx.parseMakeString(node, words[2]) typ := obj.typ() if typ == starlarkTypeString && fname == "subst" { // Optimization: if it's $(subst from, to, string), emit string.replace(from, to) return &callExpr{ object: obj, name: "replace", args: []starlarkExpr{&stringLiteralExpr{from}, &stringLiteralExpr{to}}, returnType: typ, } } return &callExpr{ name: fname, args: []starlarkExpr{&stringLiteralExpr{from}, &stringLiteralExpr{to}, obj}, returnType: obj.typ(), } } func (ctx *parseContext) parseWordFunc(node mkparser.Node, args *mkparser.MakeString) starlarkExpr { words := args.Split(",") if len(words) != 2 { return ctx.newBadExpr(node, "word function should have 2 arguments") } var index uint64 = 0 if words[0].Const() { index, _ = strconv.ParseUint(strings.TrimSpace(words[0].Strings[0]), 10, 64) } if index < 1 { return ctx.newBadExpr(node, "word index should be constant positive integer") } words[1].TrimLeftSpaces() words[1].TrimRightSpaces() array := ctx.parseMakeString(node, words[1]) if xBad, ok := array.(*badExpr); ok { return xBad } if array.typ() != starlarkTypeList { array = &callExpr{object: array, name: "split", returnType: starlarkTypeList} } return indexExpr{array, &intLiteralExpr{int(index - 1)}} } func (ctx *parseContext) parseMakeString(node mkparser.Node, mk *mkparser.MakeString) starlarkExpr { if mk.Const() { return &stringLiteralExpr{mk.Dump()} } if mkRef, ok := mk.SingleVariable(); ok { return ctx.parseReference(node, mkRef) } // If we reached here, it's neither string literal nor a simple variable, // we need a full-blown interpolation node that will generate // "a%b%c" % (X, Y) for a$(X)b$(Y)c xInterp := &interpolateExpr{args: make([]starlarkExpr, len(mk.Variables))} for i, ref := range mk.Variables { arg := ctx.parseReference(node, ref.Name) if x, ok := arg.(*badExpr); ok { return x } xInterp.args[i] = arg } xInterp.chunks = append(xInterp.chunks, mk.Strings...) return xInterp } // Handles the statements whose treatment is the same in all contexts: comment, // assignment, variable (which is a macro call in reality) and all constructs that // do not handle in any context ('define directive and any unrecognized stuff). // Return true if we handled it. func (ctx *parseContext) handleSimpleStatement(node mkparser.Node) bool { handled := true switch x := node.(type) { case *mkparser.Comment: ctx.insertComment("#" + x.Comment) case *mkparser.Assignment: ctx.handleAssignment(x) case *mkparser.Variable: ctx.handleVariable(x) case *mkparser.Directive: switch x.Name { case "define": ctx.handleDefine(x) case "include", "-include": ctx.handleInclude(node, ctx.parseMakeString(node, x.Args), x.Name[0] != '-') default: handled = false } default: ctx.errorf(x, "unsupported line %s", x.Dump()) } return handled } func (ctx *parseContext) insertComment(s string) { ctx.receiver.newNode(&commentNode{strings.TrimSpace(s)}) } func (ctx *parseContext) carryAsComment(failedNode mkparser.Node) { for _, line := range strings.Split(failedNode.Dump(), "\n") { ctx.insertComment("# " + line) } } // records that the given node failed to be converted and includes an explanatory message func (ctx *parseContext) errorf(failedNode mkparser.Node, message string, args ...interface{}) { if ctx.errorLogger != nil { ctx.errorLogger.NewError(message, failedNode, args...) } message = fmt.Sprintf(message, args...) ctx.insertComment(fmt.Sprintf("# MK2RBC TRANSLATION ERROR: %s", message)) ctx.carryAsComment(failedNode) ctx.script.hasErrors = true } func (ctx *parseContext) wrapBadExpr(xBad *badExpr) { ctx.insertComment(fmt.Sprintf("# MK2RBC TRANSLATION ERROR: %s", xBad.message)) ctx.carryAsComment(xBad.node) } func (ctx *parseContext) loadedModulePath(path string) string { // During the transition to Roboleaf some of the product configuration files // will be converted and checked in while the others will be generated on the fly // and run. The runner (rbcrun application) accommodates this by allowing three // different ways to specify the loaded file location: // 1) load(":",...) loads from the same directory // 2) load("//path/relative/to/source/root:", ...) loads source tree // 3) load("/absolute/path/to/ absolute path // If the file being generated and the file it wants to load are in the same directory, // generate option 1. // Otherwise, if output directory is not specified, generate 2) // Finally, if output directory has been specified and the file being generated and // the file it wants to load from are in the different directories, generate 2) or 3): // * if the file being loaded exists in the source tree, generate 2) // * otherwise, generate 3) // Finally, figure out the loaded module path and name and create a node for it loadedModuleDir := filepath.Dir(path) base := filepath.Base(path) loadedModuleName := strings.TrimSuffix(base, filepath.Ext(base)) + ctx.outputSuffix if loadedModuleDir == filepath.Dir(ctx.script.mkFile) { return ":" + loadedModuleName } if ctx.outputDir == "" { return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName) } if _, err := os.Stat(filepath.Join(loadedModuleDir, loadedModuleName)); err == nil { return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName) } return filepath.Join(ctx.outputDir, loadedModuleDir, loadedModuleName) } func (ss *StarlarkScript) String() string { return NewGenerateContext(ss).emit() } func (ss *StarlarkScript) SubConfigFiles() []string { var subs []string for _, src := range ss.inherited { subs = append(subs, src.originalPath) } return subs } func (ss *StarlarkScript) HasErrors() bool { return ss.hasErrors } // Convert reads and parses a makefile. If successful, parsed tree // is returned and then can be passed to String() to get the generated // Starlark file. func Convert(req Request) (*StarlarkScript, error) { reader := req.Reader if reader == nil { mkContents, err := ioutil.ReadFile(req.MkFile) if err != nil { return nil, err } reader = bytes.NewBuffer(mkContents) } parser := mkparser.NewParser(req.MkFile, reader) nodes, errs := parser.Parse() if len(errs) > 0 { for _, e := range errs { fmt.Fprintln(os.Stderr, "ERROR:", e) } return nil, fmt.Errorf("bad makefile %s", req.MkFile) } starScript := &StarlarkScript{ moduleName: moduleNameForFile(req.MkFile), mkFile: req.MkFile, topDir: req.RootDir, traceCalls: req.TraceCalls, warnPartialSuccess: req.WarnPartialSuccess, } ctx := newParseContext(starScript, nodes) ctx.outputSuffix = req.OutputSuffix ctx.outputDir = req.OutputDir ctx.errorLogger = req.ErrorLogger if len(req.TracedVariables) > 0 { ctx.tracedVariables = make(map[string]bool) for _, v := range req.TracedVariables { ctx.tracedVariables[v] = true } } ctx.pushReceiver(starScript) for ctx.hasNodes() && ctx.fatalError == nil { node := ctx.getNode() if ctx.handleSimpleStatement(node) { continue } switch x := node.(type) { case *mkparser.Directive: switch x.Name { case "ifeq", "ifneq", "ifdef", "ifndef": ctx.handleIfBlock(x) default: ctx.errorf(x, "unexpected directive %s", x.Name) } default: ctx.errorf(x, "unsupported line") } } if ctx.fatalError != nil { return nil, ctx.fatalError } return starScript, nil } func Launcher(path, name string) string { var buf bytes.Buffer fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName) fmt.Fprintf(&buf, "load(%q, \"init\")\n", path) fmt.Fprintf(&buf, "g, config = %s(%q, init)\n", cfnMain, name) fmt.Fprintf(&buf, "%s(g, config)\n", cfnPrintVars) return buf.String() } func MakePath2ModuleName(mkPath string) string { return strings.TrimSuffix(mkPath, filepath.Ext(mkPath)) }