// Copyright 2020 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package android import ( "fmt" "reflect" ) // depSet is designed to be conceptually compatible with Bazel's depsets: // https://docs.bazel.build/versions/master/skylark/depsets.html type DepSetOrder int const ( PREORDER DepSetOrder = iota POSTORDER TOPOLOGICAL ) func (o DepSetOrder) String() string { switch o { case PREORDER: return "PREORDER" case POSTORDER: return "POSTORDER" case TOPOLOGICAL: return "TOPOLOGICAL" default: panic(fmt.Errorf("Invalid DepSetOrder %d", o)) } } // A depSet efficiently stores a slice of an arbitrary type from transitive dependencies without // copying. It is stored as a DAG of depSet nodes, each of which has some direct contents and a list // of dependency depSet nodes. // // A depSet has an order that will be used to walk the DAG when ToList() is called. The order // can be POSTORDER, PREORDER, or TOPOLOGICAL. POSTORDER and PREORDER orders return a postordered // or preordered left to right flattened list. TOPOLOGICAL returns a list that guarantees that // elements of children are listed after all of their parents (unless there are duplicate direct // elements in the depSet or any of its transitive dependencies, in which case the ordering of the // duplicated element is not guaranteed). // // A depSet is created by newDepSet or newDepSetBuilder.Build from the slice for direct contents // and the *depSets of dependencies. A depSet is immutable once created. // // This object uses reflection to remain agnostic to the type it contains. It should be replaced // with generics once those exist in Go. Callers should generally use a thin wrapper around depSet // that provides type-safe methods like DepSet for Paths. type depSet struct { preorder bool reverse bool order DepSetOrder direct interface{} transitive []*depSet } type depSetInterface interface { embeddedDepSet() *depSet } func (d *depSet) embeddedDepSet() *depSet { return d } var _ depSetInterface = (*depSet)(nil) // newDepSet returns an immutable depSet with the given order, direct and transitive contents. // direct must be a slice, but is not type-safe due to the lack of generics in Go. It can be a // nil slice, but not a nil interface{}, i.e. []string(nil) but not nil. func newDepSet(order DepSetOrder, direct interface{}, transitive interface{}) *depSet { var directCopy interface{} transitiveDepSet := sliceToDepSets(transitive, order) if order == TOPOLOGICAL { directCopy = reverseSlice(direct) reverseSliceInPlace(transitiveDepSet) } else { directCopy = copySlice(direct) } return &depSet{ preorder: order == PREORDER, reverse: order == TOPOLOGICAL, order: order, direct: directCopy, transitive: transitiveDepSet, } } // depSetBuilder is used to create an immutable depSet. type depSetBuilder struct { order DepSetOrder direct reflect.Value transitive []*depSet } // newDepSetBuilder returns a depSetBuilder to create an immutable depSet with the given order and // type, represented by a slice of type that will be in the depSet. func newDepSetBuilder(order DepSetOrder, typ interface{}) *depSetBuilder { empty := reflect.Zero(reflect.TypeOf(typ)) return &depSetBuilder{ order: order, direct: empty, } } // sliceToDepSets converts a slice of any type that implements depSetInterface (by having a depSet // embedded in it) into a []*depSet. func sliceToDepSets(in interface{}, order DepSetOrder) []*depSet { slice := reflect.ValueOf(in) length := slice.Len() out := make([]*depSet, length) for i := 0; i < length; i++ { vi := slice.Index(i) depSetIntf, ok := vi.Interface().(depSetInterface) if !ok { panic(fmt.Errorf("element %d is a %s, not a depSetInterface", i, vi.Type())) } depSet := depSetIntf.embeddedDepSet() if depSet.order != order { panic(fmt.Errorf("incompatible order, new depSet is %s but transitive depSet is %s", order, depSet.order)) } out[i] = depSet } return out } // DirectSlice adds direct contents to the depSet being built by a depSetBuilder. Newly added direct // contents are to the right of any existing direct contents. The argument must be a slice, but // is not type-safe due to the lack of generics in Go. func (b *depSetBuilder) DirectSlice(direct interface{}) *depSetBuilder { b.direct = reflect.AppendSlice(b.direct, reflect.ValueOf(direct)) return b } // Direct adds direct contents to the depSet being built by a depSetBuilder. Newly added direct // contents are to the right of any existing direct contents. The argument must be the same type // as the element of the slice passed to newDepSetBuilder, but is not type-safe due to the lack of // generics in Go. func (b *depSetBuilder) Direct(direct interface{}) *depSetBuilder { b.direct = reflect.Append(b.direct, reflect.ValueOf(direct)) return b } // Transitive adds transitive contents to the DepSet being built by a DepSetBuilder. Newly added // transitive contents are to the right of any existing transitive contents. The argument can // be any slice of type that has depSet embedded in it. func (b *depSetBuilder) Transitive(transitive interface{}) *depSetBuilder { depSets := sliceToDepSets(transitive, b.order) b.transitive = append(b.transitive, depSets...) return b } // Returns the depSet being built by this depSetBuilder. The depSetBuilder retains its contents // for creating more depSets. func (b *depSetBuilder) Build() *depSet { return newDepSet(b.order, b.direct.Interface(), b.transitive) } // walk calls the visit method in depth-first order on a DepSet, preordered if d.preorder is set, // otherwise postordered. func (d *depSet) walk(visit func(interface{})) { visited := make(map[*depSet]bool) var dfs func(d *depSet) dfs = func(d *depSet) { visited[d] = true if d.preorder { visit(d.direct) } for _, dep := range d.transitive { if !visited[dep] { dfs(dep) } } if !d.preorder { visit(d.direct) } } dfs(d) } // ToList returns the depSet flattened to a list. The order in the list is based on the order // of the depSet. POSTORDER and PREORDER orders return a postordered or preordered left to right // flattened list. TOPOLOGICAL returns a list that guarantees that elements of children are listed // after all of their parents (unless there are duplicate direct elements in the DepSet or any of // its transitive dependencies, in which case the ordering of the duplicated element is not // guaranteed). // // This method uses a reflection-based implementation to find the unique elements in slice, which // is around 3x slower than a concrete implementation. Type-safe wrappers around depSet can // provide their own implementation of ToList that calls depSet.toList with a method that // uses a concrete implementation. func (d *depSet) ToList() interface{} { return d.toList(firstUnique) } // toList returns the depSet flattened to a list. The order in the list is based on the order // of the depSet. POSTORDER and PREORDER orders return a postordered or preordered left to right // flattened list. TOPOLOGICAL returns a list that guarantees that elements of children are listed // after all of their parents (unless there are duplicate direct elements in the DepSet or any of // its transitive dependencies, in which case the ordering of the duplicated element is not // guaranteed). The firstUniqueFunc is used to remove duplicates from the list. func (d *depSet) toList(firstUniqueFunc func(interface{}) interface{}) interface{} { if d == nil { return nil } slice := reflect.Zero(reflect.TypeOf(d.direct)) d.walk(func(paths interface{}) { slice = reflect.AppendSlice(slice, reflect.ValueOf(paths)) }) list := slice.Interface() list = firstUniqueFunc(list) if d.reverse { reverseSliceInPlace(list) } return list } // firstUnique returns all unique elements of a slice, keeping the first copy of each. It // modifies the slice contents in place, and returns a subslice of the original slice. The // argument must be a slice, but is not type-safe due to the lack of reflection in Go. // // Performance of the reflection-based firstUnique is up to 3x slower than a concrete type // version such as FirstUniqueStrings. func firstUnique(slice interface{}) interface{} { // 4 was chosen based on Benchmark_firstUnique results. if reflect.ValueOf(slice).Len() > 4 { return firstUniqueMap(slice) } return firstUniqueList(slice) } // firstUniqueList is an implementation of firstUnique using an O(N^2) list comparison to look for // duplicates. func firstUniqueList(in interface{}) interface{} { writeIndex := 0 slice := reflect.ValueOf(in) length := slice.Len() outer: for readIndex := 0; readIndex < length; readIndex++ { readValue := slice.Index(readIndex) for compareIndex := 0; compareIndex < writeIndex; compareIndex++ { compareValue := slice.Index(compareIndex) // These two Interface() calls seem to cause an allocation and significantly // slow down this list-based implementation. The map implementation below doesn't // have this issue because reflect.Value.MapIndex takes a Value and appears to be // able to do the map lookup without an allocation. if readValue.Interface() == compareValue.Interface() { // The value at readIndex already exists somewhere in the output region // of the slice before writeIndex, skip it. continue outer } } if readIndex != writeIndex { writeValue := slice.Index(writeIndex) writeValue.Set(readValue) } writeIndex++ } return slice.Slice(0, writeIndex).Interface() } var trueValue = reflect.ValueOf(true) // firstUniqueList is an implementation of firstUnique using an O(N) hash set lookup to look for // duplicates. func firstUniqueMap(in interface{}) interface{} { writeIndex := 0 slice := reflect.ValueOf(in) length := slice.Len() seen := reflect.MakeMapWithSize(reflect.MapOf(slice.Type().Elem(), trueValue.Type()), slice.Len()) for readIndex := 0; readIndex < length; readIndex++ { readValue := slice.Index(readIndex) if seen.MapIndex(readValue).IsValid() { continue } seen.SetMapIndex(readValue, trueValue) if readIndex != writeIndex { writeValue := slice.Index(writeIndex) writeValue.Set(readValue) } writeIndex++ } return slice.Slice(0, writeIndex).Interface() } // reverseSliceInPlace reverses the elements of a slice in place. The argument must be a slice, but // is not type-safe due to the lack of reflection in Go. func reverseSliceInPlace(in interface{}) { swapper := reflect.Swapper(in) slice := reflect.ValueOf(in) length := slice.Len() for i, j := 0, length-1; i < j; i, j = i+1, j-1 { swapper(i, j) } } // reverseSlice returns a copy of a slice in reverse order. The argument must be a slice, but is // not type-safe due to the lack of reflection in Go. func reverseSlice(in interface{}) interface{} { slice := reflect.ValueOf(in) if !slice.IsValid() || slice.IsNil() { return in } if slice.Kind() != reflect.Slice { panic(fmt.Errorf("%t is not a slice", in)) } length := slice.Len() if length == 0 { return in } out := reflect.MakeSlice(slice.Type(), length, length) for i := 0; i < length; i++ { out.Index(i).Set(slice.Index(length - 1 - i)) } return out.Interface() } // copySlice returns a copy of a slice. The argument must be a slice, but is not type-safe due to // the lack of reflection in Go. func copySlice(in interface{}) interface{} { slice := reflect.ValueOf(in) if !slice.IsValid() || slice.IsNil() { return in } length := slice.Len() if length == 0 { return in } out := reflect.MakeSlice(slice.Type(), length, length) reflect.Copy(out, slice) return out.Interface() }