platform_build_soong/android/arch.go
2024-04-22 18:50:08 +00:00

1901 lines
63 KiB
Go

// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package android
import (
"encoding"
"fmt"
"reflect"
"runtime"
"strings"
"github.com/google/blueprint"
"github.com/google/blueprint/bootstrap"
"github.com/google/blueprint/proptools"
)
/*
Example blueprints file containing all variant property groups, with comment listing what type
of variants get properties in that group:
module {
arch: {
arm: {
// Host or device variants with arm architecture
},
arm64: {
// Host or device variants with arm64 architecture
},
x86: {
// Host or device variants with x86 architecture
},
x86_64: {
// Host or device variants with x86_64 architecture
},
},
multilib: {
lib32: {
// Host or device variants for 32-bit architectures
},
lib64: {
// Host or device variants for 64-bit architectures
},
},
target: {
android: {
// Device variants (implies Bionic)
},
host: {
// Host variants
},
bionic: {
// Bionic (device and host) variants
},
linux_bionic: {
// Bionic host variants
},
linux: {
// Bionic (device and host) and Linux glibc variants
},
linux_glibc: {
// Linux host variants (using non-Bionic libc)
},
darwin: {
// Darwin host variants
},
windows: {
// Windows host variants
},
not_windows: {
// Non-windows host variants
},
android_arm: {
// Any <os>_<arch> combination restricts to that os and arch
},
},
}
*/
// An Arch indicates a single CPU architecture.
type Arch struct {
// The type of the architecture (arm, arm64, x86, or x86_64).
ArchType ArchType
// The variant of the architecture, for example "armv7-a" or "armv7-a-neon" for arm.
ArchVariant string
// The variant of the CPU, for example "cortex-a53" for arm64.
CpuVariant string
// The list of Android app ABIs supported by the CPU architecture, for example "arm64-v8a".
Abi []string
// The list of arch-specific features supported by the CPU architecture, for example "neon".
ArchFeatures []string
}
// String returns the Arch as a string. The value is used as the name of the variant created
// by archMutator.
func (a Arch) String() string {
s := a.ArchType.String()
if a.ArchVariant != "" {
s += "_" + a.ArchVariant
}
if a.CpuVariant != "" {
s += "_" + a.CpuVariant
}
return s
}
// ArchType is used to define the 4 supported architecture types (arm, arm64, x86, x86_64), as
// well as the "common" architecture used for modules that support multiple architectures, for
// example Java modules.
type ArchType struct {
// Name is the name of the architecture type, "arm", "arm64", "x86", or "x86_64".
Name string
// Field is the name of the field used in properties that refer to the architecture, e.g. "Arm64".
Field string
// Multilib is either "lib32" or "lib64" for 32-bit or 64-bit architectures.
Multilib string
}
// String returns the name of the ArchType.
func (a ArchType) String() string {
return a.Name
}
const COMMON_VARIANT = "common"
var (
archTypeList []ArchType
Arm = newArch("arm", "lib32")
Arm64 = newArch("arm64", "lib64")
Riscv64 = newArch("riscv64", "lib64")
X86 = newArch("x86", "lib32")
X86_64 = newArch("x86_64", "lib64")
Common = ArchType{
Name: COMMON_VARIANT,
}
)
var archTypeMap = map[string]ArchType{}
func newArch(name, multilib string) ArchType {
archType := ArchType{
Name: name,
Field: proptools.FieldNameForProperty(name),
Multilib: multilib,
}
archTypeList = append(archTypeList, archType)
archTypeMap[name] = archType
return archType
}
// ArchTypeList returns a slice copy of the 4 supported ArchTypes for arm,
// arm64, x86 and x86_64.
func ArchTypeList() []ArchType {
return append([]ArchType(nil), archTypeList...)
}
// MarshalText allows an ArchType to be serialized through any encoder that supports
// encoding.TextMarshaler.
func (a ArchType) MarshalText() ([]byte, error) {
return []byte(a.String()), nil
}
var _ encoding.TextMarshaler = ArchType{}
// UnmarshalText allows an ArchType to be deserialized through any decoder that supports
// encoding.TextUnmarshaler.
func (a *ArchType) UnmarshalText(text []byte) error {
if u, ok := archTypeMap[string(text)]; ok {
*a = u
return nil
}
return fmt.Errorf("unknown ArchType %q", text)
}
var _ encoding.TextUnmarshaler = &ArchType{}
// OsClass is an enum that describes whether a variant of a module runs on the host, on the device,
// or is generic.
type OsClass int
const (
// Generic is used for variants of modules that are not OS-specific.
Generic OsClass = iota
// Device is used for variants of modules that run on the device.
Device
// Host is used for variants of modules that run on the host.
Host
)
// String returns the OsClass as a string.
func (class OsClass) String() string {
switch class {
case Generic:
return "generic"
case Device:
return "device"
case Host:
return "host"
default:
panic(fmt.Errorf("unknown class %d", class))
}
}
// OsType describes an OS variant of a module.
type OsType struct {
// Name is the name of the OS. It is also used as the name of the property in Android.bp
// files.
Name string
// Field is the name of the OS converted to an exported field name, i.e. with the first
// character capitalized.
Field string
// Class is the OsClass of the OS.
Class OsClass
// DefaultDisabled is set when the module variants for the OS should not be created unless
// the module explicitly requests them. This is used to limit Windows cross compilation to
// only modules that need it.
DefaultDisabled bool
}
// String returns the name of the OsType.
func (os OsType) String() string {
return os.Name
}
// Bionic returns true if the OS uses the Bionic libc runtime, i.e. if the OS is Android or
// is Linux with Bionic.
func (os OsType) Bionic() bool {
return os == Android || os == LinuxBionic
}
// Linux returns true if the OS uses the Linux kernel, i.e. if the OS is Android or is Linux
// with or without the Bionic libc runtime.
func (os OsType) Linux() bool {
return os == Android || os == Linux || os == LinuxBionic || os == LinuxMusl
}
// newOsType constructs an OsType and adds it to the global lists.
func newOsType(name string, class OsClass, defDisabled bool, archTypes ...ArchType) OsType {
checkCalledFromInit()
os := OsType{
Name: name,
Field: proptools.FieldNameForProperty(name),
Class: class,
DefaultDisabled: defDisabled,
}
osTypeList = append(osTypeList, os)
if _, found := commonTargetMap[name]; found {
panic(fmt.Errorf("Found Os type duplicate during OsType registration: %q", name))
} else {
commonTargetMap[name] = Target{Os: os, Arch: CommonArch}
}
osArchTypeMap[os] = archTypes
return os
}
// osByName returns the OsType that has the given name, or NoOsType if none match.
func osByName(name string) OsType {
for _, os := range osTypeList {
if os.Name == name {
return os
}
}
return NoOsType
}
var (
// osTypeList contains a list of all the supported OsTypes, including ones not supported
// by the current build host or the target device.
osTypeList []OsType
// commonTargetMap maps names of OsTypes to the corresponding common Target, i.e. the
// Target with the same OsType and the common ArchType.
commonTargetMap = make(map[string]Target)
// osArchTypeMap maps OsTypes to the list of supported ArchTypes for that OS.
osArchTypeMap = map[OsType][]ArchType{}
// NoOsType is a placeholder for when no OS is needed.
NoOsType OsType
// Linux is the OS for the Linux kernel plus the glibc runtime.
Linux = newOsType("linux_glibc", Host, false, X86, X86_64)
// LinuxMusl is the OS for the Linux kernel plus the musl runtime.
LinuxMusl = newOsType("linux_musl", Host, false, X86, X86_64, Arm64, Arm)
// Darwin is the OS for MacOS/Darwin host machines.
Darwin = newOsType("darwin", Host, false, Arm64, X86_64)
// LinuxBionic is the OS for the Linux kernel plus the Bionic libc runtime, but without the
// rest of Android.
LinuxBionic = newOsType("linux_bionic", Host, false, Arm64, X86_64)
// Windows the OS for Windows host machines.
Windows = newOsType("windows", Host, true, X86, X86_64)
// Android is the OS for target devices that run all of Android, including the Linux kernel
// and the Bionic libc runtime.
Android = newOsType("android", Device, false, Arm, Arm64, Riscv64, X86, X86_64)
// CommonOS is a pseudo OSType for a common OS variant, which is OsType agnostic and which
// has dependencies on all the OS variants.
CommonOS = newOsType("common_os", Generic, false)
// CommonArch is the Arch for all modules that are os-specific but not arch specific,
// for example most Java modules.
CommonArch = Arch{ArchType: Common}
)
// OsTypeList returns a slice copy of the supported OsTypes.
func OsTypeList() []OsType {
return append([]OsType(nil), osTypeList...)
}
// Target specifies the OS and architecture that a module is being compiled for.
type Target struct {
// Os the OS that the module is being compiled for (e.g. "linux_glibc", "android").
Os OsType
// Arch is the architecture that the module is being compiled for.
Arch Arch
// NativeBridge is NativeBridgeEnabled if the architecture is supported using NativeBridge
// (i.e. arm on x86) for this device.
NativeBridge NativeBridgeSupport
// NativeBridgeHostArchName is the name of the real architecture that is used to implement
// the NativeBridge architecture. For example, for arm on x86 this would be "x86".
NativeBridgeHostArchName string
// NativeBridgeRelativePath is the name of the subdirectory that will contain NativeBridge
// libraries and binaries.
NativeBridgeRelativePath string
// HostCross is true when the target cannot run natively on the current build host.
// For example, linux_glibc_x86 returns true on a regular x86/i686/Linux machines, but returns false
// on Mac (different OS), or on 64-bit only i686/Linux machines (unsupported arch).
HostCross bool
}
// NativeBridgeSupport is an enum that specifies if a Target supports NativeBridge.
type NativeBridgeSupport bool
const (
NativeBridgeDisabled NativeBridgeSupport = false
NativeBridgeEnabled NativeBridgeSupport = true
)
// String returns the OS and arch variations used for the Target.
func (target Target) String() string {
return target.OsVariation() + "_" + target.ArchVariation()
}
// OsVariation returns the name of the variation used by the osMutator for the Target.
func (target Target) OsVariation() string {
return target.Os.String()
}
// ArchVariation returns the name of the variation used by the archMutator for the Target.
func (target Target) ArchVariation() string {
var variation string
if target.NativeBridge {
variation = "native_bridge_"
}
variation += target.Arch.String()
return variation
}
// Variations returns a list of blueprint.Variations for the osMutator and archMutator for the
// Target.
func (target Target) Variations() []blueprint.Variation {
return []blueprint.Variation{
{Mutator: "os", Variation: target.OsVariation()},
{Mutator: "arch", Variation: target.ArchVariation()},
}
}
// osMutator splits an arch-specific module into a variant for each OS that is enabled for the
// module. It uses the HostOrDevice value passed to InitAndroidArchModule and the
// device_supported and host_supported properties to determine which OsTypes are enabled for this
// module, then searches through the Targets to determine which have enabled Targets for this
// module.
func osMutator(bpctx blueprint.BottomUpMutatorContext) {
var module Module
var ok bool
if module, ok = bpctx.Module().(Module); !ok {
// The module is not a Soong module, it is a Blueprint module.
if bootstrap.IsBootstrapModule(bpctx.Module()) {
// Bootstrap Go modules are always the build OS or linux bionic.
config := bpctx.Config().(Config)
osNames := []string{config.BuildOSTarget.OsVariation()}
for _, hostCrossTarget := range config.Targets[LinuxBionic] {
if hostCrossTarget.Arch.ArchType == config.BuildOSTarget.Arch.ArchType {
osNames = append(osNames, hostCrossTarget.OsVariation())
}
}
osNames = FirstUniqueStrings(osNames)
bpctx.CreateVariations(osNames...)
}
return
}
// Bootstrap Go module support above requires this mutator to be a
// blueprint.BottomUpMutatorContext because android.BottomUpMutatorContext
// filters out non-Soong modules. Now that we've handled them, create a
// normal android.BottomUpMutatorContext.
mctx := bottomUpMutatorContextFactory(bpctx, module, false)
defer bottomUpMutatorContextPool.Put(mctx)
base := module.base()
// Nothing to do for modules that are not architecture specific (e.g. a genrule).
if !base.ArchSpecific() {
return
}
// Collect a list of OSTypes supported by this module based on the HostOrDevice value
// passed to InitAndroidArchModule and the device_supported and host_supported properties.
var moduleOSList []OsType
for _, os := range osTypeList {
for _, t := range mctx.Config().Targets[os] {
if base.supportsTarget(t) {
moduleOSList = append(moduleOSList, os)
break
}
}
}
createCommonOSVariant := base.commonProperties.CreateCommonOSVariant
// If there are no supported OSes then disable the module.
if len(moduleOSList) == 0 && !createCommonOSVariant {
base.Disable()
return
}
// Convert the list of supported OsTypes to the variation names.
osNames := make([]string, len(moduleOSList))
for i, os := range moduleOSList {
osNames[i] = os.String()
}
if createCommonOSVariant {
// A CommonOS variant was requested so add it to the list of OS variants to
// create. It needs to be added to the end because it needs to depend on the
// the other variants in the list returned by CreateVariations(...) and inter
// variant dependencies can only be created from a later variant in that list to
// an earlier one. That is because variants are always processed in the order in
// which they are returned from CreateVariations(...).
osNames = append(osNames, CommonOS.Name)
moduleOSList = append(moduleOSList, CommonOS)
}
// Create the variations, annotate each one with which OS it was created for, and
// squash the appropriate OS-specific properties into the top level properties.
modules := mctx.CreateVariations(osNames...)
for i, m := range modules {
m.base().commonProperties.CompileOS = moduleOSList[i]
m.base().setOSProperties(mctx)
}
if createCommonOSVariant {
// A CommonOS variant was requested so add dependencies from it (the last one in
// the list) to the OS type specific variants.
last := len(modules) - 1
commonOSVariant := modules[last]
commonOSVariant.base().commonProperties.CommonOSVariant = true
for _, module := range modules[0:last] {
// Ignore modules that are enabled. Note, this will only avoid adding
// dependencies on OsType variants that are explicitly disabled in their
// properties. The CommonOS variant will still depend on disabled variants
// if they are disabled afterwards, e.g. in archMutator if
if module.Enabled() {
mctx.AddInterVariantDependency(commonOsToOsSpecificVariantTag, commonOSVariant, module)
}
}
}
}
type archDepTag struct {
blueprint.BaseDependencyTag
name string
}
// Identifies the dependency from CommonOS variant to the os specific variants.
var commonOsToOsSpecificVariantTag = archDepTag{name: "common os to os specific"}
// Get the OsType specific variants for the current CommonOS variant.
//
// The returned list will only contain enabled OsType specific variants of the
// module referenced in the supplied context. An empty list is returned if there
// are no enabled variants or the supplied context is not for an CommonOS
// variant.
func GetOsSpecificVariantsOfCommonOSVariant(mctx BaseModuleContext) []Module {
var variants []Module
mctx.VisitDirectDeps(func(m Module) {
if mctx.OtherModuleDependencyTag(m) == commonOsToOsSpecificVariantTag {
if m.Enabled() {
variants = append(variants, m)
}
}
})
return variants
}
var DarwinUniversalVariantTag = archDepTag{name: "darwin universal binary"}
// archMutator splits a module into a variant for each Target requested by the module. Target selection
// for a module is in three levels, OsClass, multilib, and then Target.
// OsClass selection is determined by:
// - The HostOrDeviceSupported value passed in to InitAndroidArchModule by the module type factory, which selects
// whether the module type can compile for host, device or both.
// - The host_supported and device_supported properties on the module.
//
// If host is supported for the module, the Host and HostCross OsClasses are selected. If device is supported
// for the module, the Device OsClass is selected.
// Within each selected OsClass, the multilib selection is determined by:
// - The compile_multilib property if it set (which may be overridden by target.android.compile_multilib or
// target.host.compile_multilib).
// - The default multilib passed to InitAndroidArchModule if compile_multilib was not set.
//
// Valid multilib values include:
//
// "both": compile for all Targets supported by the OsClass (generally x86_64 and x86, or arm64 and arm).
// "first": compile for only a single preferred Target supported by the OsClass. This is generally x86_64 or arm64,
// but may be arm for a 32-bit only build.
// "32": compile for only a single 32-bit Target supported by the OsClass.
// "64": compile for only a single 64-bit Target supported by the OsClass.
// "common": compile a for a single Target that will work on all Targets supported by the OsClass (for example Java).
// "common_first": compile a for a Target that will work on all Targets supported by the OsClass
// (same as "common"), plus a second Target for the preferred Target supported by the OsClass
// (same as "first"). This is used for java_binary that produces a common .jar and a wrapper
// executable script.
//
// Once the list of Targets is determined, the module is split into a variant for each Target.
//
// Modules can be initialized with InitAndroidMultiTargetsArchModule, in which case they will be split by OsClass,
// but will have a common Target that is expected to handle all other selected Targets via ctx.MultiTargets().
func archMutator(bpctx blueprint.BottomUpMutatorContext) {
var module Module
var ok bool
if module, ok = bpctx.Module().(Module); !ok {
if bootstrap.IsBootstrapModule(bpctx.Module()) {
// Bootstrap Go modules are always the build architecture.
bpctx.CreateVariations(bpctx.Config().(Config).BuildOSTarget.ArchVariation())
}
return
}
// Bootstrap Go module support above requires this mutator to be a
// blueprint.BottomUpMutatorContext because android.BottomUpMutatorContext
// filters out non-Soong modules. Now that we've handled them, create a
// normal android.BottomUpMutatorContext.
mctx := bottomUpMutatorContextFactory(bpctx, module, false)
defer bottomUpMutatorContextPool.Put(mctx)
base := module.base()
if !base.ArchSpecific() {
return
}
os := base.commonProperties.CompileOS
if os == CommonOS {
// Make sure that the target related properties are initialized for the
// CommonOS variant.
addTargetProperties(module, commonTargetMap[os.Name], nil, true)
// Do not create arch specific variants for the CommonOS variant.
return
}
osTargets := mctx.Config().Targets[os]
image := base.commonProperties.ImageVariation
// Filter NativeBridge targets unless they are explicitly supported.
// Skip creating native bridge variants for non-core modules.
if os == Android && !(base.IsNativeBridgeSupported() && image == CoreVariation) {
var targets []Target
for _, t := range osTargets {
if !t.NativeBridge {
targets = append(targets, t)
}
}
osTargets = targets
}
// only the primary arch in the ramdisk / vendor_ramdisk / recovery partition
if os == Android && (module.InstallInRecovery() || module.InstallInRamdisk() || module.InstallInVendorRamdisk() || module.InstallInDebugRamdisk()) {
osTargets = []Target{osTargets[0]}
}
// Windows builds always prefer 32-bit
prefer32 := os == Windows
// Determine the multilib selection for this module.
ignorePrefer32OnDevice := mctx.Config().IgnorePrefer32OnDevice()
multilib, extraMultilib := decodeMultilib(base, os, ignorePrefer32OnDevice)
// Convert the multilib selection into a list of Targets.
targets, err := decodeMultilibTargets(multilib, osTargets, prefer32)
if err != nil {
mctx.ModuleErrorf("%s", err.Error())
}
// If there are no supported targets disable the module.
if len(targets) == 0 {
base.Disable()
return
}
// If the module is using extraMultilib, decode the extraMultilib selection into
// a separate list of Targets.
var multiTargets []Target
if extraMultilib != "" {
multiTargets, err = decodeMultilibTargets(extraMultilib, osTargets, prefer32)
if err != nil {
mctx.ModuleErrorf("%s", err.Error())
}
multiTargets = filterHostCross(multiTargets, targets[0].HostCross)
}
// Recovery is always the primary architecture, filter out any other architectures.
// Common arch is also allowed
if image == RecoveryVariation {
primaryArch := mctx.Config().DevicePrimaryArchType()
targets = filterToArch(targets, primaryArch, Common)
multiTargets = filterToArch(multiTargets, primaryArch, Common)
}
// If there are no supported targets disable the module.
if len(targets) == 0 {
base.Disable()
return
}
// Convert the targets into a list of arch variation names.
targetNames := make([]string, len(targets))
for i, target := range targets {
targetNames[i] = target.ArchVariation()
}
// Create the variations, annotate each one with which Target it was created for, and
// squash the appropriate arch-specific properties into the top level properties.
modules := mctx.CreateVariations(targetNames...)
for i, m := range modules {
addTargetProperties(m, targets[i], multiTargets, i == 0)
m.base().setArchProperties(mctx)
// Install support doesn't understand Darwin+Arm64
if os == Darwin && targets[i].HostCross {
m.base().commonProperties.SkipInstall = true
}
}
// Create a dependency for Darwin Universal binaries from the primary to secondary
// architecture. The module itself will be responsible for calling lipo to merge the outputs.
if os == Darwin {
if multilib == "darwin_universal" && len(modules) == 2 {
mctx.AddInterVariantDependency(DarwinUniversalVariantTag, modules[1], modules[0])
} else if multilib == "darwin_universal_common_first" && len(modules) == 3 {
mctx.AddInterVariantDependency(DarwinUniversalVariantTag, modules[2], modules[1])
}
}
}
// addTargetProperties annotates a variant with the Target is is being compiled for, the list
// of additional Targets it is supporting (if any), and whether it is the primary Target for
// the module.
func addTargetProperties(m Module, target Target, multiTargets []Target, primaryTarget bool) {
m.base().commonProperties.CompileTarget = target
m.base().commonProperties.CompileMultiTargets = multiTargets
m.base().commonProperties.CompilePrimary = primaryTarget
m.base().commonProperties.ArchReady = true
}
// decodeMultilib returns the appropriate compile_multilib property for the module, or the default
// multilib from the factory's call to InitAndroidArchModule if none was set. For modules that
// called InitAndroidMultiTargetsArchModule it always returns "common" for multilib, and returns
// the actual multilib in extraMultilib.
func decodeMultilib(base *ModuleBase, os OsType, ignorePrefer32OnDevice bool) (multilib, extraMultilib string) {
// First check the "android.compile_multilib" or "host.compile_multilib" properties.
switch os.Class {
case Device:
multilib = String(base.commonProperties.Target.Android.Compile_multilib)
case Host:
multilib = String(base.commonProperties.Target.Host.Compile_multilib)
}
// If those aren't set, try the "compile_multilib" property.
if multilib == "" {
multilib = String(base.commonProperties.Compile_multilib)
}
// If that wasn't set, use the default multilib set by the factory.
if multilib == "" {
multilib = base.commonProperties.Default_multilib
}
// If a device is configured with multiple targets, this option
// force all device targets that prefer32 to be compiled only as
// the first target.
if ignorePrefer32OnDevice && os.Class == Device && (multilib == "prefer32" || multilib == "first_prefer32") {
multilib = "first"
}
if base.commonProperties.UseTargetVariants {
// Darwin has the concept of "universal binaries" which is implemented in Soong by
// building both x86_64 and arm64 variants, and having select module types know how to
// merge the outputs of their corresponding variants together into a final binary. Most
// module types don't need to understand this logic, as we only build a small portion
// of the tree for Darwin, and only module types writing macho files need to do the
// merging.
//
// This logic is not enabled for:
// "common", as it's not an arch-specific variant
// "32", as Darwin never has a 32-bit variant
// !UseTargetVariants, as the module has opted into handling the arch-specific logic on
// its own.
if os == Darwin && multilib != "common" && multilib != "32" {
if multilib == "common_first" {
multilib = "darwin_universal_common_first"
} else {
multilib = "darwin_universal"
}
}
return multilib, ""
} else {
// For app modules a single arch variant will be created per OS class which is expected to handle all the
// selected arches. Return the common-type as multilib and any Android.bp provided multilib as extraMultilib
if multilib == base.commonProperties.Default_multilib {
multilib = "first"
}
return base.commonProperties.Default_multilib, multilib
}
}
// filterToArch takes a list of Targets and an ArchType, and returns a modified list that contains
// only Targets that have the specified ArchTypes.
func filterToArch(targets []Target, archs ...ArchType) []Target {
for i := 0; i < len(targets); i++ {
found := false
for _, arch := range archs {
if targets[i].Arch.ArchType == arch {
found = true
break
}
}
if !found {
targets = append(targets[:i], targets[i+1:]...)
i--
}
}
return targets
}
// filterHostCross takes a list of Targets and a hostCross value, and returns a modified list
// that contains only Targets that have the specified HostCross.
func filterHostCross(targets []Target, hostCross bool) []Target {
for i := 0; i < len(targets); i++ {
if targets[i].HostCross != hostCross {
targets = append(targets[:i], targets[i+1:]...)
i--
}
}
return targets
}
// archPropRoot is a struct type used as the top level of the arch-specific properties. It
// contains the "arch", "multilib", and "target" property structs. It is used to split up the
// property structs to limit how much is allocated when a single arch-specific property group is
// used. The types are interface{} because they will hold instances of runtime-created types.
type archPropRoot struct {
Arch, Multilib, Target interface{}
}
// archPropTypeDesc holds the runtime-created types for the property structs to instantiate to
// create an archPropRoot property struct.
type archPropTypeDesc struct {
arch, multilib, target reflect.Type
}
// createArchPropTypeDesc takes a reflect.Type that is either a struct or a pointer to a struct, and
// returns lists of reflect.Types that contains the arch-variant properties inside structs for each
// arch, multilib and target property.
//
// This is a relatively expensive operation, so the results are cached in the global
// archPropTypeMap. It is constructed entirely based on compile-time data, so there is no need
// to isolate the results between multiple tests running in parallel.
func createArchPropTypeDesc(props reflect.Type) []archPropTypeDesc {
// Each property struct shard will be nested many times under the runtime generated arch struct,
// which can hit the limit of 64kB for the name of runtime generated structs. They are nested
// 97 times now, which may grow in the future, plus there is some overhead for the containing
// type. This number may need to be reduced if too many are added, but reducing it too far
// could cause problems if a single deeply nested property no longer fits in the name.
const maxArchTypeNameSize = 500
// Convert the type to a new set of types that contains only the arch-specific properties
// (those that are tagged with `android:"arch_variant"`), and sharded into multiple types
// to keep the runtime-generated names under the limit.
propShards, _ := proptools.FilterPropertyStructSharded(props, maxArchTypeNameSize, filterArchStruct)
// If the type has no arch-specific properties there is nothing to do.
if len(propShards) == 0 {
return nil
}
var ret []archPropTypeDesc
for _, props := range propShards {
// variantFields takes a list of variant property field names and returns a list the
// StructFields with the names and the type of the current shard.
variantFields := func(names []string) []reflect.StructField {
ret := make([]reflect.StructField, len(names))
for i, name := range names {
ret[i].Name = name
ret[i].Type = props
}
return ret
}
// Create a type that contains the properties in this shard repeated for each
// architecture, architecture variant, and architecture feature.
archFields := make([]reflect.StructField, len(archTypeList))
for i, arch := range archTypeList {
var variants []string
for _, archVariant := range archVariants[arch] {
archVariant := variantReplacer.Replace(archVariant)
variants = append(variants, proptools.FieldNameForProperty(archVariant))
}
for _, cpuVariant := range cpuVariants[arch] {
cpuVariant := variantReplacer.Replace(cpuVariant)
variants = append(variants, proptools.FieldNameForProperty(cpuVariant))
}
for _, feature := range archFeatures[arch] {
feature := variantReplacer.Replace(feature)
variants = append(variants, proptools.FieldNameForProperty(feature))
}
// Create the StructFields for each architecture variant architecture feature
// (e.g. "arch.arm.cortex-a53" or "arch.arm.neon").
fields := variantFields(variants)
// Create the StructField for the architecture itself (e.g. "arch.arm"). The special
// "BlueprintEmbed" name is used by Blueprint to put the properties in the
// parent struct.
fields = append([]reflect.StructField{{
Name: "BlueprintEmbed",
Type: props,
Anonymous: true,
}}, fields...)
archFields[i] = reflect.StructField{
Name: arch.Field,
Type: reflect.StructOf(fields),
}
}
// Create the type of the "arch" property struct for this shard.
archType := reflect.StructOf(archFields)
// Create the type for the "multilib" property struct for this shard, containing the
// "multilib.lib32" and "multilib.lib64" property structs.
multilibType := reflect.StructOf(variantFields([]string{"Lib32", "Lib64"}))
// Start with a list of the special targets
targets := []string{
"Host",
"Android64",
"Android32",
"Bionic",
"Glibc",
"Musl",
"Linux",
"Host_linux",
"Not_windows",
"Arm_on_x86",
"Arm_on_x86_64",
"Native_bridge",
}
for _, os := range osTypeList {
// Add all the OSes.
targets = append(targets, os.Field)
// Add the OS/Arch combinations, e.g. "android_arm64".
for _, archType := range osArchTypeMap[os] {
targets = append(targets, GetCompoundTargetField(os, archType))
// Also add the special "linux_<arch>", "bionic_<arch>" , "glibc_<arch>", and
// "musl_<arch>" property structs.
if os.Linux() {
target := "Linux_" + archType.Name
if !InList(target, targets) {
targets = append(targets, target)
}
}
if os.Linux() && os.Class == Host {
target := "Host_linux_" + archType.Name
if !InList(target, targets) {
targets = append(targets, target)
}
}
if os.Bionic() {
target := "Bionic_" + archType.Name
if !InList(target, targets) {
targets = append(targets, target)
}
}
if os == Linux {
target := "Glibc_" + archType.Name
if !InList(target, targets) {
targets = append(targets, target)
}
}
if os == LinuxMusl {
target := "Musl_" + archType.Name
if !InList(target, targets) {
targets = append(targets, target)
}
}
}
}
// Create the type for the "target" property struct for this shard.
targetType := reflect.StructOf(variantFields(targets))
// Return a descriptor of the 3 runtime-created types.
ret = append(ret, archPropTypeDesc{
arch: reflect.PtrTo(archType),
multilib: reflect.PtrTo(multilibType),
target: reflect.PtrTo(targetType),
})
}
return ret
}
// variantReplacer converts architecture variant or architecture feature names into names that
// are valid for an Android.bp file.
var variantReplacer = strings.NewReplacer("-", "_", ".", "_")
// filterArchStruct returns true if the given field is an architecture specific property.
func filterArchStruct(field reflect.StructField, prefix string) (bool, reflect.StructField) {
if proptools.HasTag(field, "android", "arch_variant") {
// The arch_variant field isn't necessary past this point
// Instead of wasting space, just remove it. Go also has a
// 16-bit limit on structure name length. The name is constructed
// based on the Go source representation of the structure, so
// the tag names count towards that length.
androidTag := field.Tag.Get("android")
values := strings.Split(androidTag, ",")
if string(field.Tag) != `android:"`+strings.Join(values, ",")+`"` {
panic(fmt.Errorf("unexpected tag format %q", field.Tag))
}
// these tags don't need to be present in the runtime generated struct type.
values = RemoveListFromList(values, []string{"arch_variant", "variant_prepend", "path", "replace_instead_of_append"})
if len(values) > 0 {
panic(fmt.Errorf("unknown tags %q in field %q", values, prefix+field.Name))
}
field.Tag = ``
return true, field
}
return false, field
}
// archPropTypeMap contains a cache of the results of createArchPropTypeDesc for each type. It is
// shared across all Contexts, but is constructed based only on compile-time information so there
// is no risk of contaminating one Context with data from another.
var archPropTypeMap OncePer
// initArchModule adds the architecture-specific property structs to a Module.
func initArchModule(m Module) {
base := m.base()
if len(base.archProperties) != 0 {
panic(fmt.Errorf("module %s already has archProperties", m.Name()))
}
getStructType := func(properties interface{}) reflect.Type {
propertiesValue := reflect.ValueOf(properties)
t := propertiesValue.Type()
if propertiesValue.Kind() != reflect.Ptr {
panic(fmt.Errorf("properties must be a pointer to a struct, got %T",
propertiesValue.Interface()))
}
propertiesValue = propertiesValue.Elem()
if propertiesValue.Kind() != reflect.Struct {
panic(fmt.Errorf("properties must be a pointer to a struct, got a pointer to %T",
propertiesValue.Interface()))
}
return t
}
for _, properties := range m.GetProperties() {
t := getStructType(properties)
// Get or create the arch-specific property struct types for this property struct type.
archPropTypes := archPropTypeMap.Once(NewCustomOnceKey(t), func() interface{} {
return createArchPropTypeDesc(t)
}).([]archPropTypeDesc)
// Instantiate one of each arch-specific property struct type and add it to the
// properties for the Module.
var archProperties []interface{}
for _, t := range archPropTypes {
archProperties = append(archProperties, &archPropRoot{
Arch: reflect.Zero(t.arch).Interface(),
Multilib: reflect.Zero(t.multilib).Interface(),
Target: reflect.Zero(t.target).Interface(),
})
}
base.archProperties = append(base.archProperties, archProperties)
m.AddProperties(archProperties...)
}
}
func maybeBlueprintEmbed(src reflect.Value) reflect.Value {
// If the value of the field is a struct (as opposed to a pointer to a struct) then step
// into the BlueprintEmbed field.
if src.Kind() == reflect.Struct {
return src.FieldByName("BlueprintEmbed")
} else {
return src
}
}
// Merges the property struct in srcValue into dst.
func mergePropertyStruct(ctx ArchVariantContext, dst interface{}, srcValue reflect.Value) {
src := maybeBlueprintEmbed(srcValue).Interface()
// order checks the `android:"variant_prepend"` tag to handle properties where the
// arch-specific value needs to come before the generic value, for example for lists of
// include directories.
order := func(dstField, srcField reflect.StructField) (proptools.Order, error) {
if proptools.HasTag(dstField, "android", "variant_prepend") {
return proptools.Prepend, nil
} else {
return proptools.Append, nil
}
}
// Squash the located property struct into the destination property struct.
err := proptools.ExtendMatchingProperties([]interface{}{dst}, src, nil, order)
if err != nil {
if propertyErr, ok := err.(*proptools.ExtendPropertyError); ok {
ctx.PropertyErrorf(propertyErr.Property, "%s", propertyErr.Err.Error())
} else {
panic(err)
}
}
}
// Returns the immediate child of the input property struct that corresponds to
// the sub-property "field".
func getChildPropertyStruct(ctx ArchVariantContext,
src reflect.Value, field, userFriendlyField string) (reflect.Value, bool) {
// Step into non-nil pointers to structs in the src value.
if src.Kind() == reflect.Ptr {
if src.IsNil() {
return reflect.Value{}, false
}
src = src.Elem()
}
// Find the requested field in the src struct.
child := src.FieldByName(proptools.FieldNameForProperty(field))
if !child.IsValid() {
ctx.ModuleErrorf("field %q does not exist", userFriendlyField)
return reflect.Value{}, false
}
if child.IsZero() {
return reflect.Value{}, false
}
return child, true
}
// Squash the appropriate OS-specific property structs into the matching top level property structs
// based on the CompileOS value that was annotated on the variant.
func (m *ModuleBase) setOSProperties(ctx BottomUpMutatorContext) {
os := m.commonProperties.CompileOS
for i := range m.archProperties {
genProps := m.GetProperties()[i]
if m.archProperties[i] == nil {
continue
}
for _, archProperties := range m.archProperties[i] {
archPropValues := reflect.ValueOf(archProperties).Elem()
targetProp := archPropValues.FieldByName("Target").Elem()
// Handle host-specific properties in the form:
// target: {
// host: {
// key: value,
// },
// },
if os.Class == Host {
field := "Host"
prefix := "target.host"
if hostProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, hostProperties)
}
}
// Handle target OS generalities of the form:
// target: {
// bionic: {
// key: value,
// },
// }
if os.Linux() {
field := "Linux"
prefix := "target.linux"
if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, linuxProperties)
}
}
if os.Linux() && os.Class == Host {
field := "Host_linux"
prefix := "target.host_linux"
if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, linuxProperties)
}
}
if os.Bionic() {
field := "Bionic"
prefix := "target.bionic"
if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, bionicProperties)
}
}
if os == Linux {
field := "Glibc"
prefix := "target.glibc"
if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, bionicProperties)
}
}
if os == LinuxMusl {
field := "Musl"
prefix := "target.musl"
if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, bionicProperties)
}
}
// Handle target OS properties in the form:
// target: {
// linux_glibc: {
// key: value,
// },
// not_windows: {
// key: value,
// },
// android {
// key: value,
// },
// },
field := os.Field
prefix := "target." + os.Name
if osProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, osProperties)
}
if os.Class == Host && os != Windows {
field := "Not_windows"
prefix := "target.not_windows"
if notWindowsProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, notWindowsProperties)
}
}
// Handle 64-bit device properties in the form:
// target {
// android64 {
// key: value,
// },
// android32 {
// key: value,
// },
// },
// WARNING: this is probably not what you want to use in your blueprints file, it selects
// options for all targets on a device that supports 64-bit binaries, not just the targets
// that are being compiled for 64-bit. Its expected use case is binaries like linker and
// debuggerd that need to know when they are a 32-bit process running on a 64-bit device
if os.Class == Device {
if ctx.Config().Android64() {
field := "Android64"
prefix := "target.android64"
if android64Properties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, android64Properties)
}
} else {
field := "Android32"
prefix := "target.android32"
if android32Properties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok {
mergePropertyStruct(ctx, genProps, android32Properties)
}
}
}
}
}
}
// Returns the struct containing the properties specific to the given
// architecture type. These look like this in Blueprint files:
//
// arch: {
// arm64: {
// key: value,
// },
// },
//
// This struct will also contain sub-structs containing to the architecture/CPU
// variants and features that themselves contain properties specific to those.
func getArchTypeStruct(ctx ArchVariantContext, archProperties interface{}, archType ArchType) (reflect.Value, bool) {
archPropValues := reflect.ValueOf(archProperties).Elem()
archProp := archPropValues.FieldByName("Arch").Elem()
prefix := "arch." + archType.Name
return getChildPropertyStruct(ctx, archProp, archType.Name, prefix)
}
// Returns the struct containing the properties specific to a given multilib
// value. These look like this in the Blueprint file:
//
// multilib: {
// lib32: {
// key: value,
// },
// },
func getMultilibStruct(ctx ArchVariantContext, archProperties interface{}, archType ArchType) (reflect.Value, bool) {
archPropValues := reflect.ValueOf(archProperties).Elem()
multilibProp := archPropValues.FieldByName("Multilib").Elem()
return getChildPropertyStruct(ctx, multilibProp, archType.Multilib, "multilib."+archType.Multilib)
}
func GetCompoundTargetField(os OsType, arch ArchType) string {
return os.Field + "_" + arch.Name
}
// Returns the structs corresponding to the properties specific to the given
// architecture and OS in archProperties.
func getArchProperties(ctx BaseMutatorContext, archProperties interface{}, arch Arch, os OsType, nativeBridgeEnabled bool) []reflect.Value {
result := make([]reflect.Value, 0)
archPropValues := reflect.ValueOf(archProperties).Elem()
targetProp := archPropValues.FieldByName("Target").Elem()
archType := arch.ArchType
if arch.ArchType != Common {
archStruct, ok := getArchTypeStruct(ctx, archProperties, arch.ArchType)
if ok {
result = append(result, archStruct)
// Handle arch-variant-specific properties in the form:
// arch: {
// arm: {
// variant: {
// key: value,
// },
// },
// },
v := variantReplacer.Replace(arch.ArchVariant)
if v != "" {
prefix := "arch." + archType.Name + "." + v
if variantProperties, ok := getChildPropertyStruct(ctx, archStruct, v, prefix); ok {
result = append(result, variantProperties)
}
}
// Handle cpu-variant-specific properties in the form:
// arch: {
// arm: {
// variant: {
// key: value,
// },
// },
// },
if arch.CpuVariant != arch.ArchVariant {
c := variantReplacer.Replace(arch.CpuVariant)
if c != "" {
prefix := "arch." + archType.Name + "." + c
if cpuVariantProperties, ok := getChildPropertyStruct(ctx, archStruct, c, prefix); ok {
result = append(result, cpuVariantProperties)
}
}
}
// Handle arch-feature-specific properties in the form:
// arch: {
// arm: {
// feature: {
// key: value,
// },
// },
// },
for _, feature := range arch.ArchFeatures {
prefix := "arch." + archType.Name + "." + feature
if featureProperties, ok := getChildPropertyStruct(ctx, archStruct, feature, prefix); ok {
result = append(result, featureProperties)
}
}
}
if multilibProperties, ok := getMultilibStruct(ctx, archProperties, archType); ok {
result = append(result, multilibProperties)
}
// Handle combined OS-feature and arch specific properties in the form:
// target: {
// bionic_x86: {
// key: value,
// },
// }
if os.Linux() {
field := "Linux_" + arch.ArchType.Name
userFriendlyField := "target.linux_" + arch.ArchType.Name
if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok {
result = append(result, linuxProperties)
}
}
if os.Bionic() {
field := "Bionic_" + archType.Name
userFriendlyField := "target.bionic_" + archType.Name
if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok {
result = append(result, bionicProperties)
}
}
// Handle combined OS and arch specific properties in the form:
// target: {
// linux_glibc_x86: {
// key: value,
// },
// linux_glibc_arm: {
// key: value,
// },
// android_arm {
// key: value,
// },
// android_x86 {
// key: value,
// },
// },
field := GetCompoundTargetField(os, archType)
userFriendlyField := "target." + os.Name + "_" + archType.Name
if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok {
result = append(result, osArchProperties)
}
if os == Linux {
field := "Glibc_" + archType.Name
userFriendlyField := "target.glibc_" + "_" + archType.Name
if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok {
result = append(result, osArchProperties)
}
}
if os == LinuxMusl {
field := "Musl_" + archType.Name
userFriendlyField := "target.musl_" + "_" + archType.Name
if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok {
result = append(result, osArchProperties)
}
}
}
// Handle arm on x86 properties in the form:
// target {
// arm_on_x86 {
// key: value,
// },
// arm_on_x86_64 {
// key: value,
// },
// },
if os.Class == Device {
if arch.ArchType == X86 && (hasArmAbi(arch) ||
hasArmAndroidArch(ctx.Config().Targets[Android])) {
field := "Arm_on_x86"
userFriendlyField := "target.arm_on_x86"
if armOnX86Properties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok {
result = append(result, armOnX86Properties)
}
}
if arch.ArchType == X86_64 && (hasArmAbi(arch) ||
hasArmAndroidArch(ctx.Config().Targets[Android])) {
field := "Arm_on_x86_64"
userFriendlyField := "target.arm_on_x86_64"
if armOnX8664Properties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok {
result = append(result, armOnX8664Properties)
}
}
if os == Android && nativeBridgeEnabled {
userFriendlyField := "Native_bridge"
prefix := "target.native_bridge"
if nativeBridgeProperties, ok := getChildPropertyStruct(ctx, targetProp, userFriendlyField, prefix); ok {
result = append(result, nativeBridgeProperties)
}
}
}
return result
}
// Squash the appropriate arch-specific property structs into the matching top level property
// structs based on the CompileTarget value that was annotated on the variant.
func (m *ModuleBase) setArchProperties(ctx BottomUpMutatorContext) {
arch := m.Arch()
os := m.Os()
for i := range m.archProperties {
genProps := m.GetProperties()[i]
if m.archProperties[i] == nil {
continue
}
propStructs := make([]reflect.Value, 0)
for _, archProperty := range m.archProperties[i] {
propStructShard := getArchProperties(ctx, archProperty, arch, os, m.Target().NativeBridge == NativeBridgeEnabled)
propStructs = append(propStructs, propStructShard...)
}
for _, propStruct := range propStructs {
mergePropertyStruct(ctx, genProps, propStruct)
}
}
}
// determineBuildOS stores the OS and architecture used for host targets used during the build into
// config based on the runtime OS and architecture determined by Go and the product configuration.
func determineBuildOS(config *config) {
config.BuildOS = func() OsType {
switch runtime.GOOS {
case "linux":
if Bool(config.productVariables.HostMusl) {
return LinuxMusl
}
return Linux
case "darwin":
return Darwin
default:
panic(fmt.Sprintf("unsupported OS: %s", runtime.GOOS))
}
}()
config.BuildArch = func() ArchType {
switch runtime.GOARCH {
case "amd64":
return X86_64
default:
panic(fmt.Sprintf("unsupported Arch: %s", runtime.GOARCH))
}
}()
}
// Convert the arch product variables into a list of targets for each OsType.
func decodeTargetProductVariables(config *config) (map[OsType][]Target, error) {
variables := config.productVariables
targets := make(map[OsType][]Target)
var targetErr error
type targetConfig struct {
os OsType
archName string
archVariant *string
cpuVariant *string
abi []string
nativeBridgeEnabled NativeBridgeSupport
nativeBridgeHostArchName *string
nativeBridgeRelativePath *string
}
addTarget := func(target targetConfig) {
if targetErr != nil {
return
}
arch, err := decodeArch(target.os, target.archName, target.archVariant, target.cpuVariant, target.abi)
if err != nil {
targetErr = err
return
}
nativeBridgeRelativePathStr := String(target.nativeBridgeRelativePath)
nativeBridgeHostArchNameStr := String(target.nativeBridgeHostArchName)
// Use guest arch as relative install path by default
if target.nativeBridgeEnabled && nativeBridgeRelativePathStr == "" {
nativeBridgeRelativePathStr = arch.ArchType.String()
}
// A target is considered as HostCross if it's a host target which can't run natively on
// the currently configured build machine (either because the OS is different or because of
// the unsupported arch)
hostCross := false
if target.os.Class == Host {
var osSupported bool
if target.os == config.BuildOS {
osSupported = true
} else if config.BuildOS.Linux() && target.os.Linux() {
// LinuxBionic and Linux are compatible
osSupported = true
} else {
osSupported = false
}
var archSupported bool
if arch.ArchType == Common {
archSupported = true
} else if arch.ArchType.Name == *variables.HostArch {
archSupported = true
} else if variables.HostSecondaryArch != nil && arch.ArchType.Name == *variables.HostSecondaryArch {
archSupported = true
} else {
archSupported = false
}
if !osSupported || !archSupported {
hostCross = true
}
}
targets[target.os] = append(targets[target.os],
Target{
Os: target.os,
Arch: arch,
NativeBridge: target.nativeBridgeEnabled,
NativeBridgeHostArchName: nativeBridgeHostArchNameStr,
NativeBridgeRelativePath: nativeBridgeRelativePathStr,
HostCross: hostCross,
})
}
if variables.HostArch == nil {
return nil, fmt.Errorf("No host primary architecture set")
}
// The primary host target, which must always exist.
addTarget(targetConfig{os: config.BuildOS, archName: *variables.HostArch, nativeBridgeEnabled: NativeBridgeDisabled})
// An optional secondary host target.
if variables.HostSecondaryArch != nil && *variables.HostSecondaryArch != "" {
addTarget(targetConfig{os: config.BuildOS, archName: *variables.HostSecondaryArch, nativeBridgeEnabled: NativeBridgeDisabled})
}
// Optional cross-compiled host targets, generally Windows.
if String(variables.CrossHost) != "" {
crossHostOs := osByName(*variables.CrossHost)
if crossHostOs == NoOsType {
return nil, fmt.Errorf("Unknown cross host OS %q", *variables.CrossHost)
}
if String(variables.CrossHostArch) == "" {
return nil, fmt.Errorf("No cross-host primary architecture set")
}
// The primary cross-compiled host target.
addTarget(targetConfig{os: crossHostOs, archName: *variables.CrossHostArch, nativeBridgeEnabled: NativeBridgeDisabled})
// An optional secondary cross-compiled host target.
if variables.CrossHostSecondaryArch != nil && *variables.CrossHostSecondaryArch != "" {
addTarget(targetConfig{os: crossHostOs, archName: *variables.CrossHostSecondaryArch, nativeBridgeEnabled: NativeBridgeDisabled})
}
}
// Optional device targets
if variables.DeviceArch != nil && *variables.DeviceArch != "" {
// The primary device target.
addTarget(targetConfig{
os: Android,
archName: *variables.DeviceArch,
archVariant: variables.DeviceArchVariant,
cpuVariant: variables.DeviceCpuVariant,
abi: variables.DeviceAbi,
nativeBridgeEnabled: NativeBridgeDisabled,
})
// An optional secondary device target.
if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" {
addTarget(targetConfig{
os: Android,
archName: *variables.DeviceSecondaryArch,
archVariant: variables.DeviceSecondaryArchVariant,
cpuVariant: variables.DeviceSecondaryCpuVariant,
abi: variables.DeviceSecondaryAbi,
nativeBridgeEnabled: NativeBridgeDisabled,
})
}
// An optional NativeBridge device target.
if variables.NativeBridgeArch != nil && *variables.NativeBridgeArch != "" {
addTarget(targetConfig{
os: Android,
archName: *variables.NativeBridgeArch,
archVariant: variables.NativeBridgeArchVariant,
cpuVariant: variables.NativeBridgeCpuVariant,
abi: variables.NativeBridgeAbi,
nativeBridgeEnabled: NativeBridgeEnabled,
nativeBridgeHostArchName: variables.DeviceArch,
nativeBridgeRelativePath: variables.NativeBridgeRelativePath,
})
}
// An optional secondary NativeBridge device target.
if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" &&
variables.NativeBridgeSecondaryArch != nil && *variables.NativeBridgeSecondaryArch != "" {
addTarget(targetConfig{
os: Android,
archName: *variables.NativeBridgeSecondaryArch,
archVariant: variables.NativeBridgeSecondaryArchVariant,
cpuVariant: variables.NativeBridgeSecondaryCpuVariant,
abi: variables.NativeBridgeSecondaryAbi,
nativeBridgeEnabled: NativeBridgeEnabled,
nativeBridgeHostArchName: variables.DeviceSecondaryArch,
nativeBridgeRelativePath: variables.NativeBridgeSecondaryRelativePath,
})
}
}
if targetErr != nil {
return nil, targetErr
}
return targets, nil
}
// hasArmAbi returns true if arch has at least one arm ABI
func hasArmAbi(arch Arch) bool {
return PrefixInList(arch.Abi, "arm")
}
// hasArmAndroidArch returns true if targets has at least
// one arm Android arch (possibly native bridged)
func hasArmAndroidArch(targets []Target) bool {
for _, target := range targets {
if target.Os == Android &&
(target.Arch.ArchType == Arm || target.Arch.ArchType == Arm64) {
return true
}
}
return false
}
// archConfig describes a built-in configuration.
type archConfig struct {
Arch string `json:"arch"`
ArchVariant string `json:"arch_variant"`
CpuVariant string `json:"cpu_variant"`
Abi []string `json:"abis"`
}
// getNdkAbisConfig returns the list of archConfigs that are used for building
// the API stubs and static libraries that are included in the NDK.
func getNdkAbisConfig() []archConfig {
return []archConfig{
{"arm64", "armv8-a-branchprot", "", []string{"arm64-v8a"}},
{"arm", "armv7-a-neon", "", []string{"armeabi-v7a"}},
{"riscv64", "", "", []string{"riscv64"}},
{"x86_64", "", "", []string{"x86_64"}},
{"x86", "", "", []string{"x86"}},
}
}
// getAmlAbisConfig returns a list of archConfigs for the ABIs supported by mainline modules.
func getAmlAbisConfig() []archConfig {
return []archConfig{
{"arm64", "armv8-a", "", []string{"arm64-v8a"}},
{"arm", "armv7-a-neon", "", []string{"armeabi-v7a"}},
{"x86_64", "", "", []string{"x86_64"}},
{"x86", "", "", []string{"x86"}},
}
}
// decodeArchSettings converts a list of archConfigs into a list of Targets for the given OsType.
func decodeAndroidArchSettings(archConfigs []archConfig) ([]Target, error) {
var ret []Target
for _, config := range archConfigs {
arch, err := decodeArch(Android, config.Arch, &config.ArchVariant,
&config.CpuVariant, config.Abi)
if err != nil {
return nil, err
}
ret = append(ret, Target{
Os: Android,
Arch: arch,
})
}
return ret, nil
}
// decodeArch converts a set of strings from product variables into an Arch struct.
func decodeArch(os OsType, arch string, archVariant, cpuVariant *string, abi []string) (Arch, error) {
// Verify the arch is valid
archType, ok := archTypeMap[arch]
if !ok {
return Arch{}, fmt.Errorf("unknown arch %q", arch)
}
a := Arch{
ArchType: archType,
ArchVariant: String(archVariant),
CpuVariant: String(cpuVariant),
Abi: abi,
}
// Convert generic arch variants into the empty string.
if a.ArchVariant == a.ArchType.Name || a.ArchVariant == "generic" {
a.ArchVariant = ""
}
// Convert generic CPU variants into the empty string.
if a.CpuVariant == a.ArchType.Name || a.CpuVariant == "generic" {
a.CpuVariant = ""
}
if a.ArchVariant != "" {
if validArchVariants := archVariants[archType]; !InList(a.ArchVariant, validArchVariants) {
return Arch{}, fmt.Errorf("[%q] unknown arch variant %q, support variants: %q", archType, a.ArchVariant, validArchVariants)
}
}
if a.CpuVariant != "" {
if validCpuVariants := cpuVariants[archType]; !InList(a.CpuVariant, validCpuVariants) {
return Arch{}, fmt.Errorf("[%q] unknown cpu variant %q, support variants: %q", archType, a.CpuVariant, validCpuVariants)
}
}
// Filter empty ABIs out of the list.
for i := 0; i < len(a.Abi); i++ {
if a.Abi[i] == "" {
a.Abi = append(a.Abi[:i], a.Abi[i+1:]...)
i--
}
}
// Set ArchFeatures from the arch type. for Android OS, other os-es do not specify features
if os == Android {
if featureMap, ok := androidArchFeatureMap[archType]; ok {
a.ArchFeatures = featureMap[a.ArchVariant]
}
}
return a, nil
}
// filterMultilibTargets takes a list of Targets and a multilib value and returns a new list of
// Targets containing only those that have the given multilib value.
func filterMultilibTargets(targets []Target, multilib string) []Target {
var ret []Target
for _, t := range targets {
if t.Arch.ArchType.Multilib == multilib {
ret = append(ret, t)
}
}
return ret
}
// getCommonTargets returns the set of Os specific common architecture targets for each Os in a list
// of targets.
func getCommonTargets(targets []Target) []Target {
var ret []Target
set := make(map[string]bool)
for _, t := range targets {
if _, found := set[t.Os.String()]; !found {
set[t.Os.String()] = true
common := commonTargetMap[t.Os.String()]
common.HostCross = t.HostCross
ret = append(ret, common)
}
}
return ret
}
// FirstTarget takes a list of Targets and a list of multilib values and returns a list of Targets
// that contains zero or one Target for each OsType and HostCross, selecting the one that matches
// the earliest filter.
func FirstTarget(targets []Target, filters ...string) []Target {
// find the first target from each OS
var ret []Target
type osHostCross struct {
os OsType
hostCross bool
}
set := make(map[osHostCross]bool)
for _, filter := range filters {
buildTargets := filterMultilibTargets(targets, filter)
for _, t := range buildTargets {
key := osHostCross{t.Os, t.HostCross}
if _, found := set[key]; !found {
set[key] = true
ret = append(ret, t)
}
}
}
return ret
}
// decodeMultilibTargets uses the module's multilib setting to select one or more targets from a
// list of Targets.
func decodeMultilibTargets(multilib string, targets []Target, prefer32 bool) ([]Target, error) {
var buildTargets []Target
switch multilib {
case "common":
buildTargets = getCommonTargets(targets)
case "common_first":
buildTargets = getCommonTargets(targets)
if prefer32 {
buildTargets = append(buildTargets, FirstTarget(targets, "lib32", "lib64")...)
} else {
buildTargets = append(buildTargets, FirstTarget(targets, "lib64", "lib32")...)
}
case "both":
if prefer32 {
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...)
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...)
} else {
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...)
buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...)
}
case "32":
buildTargets = filterMultilibTargets(targets, "lib32")
case "64":
buildTargets = filterMultilibTargets(targets, "lib64")
case "first":
if prefer32 {
buildTargets = FirstTarget(targets, "lib32", "lib64")
} else {
buildTargets = FirstTarget(targets, "lib64", "lib32")
}
case "first_prefer32":
buildTargets = FirstTarget(targets, "lib32", "lib64")
case "prefer32":
buildTargets = filterMultilibTargets(targets, "lib32")
if len(buildTargets) == 0 {
buildTargets = filterMultilibTargets(targets, "lib64")
}
case "darwin_universal":
buildTargets = filterMultilibTargets(targets, "lib64")
// Reverse the targets so that the first architecture can depend on the second
// architecture module in order to merge the outputs.
ReverseSliceInPlace(buildTargets)
case "darwin_universal_common_first":
archTargets := filterMultilibTargets(targets, "lib64")
ReverseSliceInPlace(archTargets)
buildTargets = append(getCommonTargets(targets), archTargets...)
default:
return nil, fmt.Errorf(`compile_multilib must be "both", "first", "32", "64", "prefer32" or "first_prefer32" found %q`,
multilib)
}
return buildTargets, nil
}
// ArchVariantContext defines the limited context necessary to retrieve arch_variant properties.
type ArchVariantContext interface {
ModuleErrorf(fmt string, args ...interface{})
PropertyErrorf(property, fmt string, args ...interface{})
}