platform_build_soong/mk2rbc/mk2rbc.go
Sasha Smundak 16e0773e7f Translate more Make builtin functions
Adds support for abspath/firstword/dir/lastword/notdir functions

Bug: 194521362
Test: internal
Change-Id: I34dd6a81f21a4ef2f8f0a72bd80284ced8957b5c
2021-08-02 15:13:59 -07:00

1505 lines
48 KiB
Go

// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Convert makefile containing device configuration to Starlark file
// The conversion can handle the following constructs in a makefile:
// * comments
// * simple variable assignments
// * $(call init-product,<file>)
// * $(call inherit-product-if-exists
// * if directives
// All other constructs are carried over to the output starlark file as comments.
//
package mk2rbc
import (
"bytes"
"fmt"
"io"
"io/fs"
"io/ioutil"
"os"
"path/filepath"
"regexp"
"strconv"
"strings"
"text/scanner"
mkparser "android/soong/androidmk/parser"
)
const (
baseUri = "//build/make/core:product_config.rbc"
// The name of the struct exported by the product_config.rbc
// that contains the functions and variables available to
// product configuration Starlark files.
baseName = "rblf"
// And here are the functions and variables:
cfnGetCfg = baseName + ".cfg"
cfnMain = baseName + ".product_configuration"
cfnPrintVars = baseName + ".printvars"
cfnWarning = baseName + ".warning"
cfnLocalAppend = baseName + ".local_append"
cfnLocalSetDefault = baseName + ".local_set_default"
cfnInherit = baseName + ".inherit"
cfnSetListDefault = baseName + ".setdefault"
)
const (
// Phony makefile functions, they are eventually rewritten
// according to knownFunctions map
fileExistsPhony = "$file_exists"
wildcardExistsPhony = "$wildcard_exists"
)
const (
callLoadAlways = "inherit-product"
callLoadIf = "inherit-product-if-exists"
)
var knownFunctions = map[string]struct {
// The name of the runtime function this function call in makefiles maps to.
// If it starts with !, then this makefile function call is rewritten to
// something else.
runtimeName string
returnType starlarkType
}{
"abspath": {baseName + ".abspath", starlarkTypeString},
fileExistsPhony: {baseName + ".file_exists", starlarkTypeBool},
wildcardExistsPhony: {baseName + ".file_wildcard_exists", starlarkTypeBool},
"add-to-product-copy-files-if-exists": {baseName + ".copy_if_exists", starlarkTypeList},
"addprefix": {baseName + ".addprefix", starlarkTypeList},
"addsuffix": {baseName + ".addsuffix", starlarkTypeList},
"dir": {baseName + ".dir", starlarkTypeList},
"enforce-product-packages-exist": {baseName + ".enforce_product_packages_exist", starlarkTypeVoid},
"error": {baseName + ".mkerror", starlarkTypeVoid},
"findstring": {"!findstring", starlarkTypeInt},
"find-copy-subdir-files": {baseName + ".find_and_copy", starlarkTypeList},
"find-word-in-list": {"!find-word-in-list", starlarkTypeUnknown}, // internal macro
"filter": {baseName + ".filter", starlarkTypeList},
"filter-out": {baseName + ".filter_out", starlarkTypeList},
"firstword": {"!firstword", starlarkTypeString},
"get-vendor-board-platforms": {"!get-vendor-board-platforms", starlarkTypeList}, // internal macro, used by is-board-platform, etc.
"info": {baseName + ".mkinfo", starlarkTypeVoid},
"is-android-codename": {"!is-android-codename", starlarkTypeBool}, // unused by product config
"is-android-codename-in-list": {"!is-android-codename-in-list", starlarkTypeBool}, // unused by product config
"is-board-platform": {"!is-board-platform", starlarkTypeBool},
"is-board-platform-in-list": {"!is-board-platform-in-list", starlarkTypeBool},
"is-chipset-in-board-platform": {"!is-chipset-in-board-platform", starlarkTypeUnknown}, // unused by product config
"is-chipset-prefix-in-board-platform": {"!is-chipset-prefix-in-board-platform", starlarkTypeBool}, // unused by product config
"is-not-board-platform": {"!is-not-board-platform", starlarkTypeBool}, // defined but never used
"is-platform-sdk-version-at-least": {"!is-platform-sdk-version-at-least", starlarkTypeBool}, // unused by product config
"is-product-in-list": {"!is-product-in-list", starlarkTypeBool},
"is-vendor-board-platform": {"!is-vendor-board-platform", starlarkTypeBool},
callLoadAlways: {"!inherit-product", starlarkTypeVoid},
callLoadIf: {"!inherit-product-if-exists", starlarkTypeVoid},
"lastword": {"!lastword", starlarkTypeString},
"match-prefix": {"!match-prefix", starlarkTypeUnknown}, // internal macro
"match-word": {"!match-word", starlarkTypeUnknown}, // internal macro
"match-word-in-list": {"!match-word-in-list", starlarkTypeUnknown}, // internal macro
"notdir": {baseName + ".notdir", starlarkTypeString},
"my-dir": {"!my-dir", starlarkTypeString},
"patsubst": {baseName + ".mkpatsubst", starlarkTypeString},
"produce_copy_files": {baseName + ".produce_copy_files", starlarkTypeList},
"require-artifacts-in-path": {baseName + ".require_artifacts_in_path", starlarkTypeVoid},
"require-artifacts-in-path-relaxed": {baseName + ".require_artifacts_in_path_relaxed", starlarkTypeVoid},
// TODO(asmundak): remove it once all calls are removed from configuration makefiles. see b/183161002
"shell": {baseName + ".shell", starlarkTypeString},
"strip": {baseName + ".mkstrip", starlarkTypeString},
"tb-modules": {"!tb-modules", starlarkTypeUnknown}, // defined in hardware/amlogic/tb_modules/tb_detect.mk, unused
"subst": {baseName + ".mksubst", starlarkTypeString},
"warning": {baseName + ".mkwarning", starlarkTypeVoid},
"word": {baseName + "!word", starlarkTypeString},
"wildcard": {baseName + ".expand_wildcard", starlarkTypeList},
}
var builtinFuncRex = regexp.MustCompile(
"^(addprefix|addsuffix|abspath|and|basename|call|dir|error|eval" +
"|flavor|foreach|file|filter|filter-out|findstring|firstword|guile" +
"|if|info|join|lastword|notdir|or|origin|patsubst|realpath" +
"|shell|sort|strip|subst|suffix|value|warning|word|wordlist|words" +
"|wildcard)")
// Conversion request parameters
type Request struct {
MkFile string // file to convert
Reader io.Reader // if set, read input from this stream instead
RootDir string // root directory path used to resolve included files
OutputSuffix string // generated Starlark files suffix
OutputDir string // if set, root of the output hierarchy
ErrorLogger ErrorMonitorCB
TracedVariables []string // trace assignment to these variables
TraceCalls bool
WarnPartialSuccess bool
SourceFS fs.FS
MakefileFinder MakefileFinder
}
// An error sink allowing to gather error statistics.
// NewError is called on every error encountered during processing.
type ErrorMonitorCB interface {
NewError(s string, node mkparser.Node, args ...interface{})
}
// Derives module name for a given file. It is base name
// (file name without suffix), with some characters replaced to make it a Starlark identifier
func moduleNameForFile(mkFile string) string {
base := strings.TrimSuffix(filepath.Base(mkFile), filepath.Ext(mkFile))
// TODO(asmundak): what else can be in the product file names?
return strings.NewReplacer("-", "_", ".", "_").Replace(base)
}
func cloneMakeString(mkString *mkparser.MakeString) *mkparser.MakeString {
r := &mkparser.MakeString{StringPos: mkString.StringPos}
r.Strings = append(r.Strings, mkString.Strings...)
r.Variables = append(r.Variables, mkString.Variables...)
return r
}
func isMakeControlFunc(s string) bool {
return s == "error" || s == "warning" || s == "info"
}
// Starlark output generation context
type generationContext struct {
buf strings.Builder
starScript *StarlarkScript
indentLevel int
inAssignment bool
tracedCount int
}
func NewGenerateContext(ss *StarlarkScript) *generationContext {
return &generationContext{starScript: ss}
}
// emit returns generated script
func (gctx *generationContext) emit() string {
ss := gctx.starScript
// The emitted code has the following layout:
// <initial comments>
// preamble, i.e.,
// load statement for the runtime support
// load statement for each unique submodule pulled in by this one
// def init(g, handle):
// cfg = rblf.cfg(handle)
// <statements>
// <warning if conversion was not clean>
iNode := len(ss.nodes)
for i, node := range ss.nodes {
if _, ok := node.(*commentNode); !ok {
iNode = i
break
}
node.emit(gctx)
}
gctx.emitPreamble()
gctx.newLine()
// The arguments passed to the init function are the global dictionary
// ('g') and the product configuration dictionary ('cfg')
gctx.write("def init(g, handle):")
gctx.indentLevel++
if gctx.starScript.traceCalls {
gctx.newLine()
gctx.writef(`print(">%s")`, gctx.starScript.mkFile)
}
gctx.newLine()
gctx.writef("cfg = %s(handle)", cfnGetCfg)
for _, node := range ss.nodes[iNode:] {
node.emit(gctx)
}
if ss.hasErrors && ss.warnPartialSuccess {
gctx.newLine()
gctx.writef("%s(%q, %q)", cfnWarning, filepath.Base(ss.mkFile), "partially successful conversion")
}
if gctx.starScript.traceCalls {
gctx.newLine()
gctx.writef(`print("<%s")`, gctx.starScript.mkFile)
}
gctx.indentLevel--
gctx.write("\n")
return gctx.buf.String()
}
func (gctx *generationContext) emitPreamble() {
gctx.newLine()
gctx.writef("load(%q, %q)", baseUri, baseName)
// Emit exactly one load statement for each URI.
loadedSubConfigs := make(map[string]string)
for _, sc := range gctx.starScript.inherited {
uri := sc.path
if m, ok := loadedSubConfigs[uri]; ok {
// No need to emit load statement, but fix module name.
sc.moduleLocalName = m
continue
}
if sc.optional {
uri += "|init"
}
gctx.newLine()
gctx.writef("load(%q, %s = \"init\")", uri, sc.entryName())
loadedSubConfigs[uri] = sc.moduleLocalName
}
gctx.write("\n")
}
func (gctx *generationContext) emitPass() {
gctx.newLine()
gctx.write("pass")
}
func (gctx *generationContext) write(ss ...string) {
for _, s := range ss {
gctx.buf.WriteString(s)
}
}
func (gctx *generationContext) writef(format string, args ...interface{}) {
gctx.write(fmt.Sprintf(format, args...))
}
func (gctx *generationContext) newLine() {
if gctx.buf.Len() == 0 {
return
}
gctx.write("\n")
gctx.writef("%*s", 2*gctx.indentLevel, "")
}
type knownVariable struct {
name string
class varClass
valueType starlarkType
}
type knownVariables map[string]knownVariable
func (pcv knownVariables) NewVariable(name string, varClass varClass, valueType starlarkType) {
v, exists := pcv[name]
if !exists {
pcv[name] = knownVariable{name, varClass, valueType}
return
}
// Conflict resolution:
// * config class trumps everything
// * any type trumps unknown type
match := varClass == v.class
if !match {
if varClass == VarClassConfig {
v.class = VarClassConfig
match = true
} else if v.class == VarClassConfig {
match = true
}
}
if valueType != v.valueType {
if valueType != starlarkTypeUnknown {
if v.valueType == starlarkTypeUnknown {
v.valueType = valueType
} else {
match = false
}
}
}
if !match {
fmt.Fprintf(os.Stderr, "cannot redefine %s as %v/%v (already defined as %v/%v)\n",
name, varClass, valueType, v.class, v.valueType)
}
}
// All known product variables.
var KnownVariables = make(knownVariables)
func init() {
for _, kv := range []string{
// Kernel-related variables that we know are lists.
"BOARD_VENDOR_KERNEL_MODULES",
"BOARD_VENDOR_RAMDISK_KERNEL_MODULES",
"BOARD_VENDOR_RAMDISK_KERNEL_MODULES_LOAD",
"BOARD_RECOVERY_KERNEL_MODULES",
// Other variables we knwo are lists
"ART_APEX_JARS",
} {
KnownVariables.NewVariable(kv, VarClassSoong, starlarkTypeList)
}
}
type nodeReceiver interface {
newNode(node starlarkNode)
}
// Information about the generated Starlark script.
type StarlarkScript struct {
mkFile string
moduleName string
mkPos scanner.Position
nodes []starlarkNode
inherited []*moduleInfo
hasErrors bool
topDir string
traceCalls bool // print enter/exit each init function
warnPartialSuccess bool
sourceFS fs.FS
makefileFinder MakefileFinder
}
func (ss *StarlarkScript) newNode(node starlarkNode) {
ss.nodes = append(ss.nodes, node)
}
// varAssignmentScope points to the last assignment for each variable
// in the current block. It is used during the parsing to chain
// the assignments to a variable together.
type varAssignmentScope struct {
outer *varAssignmentScope
vars map[string]*assignmentNode
}
// parseContext holds the script we are generating and all the ephemeral data
// needed during the parsing.
type parseContext struct {
script *StarlarkScript
nodes []mkparser.Node // Makefile as parsed by mkparser
currentNodeIndex int // Node in it we are processing
ifNestLevel int
moduleNameCount map[string]int // count of imported modules with given basename
fatalError error
builtinMakeVars map[string]starlarkExpr
outputSuffix string
errorLogger ErrorMonitorCB
tracedVariables map[string]bool // variables to be traced in the generated script
variables map[string]variable
varAssignments *varAssignmentScope
receiver nodeReceiver // receptacle for the generated starlarkNode's
receiverStack []nodeReceiver
outputDir string
dependentModules map[string]*moduleInfo
}
func newParseContext(ss *StarlarkScript, nodes []mkparser.Node) *parseContext {
topdir, _ := filepath.Split(filepath.Join(ss.topDir, "foo"))
predefined := []struct{ name, value string }{
{"SRC_TARGET_DIR", filepath.Join("build", "make", "target")},
{"LOCAL_PATH", filepath.Dir(ss.mkFile)},
{"TOPDIR", topdir},
// TODO(asmundak): maybe read it from build/make/core/envsetup.mk?
{"TARGET_COPY_OUT_SYSTEM", "system"},
{"TARGET_COPY_OUT_SYSTEM_OTHER", "system_other"},
{"TARGET_COPY_OUT_DATA", "data"},
{"TARGET_COPY_OUT_ASAN", filepath.Join("data", "asan")},
{"TARGET_COPY_OUT_OEM", "oem"},
{"TARGET_COPY_OUT_RAMDISK", "ramdisk"},
{"TARGET_COPY_OUT_DEBUG_RAMDISK", "debug_ramdisk"},
{"TARGET_COPY_OUT_VENDOR_DEBUG_RAMDISK", "vendor_debug_ramdisk"},
{"TARGET_COPY_OUT_TEST_HARNESS_RAMDISK", "test_harness_ramdisk"},
{"TARGET_COPY_OUT_ROOT", "root"},
{"TARGET_COPY_OUT_RECOVERY", "recovery"},
{"TARGET_COPY_OUT_VENDOR", "||VENDOR-PATH-PH||"},
{"TARGET_COPY_OUT_VENDOR_RAMDISK", "vendor_ramdisk"},
{"TARGET_COPY_OUT_PRODUCT", "||PRODUCT-PATH-PH||"},
{"TARGET_COPY_OUT_PRODUCT_SERVICES", "||PRODUCT-PATH-PH||"},
{"TARGET_COPY_OUT_SYSTEM_EXT", "||SYSTEM_EXT-PATH-PH||"},
{"TARGET_COPY_OUT_ODM", "||ODM-PATH-PH||"},
{"TARGET_COPY_OUT_VENDOR_DLKM", "||VENDOR_DLKM-PATH-PH||"},
{"TARGET_COPY_OUT_ODM_DLKM", "||ODM_DLKM-PATH-PH||"},
// TODO(asmundak): to process internal config files, we need the following variables:
// BOARD_CONFIG_VENDOR_PATH
// TARGET_VENDOR
// target_base_product
//
// the following utility variables are set in build/make/common/core.mk:
{"empty", ""},
{"space", " "},
{"comma", ","},
{"newline", "\n"},
{"pound", "#"},
{"backslash", "\\"},
}
ctx := &parseContext{
script: ss,
nodes: nodes,
currentNodeIndex: 0,
ifNestLevel: 0,
moduleNameCount: make(map[string]int),
builtinMakeVars: map[string]starlarkExpr{},
variables: make(map[string]variable),
dependentModules: make(map[string]*moduleInfo),
}
ctx.pushVarAssignments()
for _, item := range predefined {
ctx.variables[item.name] = &predefinedVariable{
baseVariable: baseVariable{nam: item.name, typ: starlarkTypeString},
value: &stringLiteralExpr{item.value},
}
}
return ctx
}
func (ctx *parseContext) lastAssignment(name string) *assignmentNode {
for va := ctx.varAssignments; va != nil; va = va.outer {
if v, ok := va.vars[name]; ok {
return v
}
}
return nil
}
func (ctx *parseContext) setLastAssignment(name string, asgn *assignmentNode) {
ctx.varAssignments.vars[name] = asgn
}
func (ctx *parseContext) pushVarAssignments() {
va := &varAssignmentScope{
outer: ctx.varAssignments,
vars: make(map[string]*assignmentNode),
}
ctx.varAssignments = va
}
func (ctx *parseContext) popVarAssignments() {
ctx.varAssignments = ctx.varAssignments.outer
}
func (ctx *parseContext) pushReceiver(rcv nodeReceiver) {
ctx.receiverStack = append(ctx.receiverStack, ctx.receiver)
ctx.receiver = rcv
}
func (ctx *parseContext) popReceiver() {
last := len(ctx.receiverStack) - 1
if last < 0 {
panic(fmt.Errorf("popReceiver: receiver stack empty"))
}
ctx.receiver = ctx.receiverStack[last]
ctx.receiverStack = ctx.receiverStack[0:last]
}
func (ctx *parseContext) hasNodes() bool {
return ctx.currentNodeIndex < len(ctx.nodes)
}
func (ctx *parseContext) getNode() mkparser.Node {
if !ctx.hasNodes() {
return nil
}
node := ctx.nodes[ctx.currentNodeIndex]
ctx.currentNodeIndex++
return node
}
func (ctx *parseContext) backNode() {
if ctx.currentNodeIndex <= 0 {
panic("Cannot back off")
}
ctx.currentNodeIndex--
}
func (ctx *parseContext) handleAssignment(a *mkparser.Assignment) {
// Handle only simple variables
if !a.Name.Const() {
ctx.errorf(a, "Only simple variables are handled")
return
}
name := a.Name.Strings[0]
lhs := ctx.addVariable(name)
if lhs == nil {
ctx.errorf(a, "unknown variable %s", name)
return
}
_, isTraced := ctx.tracedVariables[name]
asgn := &assignmentNode{lhs: lhs, mkValue: a.Value, isTraced: isTraced}
if lhs.valueType() == starlarkTypeUnknown {
// Try to divine variable type from the RHS
asgn.value = ctx.parseMakeString(a, a.Value)
if xBad, ok := asgn.value.(*badExpr); ok {
ctx.wrapBadExpr(xBad)
return
}
inferred_type := asgn.value.typ()
if inferred_type != starlarkTypeUnknown {
lhs.setValueType(inferred_type)
}
}
if lhs.valueType() == starlarkTypeList {
xConcat := ctx.buildConcatExpr(a)
if xConcat == nil {
return
}
switch len(xConcat.items) {
case 0:
asgn.value = &listExpr{}
case 1:
asgn.value = xConcat.items[0]
default:
asgn.value = xConcat
}
} else {
asgn.value = ctx.parseMakeString(a, a.Value)
if xBad, ok := asgn.value.(*badExpr); ok {
ctx.wrapBadExpr(xBad)
return
}
}
// TODO(asmundak): move evaluation to a separate pass
asgn.value, _ = asgn.value.eval(ctx.builtinMakeVars)
asgn.previous = ctx.lastAssignment(name)
ctx.setLastAssignment(name, asgn)
switch a.Type {
case "=", ":=":
asgn.flavor = asgnSet
case "+=":
if asgn.previous == nil && !asgn.lhs.isPreset() {
asgn.flavor = asgnMaybeAppend
} else {
asgn.flavor = asgnAppend
}
case "?=":
asgn.flavor = asgnMaybeSet
default:
panic(fmt.Errorf("unexpected assignment type %s", a.Type))
}
ctx.receiver.newNode(asgn)
}
func (ctx *parseContext) buildConcatExpr(a *mkparser.Assignment) *concatExpr {
xConcat := &concatExpr{}
var xItemList *listExpr
addToItemList := func(x ...starlarkExpr) {
if xItemList == nil {
xItemList = &listExpr{[]starlarkExpr{}}
}
xItemList.items = append(xItemList.items, x...)
}
finishItemList := func() {
if xItemList != nil {
xConcat.items = append(xConcat.items, xItemList)
xItemList = nil
}
}
items := a.Value.Words()
for _, item := range items {
// A function call in RHS is supposed to return a list, all other item
// expressions return individual elements.
switch x := ctx.parseMakeString(a, item).(type) {
case *badExpr:
ctx.wrapBadExpr(x)
return nil
case *stringLiteralExpr:
addToItemList(maybeConvertToStringList(x).(*listExpr).items...)
default:
switch x.typ() {
case starlarkTypeList:
finishItemList()
xConcat.items = append(xConcat.items, x)
case starlarkTypeString:
finishItemList()
xConcat.items = append(xConcat.items, &callExpr{
object: x,
name: "split",
args: nil,
returnType: starlarkTypeList,
})
default:
addToItemList(x)
}
}
}
if xItemList != nil {
xConcat.items = append(xConcat.items, xItemList)
}
return xConcat
}
func (ctx *parseContext) newDependentModule(path string, optional bool) *moduleInfo {
modulePath := ctx.loadedModulePath(path)
if mi, ok := ctx.dependentModules[modulePath]; ok {
mi.optional = mi.optional || optional
return mi
}
moduleName := moduleNameForFile(path)
moduleLocalName := "_" + moduleName
n, found := ctx.moduleNameCount[moduleName]
if found {
moduleLocalName += fmt.Sprintf("%d", n)
}
ctx.moduleNameCount[moduleName] = n + 1
mi := &moduleInfo{
path: modulePath,
originalPath: path,
moduleLocalName: moduleLocalName,
optional: optional,
}
ctx.dependentModules[modulePath] = mi
ctx.script.inherited = append(ctx.script.inherited, mi)
return mi
}
func (ctx *parseContext) handleSubConfig(
v mkparser.Node, pathExpr starlarkExpr, loadAlways bool, processModule func(inheritedModule)) {
pathExpr, _ = pathExpr.eval(ctx.builtinMakeVars)
// In a simple case, the name of a module to inherit/include is known statically.
if path, ok := maybeString(pathExpr); ok {
if strings.Contains(path, "*") {
if paths, err := fs.Glob(ctx.script.sourceFS, path); err == nil {
for _, p := range paths {
processModule(inheritedStaticModule{ctx.newDependentModule(p, !loadAlways), loadAlways})
}
} else {
ctx.errorf(v, "cannot glob wildcard argument")
}
} else {
processModule(inheritedStaticModule{ctx.newDependentModule(path, !loadAlways), loadAlways})
}
return
}
// If module path references variables (e.g., $(v1)/foo/$(v2)/device-config.mk), find all the paths in the
// source tree that may be a match and the corresponding variable values. For instance, if the source tree
// contains vendor1/foo/abc/dev.mk and vendor2/foo/def/dev.mk, the first one will be inherited when
// (v1, v2) == ('vendor1', 'abc'), and the second one when (v1, v2) == ('vendor2', 'def').
// We then emit the code that loads all of them, e.g.:
// load("//vendor1/foo/abc:dev.rbc", _dev1_init="init")
// load("//vendor2/foo/def/dev.rbc", _dev2_init="init")
// And then inherit it as follows:
// _e = {
// "vendor1/foo/abc/dev.mk": ("vendor1/foo/abc/dev", _dev1_init),
// "vendor2/foo/def/dev.mk": ("vendor2/foo/def/dev", _dev_init2) }.get("%s/foo/%s/dev.mk" % (v1, v2))
// if _e:
// rblf.inherit(handle, _e[0], _e[1])
//
var matchingPaths []string
varPath, ok := pathExpr.(*interpolateExpr)
if !ok {
ctx.errorf(v, "inherit-product/include argument is too complex")
return
}
pathPattern := []string{varPath.chunks[0]}
for _, chunk := range varPath.chunks[1:] {
if chunk != "" {
pathPattern = append(pathPattern, chunk)
}
}
if pathPattern[0] != "" {
matchingPaths = ctx.findMatchingPaths(pathPattern)
} else {
// Heuristics -- if pattern starts from top, restrict it to the directories where
// we know inherit-product uses dynamically calculated path.
for _, t := range []string{"vendor/qcom", "vendor/google_devices"} {
pathPattern[0] = t
matchingPaths = append(matchingPaths, ctx.findMatchingPaths(pathPattern)...)
}
}
// Safeguard against $(call inherit-product,$(PRODUCT_PATH))
const maxMatchingFiles = 100
if len(matchingPaths) > maxMatchingFiles {
ctx.errorf(v, "there are >%d files matching the pattern, please rewrite it", maxMatchingFiles)
return
}
res := inheritedDynamicModule{*varPath, []*moduleInfo{}, loadAlways}
for _, p := range matchingPaths {
// A product configuration files discovered dynamically may attempt to inherit
// from another one which does not exist in this source tree. Prevent load errors
// by always loading the dynamic files as optional.
res.candidateModules = append(res.candidateModules, ctx.newDependentModule(p, true))
}
processModule(res)
}
func (ctx *parseContext) findMatchingPaths(pattern []string) []string {
files := ctx.script.makefileFinder.Find(ctx.script.topDir)
if len(pattern) == 0 {
return files
}
// Create regular expression from the pattern
s_regexp := "^" + regexp.QuoteMeta(pattern[0])
for _, s := range pattern[1:] {
s_regexp += ".*" + regexp.QuoteMeta(s)
}
s_regexp += "$"
rex := regexp.MustCompile(s_regexp)
// Now match
var res []string
for _, p := range files {
if rex.MatchString(p) {
res = append(res, p)
}
}
return res
}
func (ctx *parseContext) handleInheritModule(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) {
ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) {
ctx.receiver.newNode(&inheritNode{im})
})
}
func (ctx *parseContext) handleInclude(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) {
ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) {
ctx.receiver.newNode(&includeNode{im})
})
}
func (ctx *parseContext) handleVariable(v *mkparser.Variable) {
// Handle:
// $(call inherit-product,...)
// $(call inherit-product-if-exists,...)
// $(info xxx)
// $(warning xxx)
// $(error xxx)
expr := ctx.parseReference(v, v.Name)
switch x := expr.(type) {
case *callExpr:
if x.name == callLoadAlways || x.name == callLoadIf {
ctx.handleInheritModule(v, x.args[0], x.name == callLoadAlways)
} else if isMakeControlFunc(x.name) {
// File name is the first argument
args := []starlarkExpr{
&stringLiteralExpr{ctx.script.mkFile},
x.args[0],
}
ctx.receiver.newNode(&exprNode{
&callExpr{name: x.name, args: args, returnType: starlarkTypeUnknown},
})
} else {
ctx.receiver.newNode(&exprNode{expr})
}
case *badExpr:
ctx.wrapBadExpr(x)
return
default:
ctx.errorf(v, "cannot handle %s", v.Dump())
return
}
}
func (ctx *parseContext) handleDefine(directive *mkparser.Directive) {
macro_name := strings.Fields(directive.Args.Strings[0])[0]
// Ignore the macros that we handle
if _, ok := knownFunctions[macro_name]; !ok {
ctx.errorf(directive, "define is not supported: %s", macro_name)
}
}
func (ctx *parseContext) handleIfBlock(ifDirective *mkparser.Directive) {
ssSwitch := &switchNode{}
ctx.pushReceiver(ssSwitch)
for ctx.processBranch(ifDirective); ctx.hasNodes() && ctx.fatalError == nil; {
node := ctx.getNode()
switch x := node.(type) {
case *mkparser.Directive:
switch x.Name {
case "else", "elifdef", "elifndef", "elifeq", "elifneq":
ctx.processBranch(x)
case "endif":
ctx.popReceiver()
ctx.receiver.newNode(ssSwitch)
return
default:
ctx.errorf(node, "unexpected directive %s", x.Name)
}
default:
ctx.errorf(ifDirective, "unexpected statement")
}
}
if ctx.fatalError == nil {
ctx.fatalError = fmt.Errorf("no matching endif for %s", ifDirective.Dump())
}
ctx.popReceiver()
}
// processBranch processes a single branch (if/elseif/else) until the next directive
// on the same level.
func (ctx *parseContext) processBranch(check *mkparser.Directive) {
block := switchCase{gate: ctx.parseCondition(check)}
defer func() {
ctx.popVarAssignments()
ctx.ifNestLevel--
}()
ctx.pushVarAssignments()
ctx.ifNestLevel++
ctx.pushReceiver(&block)
for ctx.hasNodes() {
node := ctx.getNode()
if ctx.handleSimpleStatement(node) {
continue
}
switch d := node.(type) {
case *mkparser.Directive:
switch d.Name {
case "else", "elifdef", "elifndef", "elifeq", "elifneq", "endif":
ctx.popReceiver()
ctx.receiver.newNode(&block)
ctx.backNode()
return
case "ifdef", "ifndef", "ifeq", "ifneq":
ctx.handleIfBlock(d)
default:
ctx.errorf(d, "unexpected directive %s", d.Name)
}
default:
ctx.errorf(node, "unexpected statement")
}
}
ctx.fatalError = fmt.Errorf("no matching endif for %s", check.Dump())
ctx.popReceiver()
}
func (ctx *parseContext) newIfDefinedNode(check *mkparser.Directive) (starlarkExpr, bool) {
if !check.Args.Const() {
return ctx.newBadExpr(check, "ifdef variable ref too complex: %s", check.Args.Dump()), false
}
v := ctx.addVariable(check.Args.Strings[0])
return &variableDefinedExpr{v}, true
}
func (ctx *parseContext) parseCondition(check *mkparser.Directive) starlarkNode {
switch check.Name {
case "ifdef", "ifndef", "elifdef", "elifndef":
v, ok := ctx.newIfDefinedNode(check)
if ok && strings.HasSuffix(check.Name, "ndef") {
v = &notExpr{v}
}
return &ifNode{
isElif: strings.HasPrefix(check.Name, "elif"),
expr: v,
}
case "ifeq", "ifneq", "elifeq", "elifneq":
return &ifNode{
isElif: strings.HasPrefix(check.Name, "elif"),
expr: ctx.parseCompare(check),
}
case "else":
return &elseNode{}
default:
panic(fmt.Errorf("%s: unknown directive: %s", ctx.script.mkFile, check.Dump()))
}
}
func (ctx *parseContext) newBadExpr(node mkparser.Node, text string, args ...interface{}) starlarkExpr {
message := fmt.Sprintf(text, args...)
if ctx.errorLogger != nil {
ctx.errorLogger.NewError(text, node, args)
}
ctx.script.hasErrors = true
return &badExpr{node, message}
}
func (ctx *parseContext) parseCompare(cond *mkparser.Directive) starlarkExpr {
// Strip outer parentheses
mkArg := cloneMakeString(cond.Args)
mkArg.Strings[0] = strings.TrimLeft(mkArg.Strings[0], "( ")
n := len(mkArg.Strings)
mkArg.Strings[n-1] = strings.TrimRight(mkArg.Strings[n-1], ") ")
args := mkArg.Split(",")
// TODO(asmundak): handle the case where the arguments are in quotes and space-separated
if len(args) != 2 {
return ctx.newBadExpr(cond, "ifeq/ifneq len(args) != 2 %s", cond.Dump())
}
args[0].TrimRightSpaces()
args[1].TrimLeftSpaces()
isEq := !strings.HasSuffix(cond.Name, "neq")
switch xLeft := ctx.parseMakeString(cond, args[0]).(type) {
case *stringLiteralExpr, *variableRefExpr:
switch xRight := ctx.parseMakeString(cond, args[1]).(type) {
case *stringLiteralExpr, *variableRefExpr:
return &eqExpr{left: xLeft, right: xRight, isEq: isEq}
case *badExpr:
return xRight
default:
expr, ok := ctx.parseCheckFunctionCallResult(cond, xLeft, args[1])
if ok {
return expr
}
return ctx.newBadExpr(cond, "right operand is too complex: %s", args[1].Dump())
}
case *badExpr:
return xLeft
default:
switch xRight := ctx.parseMakeString(cond, args[1]).(type) {
case *stringLiteralExpr, *variableRefExpr:
expr, ok := ctx.parseCheckFunctionCallResult(cond, xRight, args[0])
if ok {
return expr
}
return ctx.newBadExpr(cond, "left operand is too complex: %s", args[0].Dump())
case *badExpr:
return xRight
default:
return ctx.newBadExpr(cond, "operands are too complex: (%s,%s)", args[0].Dump(), args[1].Dump())
}
}
}
func (ctx *parseContext) parseCheckFunctionCallResult(directive *mkparser.Directive, xValue starlarkExpr,
varArg *mkparser.MakeString) (starlarkExpr, bool) {
mkSingleVar, ok := varArg.SingleVariable()
if !ok {
return nil, false
}
expr := ctx.parseReference(directive, mkSingleVar)
negate := strings.HasSuffix(directive.Name, "neq")
checkIsSomethingFunction := func(xCall *callExpr) starlarkExpr {
s, ok := maybeString(xValue)
if !ok || s != "true" {
return ctx.newBadExpr(directive,
fmt.Sprintf("the result of %s can be compared only to 'true'", xCall.name))
}
if len(xCall.args) < 1 {
return ctx.newBadExpr(directive, "%s requires an argument", xCall.name)
}
return nil
}
switch x := expr.(type) {
case *callExpr:
switch x.name {
case "filter":
return ctx.parseCompareFilterFuncResult(directive, x, xValue, !negate), true
case "filter-out":
return ctx.parseCompareFilterFuncResult(directive, x, xValue, negate), true
case "wildcard":
return ctx.parseCompareWildcardFuncResult(directive, x, xValue, negate), true
case "findstring":
return ctx.parseCheckFindstringFuncResult(directive, x, xValue, negate), true
case "strip":
return ctx.parseCompareStripFuncResult(directive, x, xValue, negate), true
case "is-board-platform":
if xBad := checkIsSomethingFunction(x); xBad != nil {
return xBad, true
}
return &eqExpr{
left: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
right: x.args[0],
isEq: !negate,
}, true
case "is-board-platform-in-list":
if xBad := checkIsSomethingFunction(x); xBad != nil {
return xBad, true
}
return &inExpr{
expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
list: maybeConvertToStringList(x.args[0]),
isNot: negate,
}, true
case "is-product-in-list":
if xBad := checkIsSomethingFunction(x); xBad != nil {
return xBad, true
}
return &inExpr{
expr: &variableRefExpr{ctx.addVariable("TARGET_PRODUCT"), true},
list: maybeConvertToStringList(x.args[0]),
isNot: negate,
}, true
case "is-vendor-board-platform":
if xBad := checkIsSomethingFunction(x); xBad != nil {
return xBad, true
}
s, ok := maybeString(x.args[0])
if !ok {
return ctx.newBadExpr(directive, "cannot handle non-constant argument to is-vendor-board-platform"), true
}
return &inExpr{
expr: &variableRefExpr{ctx.addVariable("TARGET_BOARD_PLATFORM"), false},
list: &variableRefExpr{ctx.addVariable(s + "_BOARD_PLATFORMS"), true},
isNot: negate,
}, true
default:
return ctx.newBadExpr(directive, "Unknown function in ifeq: %s", x.name), true
}
case *badExpr:
return x, true
default:
return nil, false
}
}
func (ctx *parseContext) parseCompareFilterFuncResult(cond *mkparser.Directive,
filterFuncCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
// We handle:
// * ifeq/ifneq (,$(filter v1 v2 ..., EXPR) becomes if EXPR not in/in ["v1", "v2", ...]
// * ifeq/ifneq (,$(filter EXPR, v1 v2 ...) becomes if EXPR not in/in ["v1", "v2", ...]
// * ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...) becomes if VAR in/not in ["v1", "v2"]
// TODO(Asmundak): check the last case works for filter-out, too.
xPattern := filterFuncCall.args[0]
xText := filterFuncCall.args[1]
var xInList *stringLiteralExpr
var expr starlarkExpr
var ok bool
switch x := xValue.(type) {
case *stringLiteralExpr:
if x.literal != "" {
return ctx.newBadExpr(cond, "filter comparison to non-empty value: %s", xValue)
}
// Either pattern or text should be const, and the
// non-const one should be varRefExpr
if xInList, ok = xPattern.(*stringLiteralExpr); ok {
expr = xText
} else if xInList, ok = xText.(*stringLiteralExpr); ok {
expr = xPattern
} else {
return &callExpr{
object: nil,
name: filterFuncCall.name,
args: filterFuncCall.args,
returnType: starlarkTypeBool,
}
}
case *variableRefExpr:
if v, ok := xPattern.(*variableRefExpr); ok {
if xInList, ok = xText.(*stringLiteralExpr); ok && v.ref.name() == x.ref.name() {
// ifeq/ifneq ($(VAR),$(filter $(VAR), v1 v2 ...), flip negate,
// it's the opposite to what is done when comparing to empty.
expr = xPattern
negate = !negate
}
}
}
if expr != nil && xInList != nil {
slExpr := newStringListExpr(strings.Fields(xInList.literal))
// Generate simpler code for the common cases:
if expr.typ() == starlarkTypeList {
if len(slExpr.items) == 1 {
// Checking that a string belongs to list
return &inExpr{isNot: negate, list: expr, expr: slExpr.items[0]}
} else {
// TODO(asmundak):
panic("TBD")
}
} else if len(slExpr.items) == 1 {
return &eqExpr{left: expr, right: slExpr.items[0], isEq: !negate}
} else {
return &inExpr{isNot: negate, list: newStringListExpr(strings.Fields(xInList.literal)), expr: expr}
}
}
return ctx.newBadExpr(cond, "filter arguments are too complex: %s", cond.Dump())
}
func (ctx *parseContext) parseCompareWildcardFuncResult(directive *mkparser.Directive,
xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
if !isEmptyString(xValue) {
return ctx.newBadExpr(directive, "wildcard result can be compared only to empty: %s", xValue)
}
callFunc := wildcardExistsPhony
if s, ok := xCall.args[0].(*stringLiteralExpr); ok && !strings.ContainsAny(s.literal, "*?{[") {
callFunc = fileExistsPhony
}
var cc starlarkExpr = &callExpr{name: callFunc, args: xCall.args, returnType: starlarkTypeBool}
if !negate {
cc = &notExpr{cc}
}
return cc
}
func (ctx *parseContext) parseCheckFindstringFuncResult(directive *mkparser.Directive,
xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
if isEmptyString(xValue) {
return &eqExpr{
left: &callExpr{
object: xCall.args[1],
name: "find",
args: []starlarkExpr{xCall.args[0]},
returnType: starlarkTypeInt,
},
right: &intLiteralExpr{-1},
isEq: !negate,
}
}
return ctx.newBadExpr(directive, "findstring result can be compared only to empty: %s", xValue)
}
func (ctx *parseContext) parseCompareStripFuncResult(directive *mkparser.Directive,
xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
if _, ok := xValue.(*stringLiteralExpr); !ok {
return ctx.newBadExpr(directive, "strip result can be compared only to string: %s", xValue)
}
return &eqExpr{
left: &callExpr{
name: "strip",
args: xCall.args,
returnType: starlarkTypeString,
},
right: xValue, isEq: !negate}
}
// parses $(...), returning an expression
func (ctx *parseContext) parseReference(node mkparser.Node, ref *mkparser.MakeString) starlarkExpr {
ref.TrimLeftSpaces()
ref.TrimRightSpaces()
refDump := ref.Dump()
// Handle only the case where the first (or only) word is constant
words := ref.SplitN(" ", 2)
if !words[0].Const() {
return ctx.newBadExpr(node, "reference is too complex: %s", refDump)
}
// If it is a single word, it can be a simple variable
// reference or a function call
if len(words) == 1 {
if isMakeControlFunc(refDump) || refDump == "shell" {
return &callExpr{
name: refDump,
args: []starlarkExpr{&stringLiteralExpr{""}},
returnType: starlarkTypeUnknown,
}
}
if v := ctx.addVariable(refDump); v != nil {
return &variableRefExpr{v, ctx.lastAssignment(v.name()) != nil}
}
return ctx.newBadExpr(node, "unknown variable %s", refDump)
}
expr := &callExpr{name: words[0].Dump(), returnType: starlarkTypeUnknown}
args := words[1]
args.TrimLeftSpaces()
// Make control functions and shell need special treatment as everything
// after the name is a single text argument
if isMakeControlFunc(expr.name) || expr.name == "shell" {
x := ctx.parseMakeString(node, args)
if xBad, ok := x.(*badExpr); ok {
return xBad
}
expr.args = []starlarkExpr{x}
return expr
}
if expr.name == "call" {
words = args.SplitN(",", 2)
if words[0].Empty() || !words[0].Const() {
return ctx.newBadExpr(node, "cannot handle %s", refDump)
}
expr.name = words[0].Dump()
if len(words) < 2 {
args = &mkparser.MakeString{}
} else {
args = words[1]
}
}
if kf, found := knownFunctions[expr.name]; found {
expr.returnType = kf.returnType
} else {
return ctx.newBadExpr(node, "cannot handle invoking %s", expr.name)
}
switch expr.name {
case "word":
return ctx.parseWordFunc(node, args)
case "firstword", "lastword":
return ctx.parseFirstOrLastwordFunc(node, expr.name, args)
case "my-dir":
return &variableRefExpr{ctx.addVariable("LOCAL_PATH"), true}
case "subst", "patsubst":
return ctx.parseSubstFunc(node, expr.name, args)
default:
for _, arg := range args.Split(",") {
arg.TrimLeftSpaces()
arg.TrimRightSpaces()
x := ctx.parseMakeString(node, arg)
if xBad, ok := x.(*badExpr); ok {
return xBad
}
expr.args = append(expr.args, x)
}
}
return expr
}
func (ctx *parseContext) parseSubstFunc(node mkparser.Node, fname string, args *mkparser.MakeString) starlarkExpr {
words := args.Split(",")
if len(words) != 3 {
return ctx.newBadExpr(node, "%s function should have 3 arguments", fname)
}
if !words[0].Const() || !words[1].Const() {
return ctx.newBadExpr(node, "%s function's from and to arguments should be constant", fname)
}
from := words[0].Strings[0]
to := words[1].Strings[0]
words[2].TrimLeftSpaces()
words[2].TrimRightSpaces()
obj := ctx.parseMakeString(node, words[2])
typ := obj.typ()
if typ == starlarkTypeString && fname == "subst" {
// Optimization: if it's $(subst from, to, string), emit string.replace(from, to)
return &callExpr{
object: obj,
name: "replace",
args: []starlarkExpr{&stringLiteralExpr{from}, &stringLiteralExpr{to}},
returnType: typ,
}
}
return &callExpr{
name: fname,
args: []starlarkExpr{&stringLiteralExpr{from}, &stringLiteralExpr{to}, obj},
returnType: obj.typ(),
}
}
func (ctx *parseContext) parseWordFunc(node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
words := args.Split(",")
if len(words) != 2 {
return ctx.newBadExpr(node, "word function should have 2 arguments")
}
var index uint64 = 0
if words[0].Const() {
index, _ = strconv.ParseUint(strings.TrimSpace(words[0].Strings[0]), 10, 64)
}
if index < 1 {
return ctx.newBadExpr(node, "word index should be constant positive integer")
}
words[1].TrimLeftSpaces()
words[1].TrimRightSpaces()
array := ctx.parseMakeString(node, words[1])
if xBad, ok := array.(*badExpr); ok {
return xBad
}
if array.typ() != starlarkTypeList {
array = &callExpr{object: array, name: "split", returnType: starlarkTypeList}
}
return indexExpr{array, &intLiteralExpr{int(index - 1)}}
}
func (ctx *parseContext) parseFirstOrLastwordFunc(node mkparser.Node, name string, args *mkparser.MakeString) starlarkExpr {
arg := ctx.parseMakeString(node, args)
if bad, ok := arg.(*badExpr); ok {
return bad
}
index := &intLiteralExpr{0}
if name == "lastword" {
if v, ok := arg.(*variableRefExpr); ok && v.ref.name() == "MAKEFILE_LIST" {
return &stringLiteralExpr{ctx.script.mkFile}
}
index.literal = -1
}
if arg.typ() == starlarkTypeList {
return &indexExpr{arg, index}
}
return &indexExpr{&callExpr{object: arg, name: "split", returnType: starlarkTypeList}, index}
}
func (ctx *parseContext) parseMakeString(node mkparser.Node, mk *mkparser.MakeString) starlarkExpr {
if mk.Const() {
return &stringLiteralExpr{mk.Dump()}
}
if mkRef, ok := mk.SingleVariable(); ok {
return ctx.parseReference(node, mkRef)
}
// If we reached here, it's neither string literal nor a simple variable,
// we need a full-blown interpolation node that will generate
// "a%b%c" % (X, Y) for a$(X)b$(Y)c
xInterp := &interpolateExpr{args: make([]starlarkExpr, len(mk.Variables))}
for i, ref := range mk.Variables {
arg := ctx.parseReference(node, ref.Name)
if x, ok := arg.(*badExpr); ok {
return x
}
xInterp.args[i] = arg
}
xInterp.chunks = append(xInterp.chunks, mk.Strings...)
return xInterp
}
// Handles the statements whose treatment is the same in all contexts: comment,
// assignment, variable (which is a macro call in reality) and all constructs that
// do not handle in any context ('define directive and any unrecognized stuff).
// Return true if we handled it.
func (ctx *parseContext) handleSimpleStatement(node mkparser.Node) bool {
handled := true
switch x := node.(type) {
case *mkparser.Comment:
ctx.insertComment("#" + x.Comment)
case *mkparser.Assignment:
ctx.handleAssignment(x)
case *mkparser.Variable:
ctx.handleVariable(x)
case *mkparser.Directive:
switch x.Name {
case "define":
ctx.handleDefine(x)
case "include", "-include":
ctx.handleInclude(node, ctx.parseMakeString(node, x.Args), x.Name[0] != '-')
default:
handled = false
}
default:
ctx.errorf(x, "unsupported line %s", x.Dump())
}
return handled
}
func (ctx *parseContext) insertComment(s string) {
ctx.receiver.newNode(&commentNode{strings.TrimSpace(s)})
}
func (ctx *parseContext) carryAsComment(failedNode mkparser.Node) {
for _, line := range strings.Split(failedNode.Dump(), "\n") {
ctx.insertComment("# " + line)
}
}
// records that the given node failed to be converted and includes an explanatory message
func (ctx *parseContext) errorf(failedNode mkparser.Node, message string, args ...interface{}) {
if ctx.errorLogger != nil {
ctx.errorLogger.NewError(message, failedNode, args...)
}
message = fmt.Sprintf(message, args...)
ctx.insertComment(fmt.Sprintf("# MK2RBC TRANSLATION ERROR: %s", message))
ctx.carryAsComment(failedNode)
ctx.script.hasErrors = true
}
func (ctx *parseContext) wrapBadExpr(xBad *badExpr) {
ctx.insertComment(fmt.Sprintf("# MK2RBC TRANSLATION ERROR: %s", xBad.message))
ctx.carryAsComment(xBad.node)
}
func (ctx *parseContext) loadedModulePath(path string) string {
// During the transition to Roboleaf some of the product configuration files
// will be converted and checked in while the others will be generated on the fly
// and run. The runner (rbcrun application) accommodates this by allowing three
// different ways to specify the loaded file location:
// 1) load(":<file>",...) loads <file> from the same directory
// 2) load("//path/relative/to/source/root:<file>", ...) loads <file> source tree
// 3) load("/absolute/path/to/<file> absolute path
// If the file being generated and the file it wants to load are in the same directory,
// generate option 1.
// Otherwise, if output directory is not specified, generate 2)
// Finally, if output directory has been specified and the file being generated and
// the file it wants to load from are in the different directories, generate 2) or 3):
// * if the file being loaded exists in the source tree, generate 2)
// * otherwise, generate 3)
// Finally, figure out the loaded module path and name and create a node for it
loadedModuleDir := filepath.Dir(path)
base := filepath.Base(path)
loadedModuleName := strings.TrimSuffix(base, filepath.Ext(base)) + ctx.outputSuffix
if loadedModuleDir == filepath.Dir(ctx.script.mkFile) {
return ":" + loadedModuleName
}
if ctx.outputDir == "" {
return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
}
if _, err := os.Stat(filepath.Join(loadedModuleDir, loadedModuleName)); err == nil {
return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
}
return filepath.Join(ctx.outputDir, loadedModuleDir, loadedModuleName)
}
func (ss *StarlarkScript) String() string {
return NewGenerateContext(ss).emit()
}
func (ss *StarlarkScript) SubConfigFiles() []string {
var subs []string
for _, src := range ss.inherited {
subs = append(subs, src.originalPath)
}
return subs
}
func (ss *StarlarkScript) HasErrors() bool {
return ss.hasErrors
}
// Convert reads and parses a makefile. If successful, parsed tree
// is returned and then can be passed to String() to get the generated
// Starlark file.
func Convert(req Request) (*StarlarkScript, error) {
reader := req.Reader
if reader == nil {
mkContents, err := ioutil.ReadFile(req.MkFile)
if err != nil {
return nil, err
}
reader = bytes.NewBuffer(mkContents)
}
parser := mkparser.NewParser(req.MkFile, reader)
nodes, errs := parser.Parse()
if len(errs) > 0 {
for _, e := range errs {
fmt.Fprintln(os.Stderr, "ERROR:", e)
}
return nil, fmt.Errorf("bad makefile %s", req.MkFile)
}
starScript := &StarlarkScript{
moduleName: moduleNameForFile(req.MkFile),
mkFile: req.MkFile,
topDir: req.RootDir,
traceCalls: req.TraceCalls,
warnPartialSuccess: req.WarnPartialSuccess,
sourceFS: req.SourceFS,
makefileFinder: req.MakefileFinder,
}
ctx := newParseContext(starScript, nodes)
ctx.outputSuffix = req.OutputSuffix
ctx.outputDir = req.OutputDir
ctx.errorLogger = req.ErrorLogger
if len(req.TracedVariables) > 0 {
ctx.tracedVariables = make(map[string]bool)
for _, v := range req.TracedVariables {
ctx.tracedVariables[v] = true
}
}
ctx.pushReceiver(starScript)
for ctx.hasNodes() && ctx.fatalError == nil {
node := ctx.getNode()
if ctx.handleSimpleStatement(node) {
continue
}
switch x := node.(type) {
case *mkparser.Directive:
switch x.Name {
case "ifeq", "ifneq", "ifdef", "ifndef":
ctx.handleIfBlock(x)
default:
ctx.errorf(x, "unexpected directive %s", x.Name)
}
default:
ctx.errorf(x, "unsupported line")
}
}
if ctx.fatalError != nil {
return nil, ctx.fatalError
}
return starScript, nil
}
func Launcher(path, name string) string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName)
fmt.Fprintf(&buf, "load(%q, \"init\")\n", path)
fmt.Fprintf(&buf, "g, config = %s(%q, init)\n", cfnMain, name)
fmt.Fprintf(&buf, "%s(g, config)\n", cfnPrintVars)
return buf.String()
}
func MakePath2ModuleName(mkPath string) string {
return strings.TrimSuffix(mkPath, filepath.Ext(mkPath))
}