/* Copyright (c) 2017-2021 The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation, nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* Changes from Qualcomm Innovation Center are provided under the following license: Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Qualcomm Innovation Center, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define LOG_NDEBUG 0 #define LOG_TAG "LocSvc_GnssAdapter" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RAD2DEG (180.0 / M_PI) #define DEG2RAD (M_PI / 180.0) #define PROCESS_NAME_ENGINE_SERVICE "engine-service" #if defined (FEATURE_AUTOMOTIVE) || defined (FEATURE_NHZ_ENABLED) #define MIN_TRACKING_INTERVAL (100) // 100 msec #else #define MIN_TRACKING_INTERVAL (1000) // 1 sec #endif //FEATURE_AUTOMOTIVE #define BILLION_NSEC (1000000000ULL) #define NMEA_MIN_THRESHOLD_MSEC (99) #define NMEA_MAX_THRESHOLD_MSEC (975) #define DGNSS_RANGE_UPDATE_TIME_10MIN_IN_MILLI 600000 using namespace loc_core; static int loadEngHubForExternalEngine = 0; static loc_param_s_type izatConfParamTable[] = { {"LOAD_ENGHUB_FOR_EXTERNAL_ENGINE", &loadEngHubForExternalEngine, nullptr,'n'} }; /* Method to fetch status cb from loc_net_iface library */ typedef AgpsCbInfo& (*LocAgpsGetAgpsCbInfo)(LocAgpsOpenResultCb openResultCb, LocAgpsCloseResultCb closeResultCb, void* userDataPtr); static void agpsOpenResultCb (bool isSuccess, AGpsExtType agpsType, const char* apn, AGpsBearerType bearerType, void* userDataPtr); static void agpsCloseResultCb (bool isSuccess, AGpsExtType agpsType, void* userDataPtr); typedef const CdfwInterface* (*getCdfwInterface)(); typedef void getPdnTypeFromWds(const std::string& apnName, std::function pdnCb); GnssReportLoggerUtil::GnssReportLoggerUtil() : mLogLatency(nullptr) { int loadDiagIfaceLib = 1; const loc_param_s_type gps_conf_params[] = { {"LOC_DIAGIFACE_ENABLED", &loadDiagIfaceLib, nullptr, 'n'} }; UTIL_READ_CONF(LOC_PATH_GPS_CONF, gps_conf_params); LOC_LOGi("Loc_DiagIface_enabled: %d", loadDiagIfaceLib); if (0 != loadDiagIfaceLib) { const char* libname = "liblocdiagiface.so"; void* libHandle = nullptr; mLogLatency = (LogGnssLatency)dlGetSymFromLib(libHandle, libname, "LogGnssLatency"); if (nullptr == mLogLatency) { LOC_LOGw("DiagIface mLogLatency is null"); } } } inline bool GnssReportLoggerUtil::isLogEnabled() { return (mLogLatency != nullptr); } inline void GnssReportLoggerUtil::log(const GnssLatencyInfo& gnssLatencyMeasInfo) { if (mLogLatency != nullptr) { mLogLatency(gnssLatencyMeasInfo); } } GnssAdapter::GnssAdapter() : LocAdapterBase(0, LocContext::getLocContext(LocContext::mLocationHalName), true, nullptr, true), mEngHubProxy(new EngineHubProxyBase()), mNHzNeeded(false), mSPEAlreadyRunningAtHighestInterval(false), mLocPositionMode(), mGnssSvIdUsedInPosition(), mGnssSvIdUsedInPosAvail(false), mGnssMbSvIdUsedInPosition{}, mGnssMbSvIdUsedInPosAvail(false), mControlCallbacks(), mAfwControlId(0), mNmeaMask(0), mGnssSvIdConfig(), mGnssSeconaryBandConfig(), mGnssSvTypeConfig(), mGnssSvTypeConfigCb(nullptr), mSupportNfwControl(true), mLocConfigInfo{}, mNiData(), mAgpsManager(), mNfwCb(NULL), mIsE911Session(NULL), mPowerIndicationCb(nullptr), mGnssPowerStatisticsInit(false), mBootReferenceEnergy(0), mPowerElapsedRealTimeCal(30000000), mIsMeasCorrInterfaceOpen(false), mQDgnssListenerHDL(nullptr), mCdfwInterface(nullptr), mDGnssNeedReport(false), mDGnssDataUsage(false), mOdcpiRequestCb(nullptr), mOdcpiStateMask(0), mCallbackPriority(OdcpiPrioritytype::ODCPI_HANDLER_PRIORITY_LOW), mOdcpiTimer(this), mOdcpiRequest(), mAddressRequestCb(nullptr), mLastDeleteAidingDataTime(0), mSystemStatus(SystemStatus::getInstance(mMsgTask)), mServerUrl(":"), mXtraObserver(mSystemStatus->getOsObserver(), mMsgTask), mLocSystemInfo{}, mSystemPowerState(POWER_STATE_UNKNOWN), mBlockCPIInfo{}, mPowerOn(false), mDreIntEnabled(false), mPositionElapsedRealTimeCal(30000000), mNativeAgpsHandler(mSystemStatus->getOsObserver(), *this), mGnssEnergyConsumedCb(nullptr), mPowerStateCb(nullptr), mSendNmeaConsent(false), mDgnssState(0), mDgnssLastNmeaBootTimeMilli(0) { LOC_LOGD("%s]: Constructor %p", __func__, this); mLocPositionMode.mode = LOC_POSITION_MODE_INVALID; pthread_condattr_t condAttr; pthread_condattr_init(&condAttr); pthread_condattr_setclock(&condAttr, CLOCK_REALTIME); pthread_cond_init(&mNiData.session.tCond, &condAttr); pthread_cond_init(&mNiData.sessionEs.tCond, &condAttr); pthread_condattr_destroy(&condAttr); /* Set ATL open/close callbacks */ AgpsAtlOpenStatusCb atlOpenStatusCb = [this](int handle, int isSuccess, char* apn, uint32_t apnLen, AGpsBearerType bearerType, AGpsExtType agpsType, LocApnTypeMask mask) { mLocApi->atlOpenStatus( handle, isSuccess, apn, apnLen, bearerType, agpsType, mask); }; AgpsAtlCloseStatusCb atlCloseStatusCb = [this](int handle, int isSuccess) { mLocApi->atlCloseStatus(handle, isSuccess); }; mAgpsManager.registerATLCallbacks(atlOpenStatusCb, atlCloseStatusCb); readConfigCommand(); initDefaultAgpsCommand(); initCDFWServiceCommand(); initEngHubProxyCommand(); // at last step, let us inform adapater base that we are done // with initialization, e.g.: ready to process handleEngineUpEvent doneInit(); } void GnssAdapter::setControlCallbacksCommand(LocationControlCallbacks& controlCallbacks) { struct MsgSetControlCallbacks : public LocMsg { GnssAdapter& mAdapter; const LocationControlCallbacks mControlCallbacks; inline MsgSetControlCallbacks(GnssAdapter& adapter, LocationControlCallbacks& controlCallbacks) : LocMsg(), mAdapter(adapter), mControlCallbacks(controlCallbacks) {} inline virtual void proc() const { mAdapter.setControlCallbacks(mControlCallbacks); } }; sendMsg(new MsgSetControlCallbacks(*this, controlCallbacks)); } void GnssAdapter::convertOptions(LocPosMode& out, const TrackingOptions& trackingOptions) { switch (trackingOptions.mode) { case GNSS_SUPL_MODE_MSB: out.mode = LOC_POSITION_MODE_MS_BASED; break; case GNSS_SUPL_MODE_MSA: out.mode = LOC_POSITION_MODE_MS_ASSISTED; break; default: out.mode = LOC_POSITION_MODE_STANDALONE; break; } out.share_position = true; out.min_interval = trackingOptions.minInterval; out.powerMode = trackingOptions.powerMode; out.timeBetweenMeasurements = trackingOptions.tbm; } bool GnssAdapter::checkAndSetSPEToRunforNHz(TrackingOptions & out) { // first check if NHz meas is needed at all, if not, just return false // if a NHz capable engine is subscribed for NHz measurement or NHz positions, // always run the SPE only session at 100ms TBF. // If SPE session is already set to highest interval, no need to start it again. bool isSPERunningAtHighestInterval = false; if (!mNHzNeeded) { LOC_LOGd("No nHz session needed."); } else if (mSPEAlreadyRunningAtHighestInterval) { LOC_LOGd("SPE is already running at highest interval."); isSPERunningAtHighestInterval = true; } else if (out.minInterval > MIN_TRACKING_INTERVAL) { out.minInterval = MIN_TRACKING_INTERVAL; LOC_LOGd("nHz session is needed, starting SPE only session at 100ms TBF."); mSPEAlreadyRunningAtHighestInterval = true; } return isSPERunningAtHighestInterval; } void GnssAdapter::convertLocation(Location& out, const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended) { memset(&out, 0, sizeof(Location)); out.size = sizeof(Location); if (LOC_GPS_LOCATION_HAS_LAT_LONG & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_LAT_LONG_BIT; out.latitude = ulpLocation.gpsLocation.latitude; out.longitude = ulpLocation.gpsLocation.longitude; } if (LOC_GPS_LOCATION_HAS_ALTITUDE & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_ALTITUDE_BIT; out.altitude = ulpLocation.gpsLocation.altitude; } if (LOC_GPS_LOCATION_HAS_SPEED & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_SPEED_BIT; out.speed = ulpLocation.gpsLocation.speed; } if (LOC_GPS_LOCATION_HAS_BEARING & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_BEARING_BIT; out.bearing = ulpLocation.gpsLocation.bearing; } if (LOC_GPS_LOCATION_HAS_ACCURACY & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_ACCURACY_BIT; out.accuracy = ulpLocation.gpsLocation.accuracy; } if (GPS_LOCATION_EXTENDED_HAS_VERT_UNC & locationExtended.flags) { out.flags |= LOCATION_HAS_VERTICAL_ACCURACY_BIT; out.verticalAccuracy = locationExtended.vert_unc; } if (GPS_LOCATION_EXTENDED_HAS_SPEED_UNC & locationExtended.flags) { out.flags |= LOCATION_HAS_SPEED_ACCURACY_BIT; out.speedAccuracy = locationExtended.speed_unc; } if (GPS_LOCATION_EXTENDED_HAS_BEARING_UNC & locationExtended.flags) { out.flags |= LOCATION_HAS_BEARING_ACCURACY_BIT; out.bearingAccuracy = locationExtended.bearing_unc; } if (GPS_LOCATION_EXTENDED_HAS_CONFORMITY_INDEX & locationExtended.flags) { out.flags |= LOCATION_HAS_CONFORMITY_INDEX_BIT; out.conformityIndex = locationExtended.conformityIndex; } out.timestamp = ulpLocation.gpsLocation.timestamp; if (GPS_LOCATION_EXTENDED_HAS_POS_TECH_MASK & locationExtended.flags) { out.flags |= LOCATION_HAS_TECH_MASK_BIT; } if (LOC_POS_TECH_MASK_SATELLITE & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_GNSS_BIT; } if (LOC_POS_TECH_MASK_CELLID & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_CELL_BIT; } if (LOC_POS_TECH_MASK_WIFI & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_WIFI_BIT; } if (LOC_POS_TECH_MASK_SENSORS & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_SENSORS_BIT; } if (LOC_POS_TECH_MASK_REFERENCE_LOCATION & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_REFERENCE_LOCATION_BIT; } if (LOC_POS_TECH_MASK_INJECTED_COARSE_POSITION & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_INJECTED_COARSE_POSITION_BIT; } if (LOC_POS_TECH_MASK_AFLT & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_AFLT_BIT; } if (LOC_POS_TECH_MASK_HYBRID & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_HYBRID_BIT; } if (LOC_POS_TECH_MASK_PPE & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_PPE_BIT; } if (LOC_POS_TECH_MASK_VEH & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_VEH_BIT; } if (LOC_POS_TECH_MASK_VIS & locationExtended.tech_mask) { out.techMask |= LOCATION_TECHNOLOGY_VIS_BIT; } if (LOC_NAV_MASK_DGNSS_CORRECTION & locationExtended.navSolutionMask) { out.techMask |= LOCATION_TECHNOLOGY_DGNSS_BIT; } if (LOC_GPS_LOCATION_HAS_SPOOF_MASK & ulpLocation.gpsLocation.flags) { out.flags |= LOCATION_HAS_SPOOF_MASK_BIT; out.spoofMask = ulpLocation.gpsLocation.spoof_mask; } out.qualityType = LOCATION_STANDALONE_QUALITY_TYPE; if (GPS_LOCATION_EXTENDED_HAS_NAV_SOLUTION_MASK & locationExtended.flags) { out.flags |= LOCATION_HAS_QUALITY_TYPE_BIT; if ((LOC_NAV_MASK_RTK_FIXED_CORRECTION & locationExtended.navSolutionMask) && (LOC_NAV_MASK_RTK_CORRECTION & locationExtended.navSolutionMask)) { out.qualityType = LOCATION_FIXED_QUALITY_TYPE; } else if (LOC_NAV_MASK_RTK_CORRECTION & locationExtended.navSolutionMask) { out.qualityType = LOCATION_FLOAT_QUALITY_TYPE; } else if (LOC_NAV_MASK_PPP_CORRECTION & locationExtended.navSolutionMask) { //If HEPE<5cm, we shall claim 'FIXED'; otherwise, 'FLOAT' out.qualityType = LOCATION_FLOAT_QUALITY_TYPE; if ((LOC_GPS_LOCATION_HAS_ACCURACY & ulpLocation.gpsLocation.flags) && (ulpLocation.gpsLocation.accuracy < 0.05)) { out.qualityType = LOCATION_FIXED_QUALITY_TYPE; } } else if (LOC_NAV_MASK_DGNSS_CORRECTION & locationExtended.navSolutionMask) { out.qualityType = LOCATION_DGNSS_QUALITY_TYPE; } } } void GnssAdapter::fillElapsedRealTime(const GpsLocationExtended& locationExtended, Location& out) { if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_GPS_TIME) { int64_t elapsedTimeNs = 0; float elapsedTimeUncMsec = 0.0; if (mPositionElapsedRealTimeCal.getElapsedRealtimeForGpsTime( locationExtended, elapsedTimeNs, elapsedTimeUncMsec)) { out.flags |= LOCATION_HAS_ELAPSED_REAL_TIME_BIT; out.elapsedRealTime = elapsedTimeNs; out.elapsedRealTimeUnc = (int64_t) (elapsedTimeUncMsec * 1000000); } #ifndef FEATURE_AUTOMOTIVE else if (out.timestamp > 0) { int64_t locationTimeNanos = (int64_t)out.timestamp * 1000000; bool isCurDataTimeTrustable = (out.timestamp % mLocPositionMode.min_interval == 0); int64_t elapsedRealTime = mPositionElapsedRealTimeCal.getElapsedRealtimeEstimateNanos( locationTimeNanos, isCurDataTimeTrustable, (int64_t)mLocPositionMode.min_interval * 1000000); if (elapsedRealTime != -1) { out.flags |= LOCATION_HAS_ELAPSED_REAL_TIME_BIT; out.elapsedRealTime = elapsedRealTime; out.elapsedRealTimeUnc = mPositionElapsedRealTimeCal.getElapsedRealtimeUncNanos(); } } #endif //FEATURE_AUTOMOTIVE } } /* This is utility routine that computes number of SV used in the fix from the svUsedIdsMask. */ #define MAX_SV_CNT_SUPPORTED_IN_ONE_CONSTELLATION 64 uint16_t GnssAdapter::getNumSvUsed(uint64_t svUsedIdsMask, int totalSvCntInThisConstellation) { if (totalSvCntInThisConstellation > MAX_SV_CNT_SUPPORTED_IN_ONE_CONSTELLATION) { LOC_LOGe ("error: total SV count in this constellation %d exceeded limit of %d", totalSvCntInThisConstellation, MAX_SV_CNT_SUPPORTED_IN_ONE_CONSTELLATION); return 0; } uint16_t numSvUsed = 0; uint64_t mask = 0x1; for (int i = 0; i < totalSvCntInThisConstellation; i++) { if (svUsedIdsMask & mask) { numSvUsed++; } mask <<= 1; } return numSvUsed; } void GnssAdapter::convertLocationInfo(GnssLocationInfoNotification& out, const GpsLocationExtended& locationExtended, enum loc_sess_status status) { out.size = sizeof(GnssLocationInfoNotification); if (GPS_LOCATION_EXTENDED_HAS_ALTITUDE_MEAN_SEA_LEVEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_ALTITUDE_MEAN_SEA_LEVEL_BIT; out.altitudeMeanSeaLevel = locationExtended.altitudeMeanSeaLevel; } if (GPS_LOCATION_EXTENDED_HAS_EXT_DOP & locationExtended.flags) { out.flags |= (GNSS_LOCATION_INFO_DOP_BIT|GNSS_LOCATION_INFO_EXT_DOP_BIT); out.pdop = locationExtended.extDOP.PDOP; out.hdop = locationExtended.extDOP.HDOP; out.vdop = locationExtended.extDOP.VDOP; out.gdop = locationExtended.extDOP.GDOP; out.tdop = locationExtended.extDOP.TDOP; } else if (GPS_LOCATION_EXTENDED_HAS_DOP & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_DOP_BIT; out.pdop = locationExtended.pdop; out.hdop = locationExtended.hdop; out.vdop = locationExtended.vdop; } if (GPS_LOCATION_EXTENDED_HAS_MAG_DEV & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_MAGNETIC_DEVIATION_BIT; out.magneticDeviation = locationExtended.magneticDeviation; } if (GPS_LOCATION_EXTENDED_HAS_HOR_RELIABILITY & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_RELIABILITY_BIT; switch (locationExtended.horizontal_reliability) { case LOC_RELIABILITY_VERY_LOW: out.horReliability = LOCATION_RELIABILITY_VERY_LOW; break; case LOC_RELIABILITY_LOW: out.horReliability = LOCATION_RELIABILITY_LOW; break; case LOC_RELIABILITY_MEDIUM: out.horReliability = LOCATION_RELIABILITY_MEDIUM; break; case LOC_RELIABILITY_HIGH: out.horReliability = LOCATION_RELIABILITY_HIGH; break; default: out.horReliability = LOCATION_RELIABILITY_NOT_SET; break; } } if (GPS_LOCATION_EXTENDED_HAS_VERT_RELIABILITY & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_VER_RELIABILITY_BIT; switch (locationExtended.vertical_reliability) { case LOC_RELIABILITY_VERY_LOW: out.verReliability = LOCATION_RELIABILITY_VERY_LOW; break; case LOC_RELIABILITY_LOW: out.verReliability = LOCATION_RELIABILITY_LOW; break; case LOC_RELIABILITY_MEDIUM: out.verReliability = LOCATION_RELIABILITY_MEDIUM; break; case LOC_RELIABILITY_HIGH: out.verReliability = LOCATION_RELIABILITY_HIGH; break; default: out.verReliability = LOCATION_RELIABILITY_NOT_SET; break; } } if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_MAJOR & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_SEMI_MAJOR_BIT; out.horUncEllipseSemiMajor = locationExtended.horUncEllipseSemiMajor; } if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_MINOR & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_SEMI_MINOR_BIT; out.horUncEllipseSemiMinor = locationExtended.horUncEllipseSemiMinor; } if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_AZIMUTH & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_AZIMUTH_BIT; out.horUncEllipseOrientAzimuth = locationExtended.horUncEllipseOrientAzimuth; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_STD_DEV & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NORTH_STD_DEV_BIT; out.northStdDeviation = locationExtended.northStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_EAST_STD_DEV & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_EAST_STD_DEV_BIT; out.eastStdDeviation = locationExtended.eastStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_VEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NORTH_VEL_BIT; out.northVelocity = locationExtended.northVelocity; } if (GPS_LOCATION_EXTENDED_HAS_NORTH_VEL_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NORTH_VEL_UNC_BIT; out.northVelocityStdDeviation = locationExtended.northVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_EAST_VEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_EAST_VEL_BIT; out.eastVelocity = locationExtended.eastVelocity; } if (GPS_LOCATION_EXTENDED_HAS_EAST_VEL_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_EAST_VEL_UNC_BIT; out.eastVelocityStdDeviation = locationExtended.eastVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_UP_VEL & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_UP_VEL_BIT; out.upVelocity = locationExtended.upVelocity; } if (GPS_LOCATION_EXTENDED_HAS_UP_VEL_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_UP_VEL_UNC_BIT; out.upVelocityStdDeviation = locationExtended.upVelocityStdDeviation; } if (GPS_LOCATION_EXTENDED_HAS_GNSS_SV_USED_DATA & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_GNSS_SV_USED_DATA_BIT; out.svUsedInPosition.gpsSvUsedIdsMask = locationExtended.gnss_sv_used_ids.gps_sv_used_ids_mask; out.svUsedInPosition.gloSvUsedIdsMask = locationExtended.gnss_sv_used_ids.glo_sv_used_ids_mask; out.svUsedInPosition.galSvUsedIdsMask = locationExtended.gnss_sv_used_ids.gal_sv_used_ids_mask; out.svUsedInPosition.bdsSvUsedIdsMask = locationExtended.gnss_sv_used_ids.bds_sv_used_ids_mask; out.svUsedInPosition.qzssSvUsedIdsMask = locationExtended.gnss_sv_used_ids.qzss_sv_used_ids_mask; out.svUsedInPosition.navicSvUsedIdsMask = locationExtended.gnss_sv_used_ids.navic_sv_used_ids_mask; out.flags |= GNSS_LOCATION_INFO_NUM_SV_USED_IN_POSITION_BIT; out.numSvUsedInPosition = getNumSvUsed(out.svUsedInPosition.gpsSvUsedIdsMask, GPS_SV_PRN_MAX - GPS_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.gloSvUsedIdsMask, GLO_SV_PRN_MAX - GLO_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.qzssSvUsedIdsMask, QZSS_SV_PRN_MAX - QZSS_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.bdsSvUsedIdsMask, BDS_SV_PRN_MAX - BDS_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.galSvUsedIdsMask, GAL_SV_PRN_MAX - GAL_SV_PRN_MIN + 1); out.numSvUsedInPosition += getNumSvUsed(out.svUsedInPosition.navicSvUsedIdsMask, NAVIC_SV_PRN_MAX - NAVIC_SV_PRN_MIN + 1); out.numOfMeasReceived = locationExtended.numOfMeasReceived; for (int idx =0; idx < locationExtended.numOfMeasReceived; idx++) { out.measUsageInfo[idx].gnssSignalType = locationExtended.measUsageInfo[idx].gnssSignalType; out.measUsageInfo[idx].gnssSvId = locationExtended.measUsageInfo[idx].gnssSvId; out.measUsageInfo[idx].gnssConstellation = locationExtended.measUsageInfo[idx].gnssConstellation; } } if (GPS_LOCATION_EXTENDED_HAS_NAV_SOLUTION_MASK & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_NAV_SOLUTION_MASK_BIT; out.navSolutionMask = locationExtended.navSolutionMask; } if (GPS_LOCATION_EXTENDED_HAS_POS_DYNAMICS_DATA & locationExtended.flags) { out.flags |= GPS_LOCATION_EXTENDED_HAS_POS_DYNAMICS_DATA; if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_LONG_ACCEL_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_LONG_ACCEL_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_LAT_ACCEL_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_LAT_ACCEL_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_VERT_ACCEL_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_VERT_ACCEL_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_YAW_RATE_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_YAW_RATE_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_PITCH_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_PITCH_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_LONG_ACCEL_UNC_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_LONG_ACCEL_UNC_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_LAT_ACCEL_UNC_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_LAT_ACCEL_UNC_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_VERT_ACCEL_UNC_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_VERT_ACCEL_UNC_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_YAW_RATE_UNC_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_YAW_RATE_UNC_BIT; } if (locationExtended.bodyFrameData.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_PITCH_UNC_BIT) { out.bodyFrameData.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_PITCH_UNC_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_PITCH_RATE_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_PITCH_RATE_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_PITCH_RATE_UNC_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_PITCH_RATE_UNC_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_ROLL_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_ROLL_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_ROLL_UNC_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_ROLL_UNC_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_ROLL_RATE_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_ROLL_RATE_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_ROLL_RATE_UNC_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_ROLL_RATE_UNC_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_YAW_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_YAW_BIT; } if (locationExtended.bodyFrameDataExt.bodyFrameDataMask & LOCATION_NAV_DATA_HAS_YAW_UNC_BIT) { out.bodyFrameDataExt.bodyFrameDataMask |= LOCATION_NAV_DATA_HAS_YAW_UNC_BIT; } out.bodyFrameData.longAccel = locationExtended.bodyFrameData.longAccel; out.bodyFrameData.latAccel = locationExtended.bodyFrameData.latAccel; out.bodyFrameData.vertAccel = locationExtended.bodyFrameData.vertAccel; out.bodyFrameData.yawRate = locationExtended.bodyFrameData.yawRate; out.bodyFrameData.pitch = locationExtended.bodyFrameData.pitch; out.bodyFrameData.longAccelUnc = locationExtended.bodyFrameData.longAccelUnc; out.bodyFrameData.latAccelUnc = locationExtended.bodyFrameData.latAccelUnc; out.bodyFrameData.vertAccelUnc = locationExtended.bodyFrameData.vertAccelUnc; out.bodyFrameData.yawRateUnc = locationExtended.bodyFrameData.yawRateUnc; out.bodyFrameData.pitchUnc = locationExtended.bodyFrameData.pitchUnc; out.bodyFrameDataExt.pitchRate = locationExtended.bodyFrameDataExt.pitchRate; out.bodyFrameDataExt.pitchRateUnc = locationExtended.bodyFrameDataExt.pitchRateUnc; out.bodyFrameDataExt.roll = locationExtended.bodyFrameDataExt.roll; out.bodyFrameDataExt.rollUnc = locationExtended.bodyFrameDataExt.rollUnc; out.bodyFrameDataExt.rollRate = locationExtended.bodyFrameDataExt.rollRate; out.bodyFrameDataExt.rollRateUnc = locationExtended.bodyFrameDataExt.rollRateUnc; out.bodyFrameDataExt.yaw = locationExtended.bodyFrameDataExt.yaw; out.bodyFrameDataExt.yawUnc = locationExtended.bodyFrameDataExt.yawUnc; } // Validity of this structure is established from the timeSrc of the GnssSystemTime structure. out.gnssSystemTime = locationExtended.gnssSystemTime; if (GPS_LOCATION_EXTENDED_HAS_LEAP_SECONDS & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_LEAP_SECONDS_BIT; out.leapSeconds = locationExtended.leapSeconds; } if (GPS_LOCATION_EXTENDED_HAS_TIME_UNC & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_TIME_UNC_BIT; out.timeUncMs = locationExtended.timeUncMs; } if (GPS_LOCATION_EXTENDED_HAS_CALIBRATION_CONFIDENCE & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_CALIBRATION_CONFIDENCE_BIT; out.calibrationConfidence = locationExtended.calibrationConfidence; } if (GPS_LOCATION_EXTENDED_HAS_CALIBRATION_STATUS & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_CALIBRATION_STATUS_BIT; out.calibrationStatus = locationExtended.calibrationStatus; } if (GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_TYPE & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_OUTPUT_ENG_TYPE_BIT; out.locOutputEngType = locationExtended.locOutputEngType; } if (GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_MASK & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_OUTPUT_ENG_MASK_BIT; out.locOutputEngMask = locationExtended.locOutputEngMask; } if (GPS_LOCATION_EXTENDED_HAS_CONFORMITY_INDEX & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_CONFORMITY_INDEX_BIT; out.conformityIndex = locationExtended.conformityIndex; } if (GPS_LOCATION_EXTENDED_HAS_LLA_VRP_BASED & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_LLA_VRP_BASED_BIT; out.llaVRPBased = locationExtended.llaVRPBased; } if (GPS_LOCATION_EXTENDED_HAS_ENU_VELOCITY_LLA_VRP_BASED & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_ENU_VELOCITY_VRP_BASED_BIT; // copy over east, north and up vrp based velocity out.enuVelocityVRPBased[0] = locationExtended.enuVelocityVRPBased[0]; out.enuVelocityVRPBased[1] = locationExtended.enuVelocityVRPBased[1]; out.enuVelocityVRPBased[2] = locationExtended.enuVelocityVRPBased[2]; } if (GPS_LOCATION_EXTENDED_HAS_DR_SOLUTION_STATUS_MASK & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_DR_SOLUTION_STATUS_MASK_BIT; out.drSolutionStatusMask = locationExtended.drSolutionStatusMask; } if (GPS_LOCATION_EXTENDED_HAS_ALTITUDE_ASSUMED & locationExtended.flags) { out.flags |= GNSS_LOCATION_INFO_ALTITUDE_ASSUMED_BIT; out.altitudeAssumed = locationExtended.altitudeAssumed; } out.flags |= GNSS_LOCATION_INFO_SESSION_STATUS_BIT; out.sessionStatus = status; } inline uint32_t GnssAdapter::convertSuplVersion(const GnssConfigSuplVersion suplVersion) { switch (suplVersion) { case GNSS_CONFIG_SUPL_VERSION_2_0_4: return 0x00020004; case GNSS_CONFIG_SUPL_VERSION_2_0_0: return 0x00020000; case GNSS_CONFIG_SUPL_VERSION_2_0_2: return 0x00020002; case GNSS_CONFIG_SUPL_VERSION_1_0_0: default: return 0x00010000; } } uint32_t GnssAdapter::convertLppeCp(const GnssConfigLppeControlPlaneMask lppeControlPlaneMask) { uint32_t mask = 0; if (GNSS_CONFIG_LPPE_CONTROL_PLANE_DBH_BIT & lppeControlPlaneMask) { mask |= (1<<0); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_WLAN_AP_MEASUREMENTS_BIT & lppeControlPlaneMask) { mask |= (1<<1); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_SRN_AP_MEASUREMENTS_BIT & lppeControlPlaneMask) { mask |= (1<<2); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_SENSOR_BARO_MEASUREMENTS_BIT & lppeControlPlaneMask) { mask |= (1<<3); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_NON_E911_BIT & lppeControlPlaneMask) { mask |= (1<<4); } if (GNSS_CONFIG_LPPE_CONTROL_PLANE_CIV_ADDRESS_BIT & lppeControlPlaneMask) { mask |= (1<<5); } return mask; } uint32_t GnssAdapter::convertLppeUp(const GnssConfigLppeUserPlaneMask lppeUserPlaneMask) { uint32_t mask = 0; if (GNSS_CONFIG_LPPE_USER_PLANE_DBH_BIT & lppeUserPlaneMask) { mask |= (1<<0); } if (GNSS_CONFIG_LPPE_USER_PLANE_WLAN_AP_MEASUREMENTS_BIT & lppeUserPlaneMask) { mask |= (1<<1); } if (GNSS_CONFIG_LPPE_USER_PLANE_SRN_AP_MEASUREMENTS_BIT & lppeUserPlaneMask) { mask |= (1<<2); } if (GNSS_CONFIG_LPPE_USER_PLANE_SENSOR_BARO_MEASUREMENTS_BIT & lppeUserPlaneMask) { mask |= (1<<3); } if (GNSS_CONFIG_LPPE_USER_PLANE_NON_E911_BIT & lppeUserPlaneMask) { mask |= (1<<4); } if (GNSS_CONFIG_LPPE_USER_PLANE_CIV_ADDRESS_BIT & lppeUserPlaneMask) { mask |= (1<<5); } return mask; } uint32_t GnssAdapter::convertAGloProt(const GnssConfigAGlonassPositionProtocolMask aGloPositionProtocolMask) { uint32_t mask = 0; if (GNSS_CONFIG_RRC_CONTROL_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<0); } if (GNSS_CONFIG_RRLP_USER_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<1); } if (GNSS_CONFIG_LLP_USER_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<2); } if (GNSS_CONFIG_LLP_CONTROL_PLANE_BIT & aGloPositionProtocolMask) { mask |= (1<<3); } return mask; } uint32_t GnssAdapter::convertEP4ES(const GnssConfigEmergencyPdnForEmergencySupl emergencyPdnForEmergencySupl) { switch (emergencyPdnForEmergencySupl) { case GNSS_CONFIG_EMERGENCY_PDN_FOR_EMERGENCY_SUPL_YES: return 1; case GNSS_CONFIG_EMERGENCY_PDN_FOR_EMERGENCY_SUPL_NO: default: return 0; } } uint32_t GnssAdapter::convertSuplEs(const GnssConfigSuplEmergencyServices suplEmergencyServices) { switch (suplEmergencyServices) { case GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_YES: return 1; case GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_NO: default: return 0; } } uint32_t GnssAdapter::convertSuplMode(const GnssConfigSuplModeMask suplModeMask) { uint32_t mask = 0; if (GNSS_CONFIG_SUPL_MODE_MSB_BIT & suplModeMask) { mask |= (1<<0); } if (GNSS_CONFIG_SUPL_MODE_MSA_BIT & suplModeMask) { mask |= (1<<1); } return mask; } void GnssAdapter::readNfwLockConfig() { char nfwCpPackageName[LOC_MAX_PARAM_STRING]; char nfwSuplPackageName[LOC_MAX_PARAM_STRING]; char nfwImsPackageName[LOC_MAX_PARAM_STRING]; char nfwSimPackageName[LOC_MAX_PARAM_STRING]; char nfwMdtPackageName[LOC_MAX_PARAM_STRING]; char nfwTlocPackageName[LOC_MAX_PARAM_STRING]; char nfwRlocPackageName[LOC_MAX_PARAM_STRING]; char nfwV2xPackageName[LOC_MAX_PARAM_STRING]; char nfwR1PackageName[LOC_MAX_PARAM_STRING]; char nfwR2PackageName[LOC_MAX_PARAM_STRING]; char nfwR3PackageName[LOC_MAX_PARAM_STRING]; const loc_param_s_type nfw_packages_table[] = { { "NFW_CLIENT_CP", &nfwCpPackageName, NULL, 's' }, { "NFW_CLIENT_SUPL", &nfwSuplPackageName, NULL, 's' }, { "NFW_CLIENT_IMS", &nfwImsPackageName, NULL, 's' }, { "NFW_CLIENT_SIM", &nfwSimPackageName, NULL, 's' }, { "NFW_CLIENT_MDT", &nfwMdtPackageName, NULL, 's' }, { "NFW_CLIENT_TLOC", &nfwTlocPackageName, NULL, 's' }, { "NFW_CLIENT_RLOC", &nfwRlocPackageName, NULL, 's' }, { "NFW_CLIENT_V2X", &nfwV2xPackageName, NULL, 's' }, { "NFW_CLIENT_R1", &nfwR1PackageName, NULL, 's' }, { "NFW_CLIENT_R2", &nfwR2PackageName, NULL, 's' }, { "NFW_CLIENT_R3", &nfwR3PackageName, NULL, 's' }, }; UTIL_READ_CONF(LOC_PATH_GPS_CONF_STR, nfw_packages_table); mNfws[nfwImsPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_IMS; mNfws[nfwSimPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_SIM; mNfws[nfwMdtPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_MDT; mNfws[nfwTlocPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_TLOC; mNfws[nfwRlocPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_RLOC; mNfws[nfwV2xPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_V2X; mNfws[nfwR1PackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_R1; mNfws[nfwR2PackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_R2; mNfws[nfwR3PackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_R3; mNfws[nfwSuplPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_SUPL; mNfws[nfwCpPackageName] |= GNSS_CONFIG_GPS_LOCK_NFW_CP; } void GnssAdapter::readConfigCommand() { LOC_LOGD("%s]: ", __func__); struct MsgReadConfig : public LocMsg { GnssAdapter* mAdapter; ContextBase& mContext; inline MsgReadConfig(GnssAdapter* adapter, ContextBase& context) : LocMsg(), mAdapter(adapter), mContext(context) {} inline virtual void proc() const { static bool confReadDone = false; if (!confReadDone) { confReadDone = true; // reads config into mContext->mGps_conf mContext.readConfig(); mAdapter->readNfwLockConfig(); } } }; if (mContext != NULL) { sendMsg(new MsgReadConfig(this, *mContext)); } } void GnssAdapter::setSuplHostServer(const char* server, int port, LocServerType type) { if (ContextBase::mGps_conf.AGPS_CONFIG_INJECT) { char serverUrl[MAX_URL_LEN] = {}; int32_t length = -1; const char noHost[] = "NONE"; if ((NULL == server) || (server[0] == 0) || (strncasecmp(noHost, server, sizeof(noHost)) == 0)) { serverUrl[0] = '\0'; length = 0; } else if (port > 0) { length = snprintf(serverUrl, sizeof(serverUrl), "%s:%u", server, port); } if (LOC_AGPS_SUPL_SERVER != type && LOC_AGPS_MO_SUPL_SERVER != type) { LOC_LOGe("Invalid type=%d", type); } else if (length >= 0) { if (LOC_AGPS_SUPL_SERVER == type) { getServerUrl().assign(serverUrl); strlcpy(ContextBase::mGps_conf.SUPL_HOST, (nullptr == server) ? serverUrl : server, LOC_MAX_PARAM_STRING); ContextBase::mGps_conf.SUPL_PORT = port; } else { if (strncasecmp(getMoServerUrl().c_str(), serverUrl, sizeof(serverUrl)) != 0) { getMoServerUrl().assign(serverUrl); } } } } } void GnssAdapter::setConfig() { LOC_LOGD("%s]: ", __func__); if (!ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_ENGINE_DEBUG_DATA)) { // set nmea mask type uint32_t mask = 0; if (NMEA_PROVIDER_MP == ContextBase::mGps_conf.NMEA_PROVIDER) { mask |= LOC_NMEA_ALL_GENERAL_SUPPORTED_MASK; if (ContextBase::mGps_conf.NMEA_TAG_BLOCK_GROUPING_ENABLED) { mask |= LOC_NMEA_MASK_TAGBLOCK_V02; } } if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_DEBUG_NMEA_V02)) { mask |= LOC_NMEA_MASK_DEBUG_V02; } if (mNmeaMask != mask) { mNmeaMask = mask; if (mNmeaMask) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if ((it->second.gnssNmeaCb != nullptr)) { updateEvtMask(LOC_API_ADAPTER_BIT_NMEA_1HZ_REPORT, LOC_REGISTRATION_MASK_ENABLED); break; } } } } } else { // Modem does not provide noraml NMEA if ENGINE_DEBUG_DATA feature is available // ensuring AP to nmea generation in this case ContextBase::mGps_conf.NMEA_PROVIDER = NMEA_PROVIDER_AP; updateEvtMask(LOC_API_ADAPTER_BIT_ENGINE_DEBUG_DATA_REPORT, LOC_REGISTRATION_MASK_ENABLED); } std::string oldMoServerUrl = getMoServerUrl(); setSuplHostServer(ContextBase::mGps_conf.SUPL_HOST, ContextBase::mGps_conf.SUPL_PORT, LOC_AGPS_SUPL_SERVER); setSuplHostServer(ContextBase::mGps_conf.MO_SUPL_HOST, ContextBase::mGps_conf.MO_SUPL_PORT, LOC_AGPS_MO_SUPL_SERVER); std::string moServerUrl = getMoServerUrl(); std::string serverUrl = getServerUrl(); // inject the configurations into modem loc_gps_cfg_s gpsConf = ContextBase::mGps_conf; loc_sap_cfg_s_type sapConf = ContextBase::mSap_conf; //cache the injected configuration with GnssConfigRequested struct GnssConfig gnssConfigRequested = {}; gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT | GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT; /* Here we process an SSR. We need to set the GPS_LOCK to the proper values, as follows: 1. Q behavior. This is identified by mSupportNfwControl being 1. In this case ContextBase::mGps_conf.GPS_LOCK is a "state", meaning it should reflect the NV value. Therefore we will set the NV to ContextBase::mGps_conf.GPS_LOCK 2. P behavior. This is identified by mSupportNfwControl being 0. In this case ContextBase::mGps_conf.GPS_LOCK is a "configuration", meaning it should hold the "mask" for NI. There are two subcases: a. Location enabled in GUI (1 == getAfwControlId()). We need to set the NV to GNSS_CONFIG_GPS_LOCK_NONE (both MO and NI enabled) b. Location disabled in GUI (0 == getAfwControlId()). We need to set the NV to ContextBase::mGps_conf.GPS_LOCK (the "mask", which is SIM-card specific) */ if (mSupportNfwControl || (0 == getAfwControlId())) { gnssConfigRequested.gpsLock = gpsConf.GPS_LOCK; } else { gnssConfigRequested.gpsLock = GNSS_CONFIG_GPS_LOCK_NONE; } gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT | GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT | GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT | GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT; gnssConfigRequested.suplVersion = mLocApi->convertSuplVersion(gpsConf.SUPL_VER); gnssConfigRequested.lppProfileMask = gpsConf.LPP_PROFILE; gnssConfigRequested.aGlonassPositionProtocolMask = gpsConf.A_GLONASS_POS_PROTOCOL_SELECT; if (gpsConf.LPPE_CP_TECHNOLOGY) { gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT; gnssConfigRequested.lppeControlPlaneMask = mLocApi->convertLppeCp(gpsConf.LPPE_CP_TECHNOLOGY); } if (gpsConf.LPPE_UP_TECHNOLOGY) { gnssConfigRequested.flags |= GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT; gnssConfigRequested.lppeUserPlaneMask = mLocApi->convertLppeUp(gpsConf.LPPE_UP_TECHNOLOGY); } gnssConfigRequested.blacklistedSvIds.assign(mBlacklistedSvIds.begin(), mBlacklistedSvIds.end()); mLocApi->sendMsg(new LocApiMsg( [this, gpsConf, sapConf, oldMoServerUrl, moServerUrl, serverUrl, gnssConfigRequested] () mutable { gnssUpdateConfig(oldMoServerUrl, moServerUrl, serverUrl, gnssConfigRequested, gnssConfigRequested); // set nmea mask type uint32_t mask = 0; if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_ENGINE_DEBUG_DATA)) { mask |= LOC_API_ADAPTER_BIT_ENGINE_DEBUG_DATA_REPORT; } else { if (NMEA_PROVIDER_MP == gpsConf.NMEA_PROVIDER) { mask |= LOC_NMEA_ALL_GENERAL_SUPPORTED_MASK; if (gpsConf.NMEA_TAG_BLOCK_GROUPING_ENABLED) { mask |= LOC_NMEA_MASK_TAGBLOCK_V02; } } if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_DEBUG_NMEA_V02)) { mask |= LOC_NMEA_MASK_DEBUG_V02; } if (mask != 0) { mLocApi->setNMEATypesSync(mask); } } // load tunc configuration from config file on first boot-up, // e.g.: adapter.mLocConfigInfo.tuncConfigInfo.isValid is false if (mLocConfigInfo.tuncConfigInfo.isValid == false) { mLocConfigInfo.tuncConfigInfo.isValid = true; mLocConfigInfo.tuncConfigInfo.enable = (gpsConf.CONSTRAINED_TIME_UNCERTAINTY_ENABLED == 1); mLocConfigInfo.tuncConfigInfo.tuncThresholdMs = (float)gpsConf.CONSTRAINED_TIME_UNCERTAINTY_THRESHOLD; mLocConfigInfo.tuncConfigInfo.energyBudget = gpsConf.CONSTRAINED_TIME_UNCERTAINTY_ENERGY_BUDGET; } mLocApi->setConstrainedTuncMode( mLocConfigInfo.tuncConfigInfo.enable, mLocConfigInfo.tuncConfigInfo.tuncThresholdMs, mLocConfigInfo.tuncConfigInfo.energyBudget); // load pace configuration from config file on first boot-up, // e.g.: adapter.mLocConfigInfo.paceConfigInfo.isValid is false if (mLocConfigInfo.paceConfigInfo.isValid == false) { mLocConfigInfo.paceConfigInfo.isValid = true; mLocConfigInfo.paceConfigInfo.enable = (gpsConf.POSITION_ASSISTED_CLOCK_ESTIMATOR_ENABLED==1); } mLocApi->setPositionAssistedClockEstimatorMode( mLocConfigInfo.paceConfigInfo.enable); // robust location to be disabled on bootup by default if (mLocConfigInfo.robustLocationConfigInfo.isValid == false) { mLocConfigInfo.robustLocationConfigInfo.isValid = true; mLocConfigInfo.robustLocationConfigInfo.enable = false; mLocConfigInfo.robustLocationConfigInfo.enableFor911 = false; } mLocApi->configRobustLocation( mLocConfigInfo.robustLocationConfigInfo.enable, mLocConfigInfo.robustLocationConfigInfo.enableFor911); if (sapConf.GYRO_BIAS_RANDOM_WALK_VALID || sapConf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY_VALID || sapConf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY_VALID || sapConf.RATE_RANDOM_WALK_SPECTRAL_DENSITY_VALID || sapConf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY_VALID ) { mLocApi->setSensorPropertiesSync( sapConf.GYRO_BIAS_RANDOM_WALK_VALID, sapConf.GYRO_BIAS_RANDOM_WALK, sapConf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY, sapConf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY, sapConf.RATE_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.RATE_RANDOM_WALK_SPECTRAL_DENSITY, sapConf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY_VALID, sapConf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY); } mLocApi->setSensorPerfControlConfigSync( sapConf.SENSOR_CONTROL_MODE, sapConf.SENSOR_ACCEL_SAMPLES_PER_BATCH, sapConf.SENSOR_ACCEL_BATCHES_PER_SEC, sapConf.SENSOR_GYRO_SAMPLES_PER_BATCH, sapConf.SENSOR_GYRO_BATCHES_PER_SEC, sapConf.SENSOR_ACCEL_SAMPLES_PER_BATCH_HIGH, sapConf.SENSOR_ACCEL_BATCHES_PER_SEC_HIGH, sapConf.SENSOR_GYRO_SAMPLES_PER_BATCH_HIGH, sapConf.SENSOR_GYRO_BATCHES_PER_SEC_HIGH, sapConf.SENSOR_ALGORITHM_CONFIG_MASK); } )); // deal with Measurement Corrections if (true == mIsMeasCorrInterfaceOpen) { initMeasCorr(true); } } std::vector GnssAdapter::gnssUpdateConfig(const std::string& oldMoServerUrl, const std::string& moServerUrl, const std::string& serverUrl, GnssConfig& gnssConfigRequested, GnssConfig& gnssConfigNeedEngineUpdate, size_t count) { size_t index = 0; LocationError err = LOCATION_ERROR_SUCCESS; std::vector errsList = {err}; if (count > 0) { errsList.insert(errsList.begin(), count, LOCATION_ERROR_SUCCESS); } int serverUrlLen = serverUrl.length(); int moServerUrlLen = moServerUrl.length(); if (!ContextBase::mGps_conf.AGPS_CONFIG_INJECT) { LOC_LOGd("AGPS_CONFIG_INJECT is 0. Not setting flags for AGPS configurations"); gnssConfigRequested.flags &= ~(GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT | GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT | GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT | GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT | GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT | GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT); } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { err = mLocApi->setGpsLockSync(gnssConfigRequested.gpsLock); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (gnssConfigNeedEngineUpdate.assistanceServer.type == GNSS_ASSISTANCE_TYPE_SUPL) { err = mLocApi->setServerSync( serverUrl.c_str(), serverUrlLen, LOC_AGPS_SUPL_SERVER); if (index < count) { errsList[index] = err; } if (0 != oldMoServerUrl.compare(moServerUrl)) { LocationError locErr = mLocApi->setServerSync(moServerUrl.c_str(), moServerUrlLen, LOC_AGPS_MO_SUPL_SERVER); if (locErr != LOCATION_ERROR_SUCCESS) { LOC_LOGe("Error while setting MO SUPL_HOST server:%s", moServerUrl.c_str()); } } } else if (gnssConfigNeedEngineUpdate.assistanceServer.type == GNSS_ASSISTANCE_TYPE_C2K) { struct in_addr addr; struct hostent* hp; bool resolveAddrSuccess = true; hp = gethostbyname( gnssConfigNeedEngineUpdate.assistanceServer.hostName); if (hp != NULL) { /* DNS OK */ memcpy(&addr, hp->h_addr_list[0], hp->h_length); } else { /* Try IP representation */ if (inet_aton( gnssConfigNeedEngineUpdate.assistanceServer.hostName, &addr) == 0) { /* IP not valid */ LOC_LOGE("%s]: hostname '%s' cannot be resolved ", __func__, gnssConfigNeedEngineUpdate.assistanceServer.hostName); if (index < count) { errsList[index] = LOCATION_ERROR_INVALID_PARAMETER; } } else { resolveAddrSuccess = false; } } if (resolveAddrSuccess) { unsigned int ip = htonl(addr.s_addr); err = mLocApi->setServerSync(ip, gnssConfigNeedEngineUpdate.assistanceServer.port, LOC_AGPS_CDMA_PDE_SERVER); if (index < count) { errsList[index] = err; } } } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { err = mLocApi->setSUPLVersionSync(gnssConfigRequested.suplVersion); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { err = mLocApi->setLPPConfigSync(gnssConfigRequested.lppProfileMask); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { err = mLocApi->setLPPeProtocolCpSync( gnssConfigRequested.lppeControlPlaneMask); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { err = mLocApi->setLPPeProtocolUpSync( gnssConfigRequested.lppeUserPlaneMask); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { err = mLocApi->setAGLONASSProtocolSync( gnssConfigRequested.aGlonassPositionProtocolMask); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT) { // Check if feature is supported if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature constellation enablement not supported."); err = LOCATION_ERROR_NOT_SUPPORTED; } else { // Send the SV ID Config to Modem mBlacklistedSvIds.assign(gnssConfigRequested.blacklistedSvIds.begin(), gnssConfigRequested.blacklistedSvIds.end()); err = gnssSvIdConfigUpdateSync(gnssConfigRequested.blacklistedSvIds); if (LOCATION_ERROR_SUCCESS != err) { LOC_LOGe("Failed to send config to modem, err %d", err); } } if (index < count) { errsList[index] = err; } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_EMERGENCY_EXTENSION_SECONDS_BIT) { if (gnssConfigNeedEngineUpdate.flags & GNSS_CONFIG_FLAGS_EMERGENCY_EXTENSION_SECONDS_BIT) { err = mLocApi->setEmergencyExtensionWindowSync( gnssConfigRequested.emergencyExtensionSeconds); if (index < count) { errsList[index] = err; } } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_MIN_SV_ELEVATION_BIT) { GnssConfig gnssConfig = {}; gnssConfig.flags = GNSS_CONFIG_FLAGS_MIN_SV_ELEVATION_BIT; gnssConfig.minSvElevation = gnssConfigRequested.minSvElevation; err = mLocApi->setParameterSync(gnssConfig); if (index < count) { errsList[index] = err; } index++; } return errsList; } uint32_t* GnssAdapter::gnssUpdateConfigCommand(const GnssConfig& config) { // count the number of bits set GnssConfigFlagsMask flagsCopy = config.flags; size_t count = 0; while (flagsCopy > 0) { if (flagsCopy & 1) { count++; } flagsCopy >>= 1; } std::string idsString = "["; uint32_t* ids = NULL; if (count > 0) { ids = new uint32_t[count]; if (ids == nullptr) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); return nullptr; } for (size_t i=0; i < count; ++i) { ids[i] = generateSessionId(); IF_LOC_LOGD { idsString += std::to_string(ids[i]) + " "; } } } idsString += "]"; LOC_LOGD("%s]: ids %s flags 0x%X", __func__, idsString.c_str(), config.flags); struct MsgGnssUpdateConfig : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; GnssConfig mConfig; size_t mCount; uint32_t* mIds; inline MsgGnssUpdateConfig(GnssAdapter& adapter, LocApiBase& api, GnssConfig config, uint32_t* ids, size_t count) : LocMsg(), mAdapter(adapter), mApi(api), mConfig(config), mCount(count), mIds(nullptr) { if (mCount > 0) { mIds = new uint32_t[count]; if (mIds) { for (uint32_t index = 0; index < count; index++) { mIds[index] = ids[index]; } } else { LOC_LOGe("memory allocation for mIds failed"); } } } inline MsgGnssUpdateConfig(const MsgGnssUpdateConfig& obj) : MsgGnssUpdateConfig(obj.mAdapter, obj.mApi, obj.mConfig, obj.mIds, obj.mCount) {} inline virtual ~MsgGnssUpdateConfig() { if (nullptr != mIds) delete[] mIds; } inline virtual void proc() const { if (!mAdapter.isEngineCapabilitiesKnown()) { mAdapter.mPendingMsgs.push_back(new MsgGnssUpdateConfig(*this)); return; } GnssAdapter& adapter = mAdapter; size_t countOfConfigs = mCount; GnssConfig gnssConfigRequested = mConfig; GnssConfig gnssConfigNeedEngineUpdate = mConfig; std::vector sessionIds; sessionIds.assign(mIds, mIds + mCount); std::vector errs(mCount, LOCATION_ERROR_SUCCESS); int index = 0; bool needSuspendResume = false; if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { GnssConfigGpsLock newGpsLock = gnssConfigRequested.gpsLock; newGpsLock |= GNSS_CONFIG_GPS_LOCK_MO; ContextBase::mGps_conf.GPS_LOCK = newGpsLock; /* If we get here it means that the changes in the framework to request for 'P' behavior were made, and therefore we need to "behave" as in 'P' However, we need to determine if enableCommand function has already been called, since it could get called before this function.*/ if (0 != mAdapter.getAfwControlId()) { /* enableCommand function has already been called since getAfwControlId returns non zero. Now there are two possible cases: 1. This is the first time this function is called (mSupportNfwControl is true). We need to behave as in 'P', but for the first time, meaning MO was enabled, but NI was not, so we need to unlock NI 2. This is not the first time this function is called, meaning we are already behaving as in 'P'. No need to update the configuration in this case (return to 'P' code) */ if (mAdapter.mSupportNfwControl) { // case 1 above newGpsLock = GNSS_CONFIG_GPS_LOCK_NONE; } else { // case 2 above gnssConfigNeedEngineUpdate.flags &= ~(GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT); } } gnssConfigRequested.gpsLock = newGpsLock; mAdapter.mSupportNfwControl = false; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { uint32_t newSuplVersion = mAdapter.convertSuplVersion(gnssConfigRequested.suplVersion); ContextBase::mGps_conf.SUPL_VER = newSuplVersion; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (GNSS_ASSISTANCE_TYPE_SUPL == mConfig.assistanceServer.type) { mAdapter.setSuplHostServer(mConfig.assistanceServer.hostName, mConfig.assistanceServer.port, LOC_AGPS_SUPL_SERVER); } else { LOC_LOGe("Not a valid gnss assistance type %u", mConfig.assistanceServer.type); errs.at(index) = LOCATION_ERROR_INVALID_PARAMETER; gnssConfigNeedEngineUpdate.flags &= ~(GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT); } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { uint32_t newLppProfileMask = gnssConfigRequested.lppProfileMask; ContextBase::mGps_conf.LPP_PROFILE = newLppProfileMask; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { uint32_t newLppeControlPlaneMask = mAdapter.convertLppeCp(gnssConfigRequested.lppeControlPlaneMask); ContextBase::mGps_conf.LPPE_CP_TECHNOLOGY = newLppeControlPlaneMask; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { uint32_t newLppeUserPlaneMask = mAdapter.convertLppeUp(gnssConfigRequested.lppeUserPlaneMask); ContextBase::mGps_conf.LPPE_UP_TECHNOLOGY = newLppeUserPlaneMask; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { uint32_t newAGloProtMask = mAdapter.convertAGloProt(gnssConfigRequested.aGlonassPositionProtocolMask); ContextBase::mGps_conf.A_GLONASS_POS_PROTOCOL_SELECT = newAGloProtMask; index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_EM_PDN_FOR_EM_SUPL_VALID_BIT) { uint32_t newEP4ES = mAdapter.convertEP4ES( gnssConfigRequested.emergencyPdnForEmergencySupl); if (newEP4ES != ContextBase::mGps_conf.USE_EMERGENCY_PDN_FOR_EMERGENCY_SUPL) { ContextBase::mGps_conf.USE_EMERGENCY_PDN_FOR_EMERGENCY_SUPL = newEP4ES; } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_EM_SERVICES_BIT) { uint32_t newSuplEs = mAdapter.convertSuplEs( gnssConfigRequested.suplEmergencyServices); if (newSuplEs != ContextBase::mGps_conf.SUPL_ES) { ContextBase::mGps_conf.SUPL_ES = newSuplEs; } index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_SUPL_MODE_BIT) { uint32_t newSuplMode = mAdapter.convertSuplMode(gnssConfigRequested.suplModeMask); ContextBase::mGps_conf.SUPL_MODE = newSuplMode; mAdapter.broadcastCapabilities(mAdapter.getCapabilities()); index++; } if (gnssConfigRequested.flags & GNSS_CONFIG_FLAGS_MIN_SV_ELEVATION_BIT) { needSuspendResume = true; index++; } if (needSuspendResume == true) { mAdapter.suspendSessions(); } LocApiCollectiveResponse *configCollectiveResponse = new LocApiCollectiveResponse( *adapter.getContext(), [&adapter, sessionIds, countOfConfigs] (std::vector errs) { std::vector ids(sessionIds); adapter.reportResponse(countOfConfigs, errs.data(), ids.data()); }); std::string moServerUrl = adapter.getMoServerUrl(); std::string serverUrl = adapter.getServerUrl(); mApi.sendMsg(new LocApiMsg( [&adapter, gnssConfigRequested, gnssConfigNeedEngineUpdate, moServerUrl, serverUrl, countOfConfigs, configCollectiveResponse, errs] () mutable { std::vector errsList = adapter.gnssUpdateConfig("", moServerUrl, serverUrl, gnssConfigRequested, gnssConfigNeedEngineUpdate, countOfConfigs); configCollectiveResponse->returnToSender(errsList); })); if (needSuspendResume == true) { mAdapter.restartSessions(); } } }; if (NULL != ids) { sendMsg(new MsgGnssUpdateConfig(*this, *mLocApi, config, ids, count)); } else { LOC_LOGE("%s]: No GNSS config items to update", __func__); } return ids; } void GnssAdapter::gnssSvIdConfigUpdate(const std::vector& blacklistedSvIds) { // Clear the existing config memset(&mGnssSvIdConfig, 0, sizeof(GnssSvIdConfig)); // Convert the sv id lists to masks bool convertSuccess = convertToGnssSvIdConfig(blacklistedSvIds, mGnssSvIdConfig); // Now send to Modem if conversion successful if (convertSuccess) { gnssSvIdConfigUpdate(); } else { LOC_LOGe("convertToGnssSvIdConfig failed"); } } void GnssAdapter::gnssSvIdConfigUpdate() { LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64 ", sbas 0x%" PRIx64 ", navic 0x%" PRIx64, mGnssSvIdConfig.bdsBlacklistSvMask, mGnssSvIdConfig.gloBlacklistSvMask, mGnssSvIdConfig.qzssBlacklistSvMask, mGnssSvIdConfig.galBlacklistSvMask, mGnssSvIdConfig.sbasBlacklistSvMask, mGnssSvIdConfig.navicBlacklistSvMask); // Now set required blacklisted SVs mLocApi->setBlacklistSv(mGnssSvIdConfig); } LocationError GnssAdapter::gnssSvIdConfigUpdateSync(const std::vector& blacklistedSvIds) { // Clear the existing config memset(&mGnssSvIdConfig, 0, sizeof(GnssSvIdConfig)); // Convert the sv id lists to masks convertToGnssSvIdConfig(blacklistedSvIds, mGnssSvIdConfig); // Now send to Modem return gnssSvIdConfigUpdateSync(); } LocationError GnssAdapter::gnssSvIdConfigUpdateSync() { LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64 ", sbas 0x%" PRIx64 ", navic 0x%" PRIx64, mGnssSvIdConfig.bdsBlacklistSvMask, mGnssSvIdConfig.gloBlacklistSvMask, mGnssSvIdConfig.qzssBlacklistSvMask, mGnssSvIdConfig.galBlacklistSvMask, mGnssSvIdConfig.sbasBlacklistSvMask, mGnssSvIdConfig.navicBlacklistSvMask); // Now set required blacklisted SVs return mLocApi->setBlacklistSvSync(mGnssSvIdConfig); } void GnssAdapter::gnssSecondaryBandConfigUpdate(LocApiResponse* locApiResponse) { LOC_LOGd("secondary band config, size %d, enabled constellation 0x%" PRIx64 "," "disabled constellation 0x%" PRIx64 "", mGnssSeconaryBandConfig.size, mGnssSeconaryBandConfig.enabledSvTypesMask, mGnssSeconaryBandConfig.blacklistedSvTypesMask); if (mGnssSeconaryBandConfig.size == sizeof(mGnssSeconaryBandConfig)) { // Now set required secondary band config mLocApi->configConstellationMultiBand(mGnssSeconaryBandConfig, locApiResponse); } } uint32_t* GnssAdapter::gnssGetConfigCommand(GnssConfigFlagsMask configMask) { // count the number of bits set GnssConfigFlagsMask flagsCopy = configMask; size_t count = 0; while (flagsCopy > 0) { if (flagsCopy & 1) { count++; } flagsCopy >>= 1; } std::string idsString = "["; uint32_t* ids = NULL; if (count > 0) { ids = new uint32_t[count]; if (nullptr == ids) { LOC_LOGe("new allocation failed, fatal error."); return nullptr; } for (size_t i=0; i < count; ++i) { ids[i] = generateSessionId(); IF_LOC_LOGD { idsString += std::to_string(ids[i]) + " "; } } } idsString += "]"; LOC_LOGd("ids %s flags 0x%X", idsString.c_str(), configMask); struct MsgGnssGetConfig : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; GnssConfigFlagsMask mConfigMask; uint32_t* mIds; size_t mCount; inline MsgGnssGetConfig(GnssAdapter& adapter, LocApiBase& api, GnssConfigFlagsMask configMask, uint32_t* ids, size_t count) : LocMsg(), mAdapter(adapter), mApi(api), mConfigMask(configMask), mIds(nullptr), mCount(count) { if (mCount > 0) { mIds = new uint32_t[count]; if (mIds) { for (uint32_t index = 0; index < count; index++) { mIds[index] = ids[index]; } } else { LOC_LOGe("memory allocation for mIds failed"); } } } inline MsgGnssGetConfig(const MsgGnssGetConfig& obj) : MsgGnssGetConfig(obj.mAdapter, obj.mApi, obj.mConfigMask, obj.mIds, obj.mCount) {} inline virtual ~MsgGnssGetConfig() { if (nullptr != mIds) delete[] mIds; } inline virtual void proc() const { if (!mAdapter.isEngineCapabilitiesKnown()) { mAdapter.mPendingMsgs.push_back(new MsgGnssGetConfig(*this)); return; } LocationError* errs = new LocationError[mCount]; LocationError err = LOCATION_ERROR_SUCCESS; uint32_t index = 0; if (nullptr == errs) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); return; } if (mConfigMask & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_EM_PDN_FOR_EM_SUPL_VALID_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SUPL_EM_SERVICES_BIT) { if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_SUPL_MODE_BIT) { err = LOCATION_ERROR_NOT_SUPPORTED; if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT) { // Check if feature is supported if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); err = LOCATION_ERROR_NOT_SUPPORTED; } else { // Send request to Modem to fetch the config mApi.getBlacklistSv(); err = LOCATION_ERROR_SUCCESS; } if (index < mCount) { errs[index++] = err; } } if (mConfigMask & GNSS_CONFIG_FLAGS_EMERGENCY_EXTENSION_SECONDS_BIT) { err = LOCATION_ERROR_NOT_SUPPORTED; if (index < mCount) { errs[index++] = LOCATION_ERROR_NOT_SUPPORTED; } } if (mConfigMask & GNSS_CONFIG_FLAGS_ROBUST_LOCATION_BIT) { uint32_t sessionId = *(mIds+index); LocApiResponse* locApiResponse = new LocApiResponse(*mAdapter.getContext(), [this, sessionId] (LocationError err) { mAdapter.reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); mAdapter.reportResponse(LOCATION_ERROR_GENERAL_FAILURE, sessionId); } else { mApi.getRobustLocationConfig(sessionId, locApiResponse); } } if (mConfigMask & GNSS_CONFIG_FLAGS_MIN_GPS_WEEK_BIT) { uint32_t sessionId = *(mIds+index); LocApiResponse* locApiResponse = new LocApiResponse(*mAdapter.getContext(), [this, sessionId] (LocationError err) { mAdapter.reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); mAdapter.reportResponse(LOCATION_ERROR_GENERAL_FAILURE, sessionId); } else { mApi.getMinGpsWeek(sessionId, locApiResponse); } } if (mConfigMask & GNSS_CONFIG_FLAGS_MIN_SV_ELEVATION_BIT) { uint32_t sessionId = *(mIds+index); LocApiResponse* locApiResponse = new LocApiResponse(*mAdapter.getContext(), [this, sessionId] (LocationError err) { mAdapter.reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); mAdapter.reportResponse(LOCATION_ERROR_GENERAL_FAILURE, sessionId); } else { mApi.getParameter(sessionId, GNSS_CONFIG_FLAGS_MIN_SV_ELEVATION_BIT, locApiResponse); } } mAdapter.reportResponse(index, errs, mIds); delete[] errs; } }; if (NULL != ids) { sendMsg(new MsgGnssGetConfig(*this, *mLocApi, configMask, ids, count)); } else { LOC_LOGe("No GNSS config items to Get"); } return ids; } bool GnssAdapter::convertToGnssSvIdConfig( const std::vector& blacklistedSvIds, GnssSvIdConfig& config) { bool retVal = false; config.size = sizeof(GnssSvIdConfig); // Empty vector => Clear any previous blacklisted SVs if (0 == blacklistedSvIds.size()) { config.gloBlacklistSvMask = 0; config.bdsBlacklistSvMask = 0; config.qzssBlacklistSvMask = 0; config.galBlacklistSvMask = 0; config.sbasBlacklistSvMask = 0; config.navicBlacklistSvMask = 0; retVal = true; } else { // Parse the vector and convert SV IDs to mask values for (GnssSvIdSource source : blacklistedSvIds) { uint64_t* svMaskPtr = NULL; GnssSvId initialSvId = 0; uint16_t svIndexOffset = 0; switch(source.constellation) { case GNSS_SV_TYPE_GLONASS: svMaskPtr = &config.gloBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_GLO_INITIAL_SV_ID; break; case GNSS_SV_TYPE_BEIDOU: svMaskPtr = &config.bdsBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_BDS_INITIAL_SV_ID; break; case GNSS_SV_TYPE_QZSS: svMaskPtr = &config.qzssBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_QZSS_INITIAL_SV_ID; break; case GNSS_SV_TYPE_GALILEO: svMaskPtr = &config.galBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_GAL_INITIAL_SV_ID; break; case GNSS_SV_TYPE_SBAS: // SBAS does not support enable/disable whole constellation // so do not set up svTypeMask for SBAS svMaskPtr = &config.sbasBlacklistSvMask; // SBAS currently has two ranges, [120, 158] and [183, 191] if (0 == source.svId) { LOC_LOGd("blacklist all SBAS SV"); } else if (source.svId >= GNSS_SV_CONFIG_SBAS_INITIAL2_SV_ID) { // handle SV id in range [183, 191] initialSvId = GNSS_SV_CONFIG_SBAS_INITIAL2_SV_ID; svIndexOffset = GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH; } else if ((source.svId >= GNSS_SV_CONFIG_SBAS_INITIAL_SV_ID) && (source.svId < (GNSS_SV_CONFIG_SBAS_INITIAL_SV_ID + GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH))){ // handle SV id in range of [120, 158] initialSvId = GNSS_SV_CONFIG_SBAS_INITIAL_SV_ID; } else { LOC_LOGe("invalid SBAS sv id %d", source.svId); svMaskPtr = nullptr; } break; case GNSS_SV_TYPE_NAVIC: svMaskPtr = &config.navicBlacklistSvMask; initialSvId = GNSS_SV_CONFIG_NAVIC_INITIAL_SV_ID; break; default: break; } if (NULL == svMaskPtr) { LOC_LOGe("Invalid constellation %d", source.constellation); } else { // SV ID 0 = All SV IDs if (0 == source.svId) { *svMaskPtr = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } else if (source.svId < initialSvId || source.svId >= initialSvId + 64) { LOC_LOGe("Invalid sv id %d for sv type %d", source.svId, source.constellation); } else { uint32_t shiftCnt = source.svId + svIndexOffset - initialSvId; *svMaskPtr |= (1ULL << shiftCnt); } } } // Return true if any one source is valid if (0 != config.gloBlacklistSvMask || 0 != config.bdsBlacklistSvMask || 0 != config.galBlacklistSvMask || 0 != config.qzssBlacklistSvMask || 0 != config.sbasBlacklistSvMask || 0 != config.navicBlacklistSvMask) { retVal = true; } } LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64 ", sbas 0x%" PRIx64 ", navic 0x%" PRIx64, config.bdsBlacklistSvMask, config.gloBlacklistSvMask, config.qzssBlacklistSvMask, config.galBlacklistSvMask, config.sbasBlacklistSvMask, config.navicBlacklistSvMask); return retVal; } void GnssAdapter::convertFromGnssSvIdConfig( const GnssSvIdConfig& svConfig, std::vector& blacklistedSvIds) { // Convert blacklisted SV mask values to vectors if (svConfig.bdsBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.bdsBlacklistSvMask, blacklistedSvIds, GNSS_SV_CONFIG_BDS_INITIAL_SV_ID, GNSS_SV_TYPE_BEIDOU); } if (svConfig.galBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.galBlacklistSvMask, blacklistedSvIds, GNSS_SV_CONFIG_GAL_INITIAL_SV_ID, GNSS_SV_TYPE_GALILEO); } if (svConfig.gloBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.gloBlacklistSvMask, blacklistedSvIds, GNSS_SV_CONFIG_GLO_INITIAL_SV_ID, GNSS_SV_TYPE_GLONASS); } if (svConfig.qzssBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.qzssBlacklistSvMask, blacklistedSvIds, GNSS_SV_CONFIG_QZSS_INITIAL_SV_ID, GNSS_SV_TYPE_QZSS); } if (svConfig.sbasBlacklistSvMask) { // SBAS - SV 120 to 158, maps to 0 to 38 // SV 183 to 191, maps to 39 to 47 uint64_t sbasBlacklistSvMask = svConfig.sbasBlacklistSvMask; // operate on 120 and 158 first sbasBlacklistSvMask <<= (64 - GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH); sbasBlacklistSvMask >>= (64 - GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH); convertGnssSvIdMaskToList( sbasBlacklistSvMask, blacklistedSvIds, GNSS_SV_CONFIG_SBAS_INITIAL_SV_ID, GNSS_SV_TYPE_SBAS); // operate on the second range sbasBlacklistSvMask = svConfig.sbasBlacklistSvMask; sbasBlacklistSvMask >>= GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH; convertGnssSvIdMaskToList( sbasBlacklistSvMask, blacklistedSvIds, GNSS_SV_CONFIG_SBAS_INITIAL2_SV_ID, GNSS_SV_TYPE_SBAS); } if (svConfig.navicBlacklistSvMask) { convertGnssSvIdMaskToList( svConfig.navicBlacklistSvMask, blacklistedSvIds, GNSS_SV_CONFIG_NAVIC_INITIAL_SV_ID, GNSS_SV_TYPE_NAVIC); } } void GnssAdapter::convertGnssSvIdMaskToList( uint64_t svIdMask, std::vector& svIds, GnssSvId initialSvId, GnssSvType svType) { GnssSvIdSource source = {}; source.size = sizeof(GnssSvIdSource); source.constellation = svType; // SV ID 0 => All SV IDs in mask if (GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK == svIdMask) { LOC_LOGd("blacklist all SVs in constellation %d", source.constellation); source.svId = 0; svIds.push_back(source); return; } // Convert each bit in svIdMask to vector entry uint32_t bitNumber = 0; while (svIdMask > 0) { if (svIdMask & 0x1) { source.svId = bitNumber + initialSvId; // SBAS has two ranges: // SBAS - SV 120 to 158, maps to 0 to 38 // SV 183 to 191, maps to 39 to 47 // #define GNSS_SV_CONFIG_SBAS_INITIAL_SV_ID 120 // #define GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH 39 // #define GNSS_SV_CONFIG_SBAS_INITIAL2_SV_ID 183 if (svType == GNSS_SV_TYPE_SBAS) { if (bitNumber >= GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH) { source.svId = bitNumber - GNSS_SV_CONFIG_SBAS_INITIAL_SV_LENGTH + GNSS_SV_CONFIG_SBAS_INITIAL2_SV_ID; } } svIds.push_back(source); } bitNumber++; svIdMask >>= 1; } } void GnssAdapter::reportGnssSvIdConfigEvent(const GnssSvIdConfig& config) { struct MsgReportGnssSvIdConfig : public LocMsg { GnssAdapter& mAdapter; const GnssSvIdConfig mConfig; inline MsgReportGnssSvIdConfig(GnssAdapter& adapter, const GnssSvIdConfig& config) : LocMsg(), mAdapter(adapter), mConfig(config) {} inline virtual void proc() const { mAdapter.reportGnssSvIdConfig(mConfig); } }; sendMsg(new MsgReportGnssSvIdConfig(*this, config)); } void GnssAdapter::reportGnssSvIdConfig(const GnssSvIdConfig& svIdConfig) { GnssConfig config = {}; config.size = sizeof(GnssConfig); // Invoke control clients config callback if (nullptr != mControlCallbacks.gnssConfigCb && svIdConfig.size == sizeof(GnssSvIdConfig)) { convertFromGnssSvIdConfig(svIdConfig, config.blacklistedSvIds); if (config.blacklistedSvIds.size() > 0) { config.flags |= GNSS_CONFIG_FLAGS_BLACKLISTED_SV_IDS_BIT; } LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", " "qzss 0x%" PRIx64 ", gal 0x%" PRIx64 ", sbas 0x%" PRIx64 ", navic 0x%" PRIx64, svIdConfig.bdsBlacklistSvMask, svIdConfig.gloBlacklistSvMask, svIdConfig.qzssBlacklistSvMask, svIdConfig.galBlacklistSvMask, svIdConfig.sbasBlacklistSvMask, svIdConfig.navicBlacklistSvMask); // use 0 session id to indicate that receiver does not yet care about session id mControlCallbacks.gnssConfigCb(0, config); } else { LOC_LOGe("Failed to report, size %d", (uint32_t)config.size); } } void GnssAdapter::gnssUpdateSvTypeConfigCommand(GnssSvTypeConfig config) { struct MsgGnssUpdateSvTypeConfig : public LocMsg { GnssAdapter* mAdapter; LocApiBase* mApi; GnssSvTypeConfig mConfig; inline MsgGnssUpdateSvTypeConfig( GnssAdapter* adapter, LocApiBase* api, GnssSvTypeConfig& config) : LocMsg(), mAdapter(adapter), mApi(api), mConfig(config) {} inline virtual void proc() const { if (!mAdapter->isEngineCapabilitiesKnown()) { mAdapter->mPendingMsgs.push_back(new MsgGnssUpdateSvTypeConfig(*this)); return; } // Check if feature is supported if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); } else { // Send update request to modem mAdapter->gnssSvTypeConfigUpdate(mConfig); } } }; sendMsg(new MsgGnssUpdateSvTypeConfig(this, mLocApi, config)); } void GnssAdapter::gnssSvTypeConfigUpdate(const GnssSvTypeConfig& config) { // Gather bits removed from enabled mask GnssSvTypesMask enabledRemoved = mGnssSvTypeConfig.enabledSvTypesMask & (mGnssSvTypeConfig.enabledSvTypesMask ^ config.enabledSvTypesMask); // Send reset if any constellation is removed from the enabled list bool sendReset = (enabledRemoved != 0); // Save new config and update gnssSetSvTypeConfig(config); gnssSvTypeConfigUpdate(sendReset); } void GnssAdapter::gnssSvTypeConfigUpdate(bool sendReset) { LOC_LOGd("size %" PRIu32" constellations blacklisted 0x%" PRIx64 ", enabled 0x%" PRIx64 ", sendReset %d", mGnssSvTypeConfig.size, mGnssSvTypeConfig.blacklistedSvTypesMask, mGnssSvTypeConfig.enabledSvTypesMask, sendReset); LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64 ", sbas 0x%" PRIx64 ", Navic 0x%" PRIx64, mGnssSvIdConfig.bdsBlacklistSvMask, mGnssSvIdConfig.gloBlacklistSvMask, mGnssSvIdConfig.qzssBlacklistSvMask, mGnssSvIdConfig.galBlacklistSvMask, mGnssSvIdConfig.sbasBlacklistSvMask, mGnssSvIdConfig.navicBlacklistSvMask); LOC_LOGd("blacklist bds 0x%" PRIx64 ", glo 0x%" PRIx64 ", qzss 0x%" PRIx64 ", gal 0x%" PRIx64 ", sbas 0x%" PRIx64 ", Navic 0x%" PRIx64, mGnssSvIdConfig.bdsBlacklistSvMask, mGnssSvIdConfig.gloBlacklistSvMask, mGnssSvIdConfig.qzssBlacklistSvMask, mGnssSvIdConfig.galBlacklistSvMask, mGnssSvIdConfig.sbasBlacklistSvMask, mGnssSvIdConfig.navicBlacklistSvMask); if (mGnssSvTypeConfig.size == sizeof(mGnssSvTypeConfig)) { if (sendReset) { mLocApi->resetConstellationControl(); } GnssSvIdConfig blacklistConfig = {}; // Revert to previously blacklisted SVs for each enabled constellation blacklistConfig = mGnssSvIdConfig; // Blacklist all SVs for each disabled constellation if (mGnssSvTypeConfig.blacklistedSvTypesMask) { if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_GLO_BIT) { blacklistConfig.gloBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_BDS_BIT) { blacklistConfig.bdsBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_QZSS_BIT) { blacklistConfig.qzssBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_GAL_BIT) { blacklistConfig.galBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } if (mGnssSvTypeConfig.blacklistedSvTypesMask & GNSS_SV_TYPES_MASK_NAVIC_BIT) { blacklistConfig.navicBlacklistSvMask = GNSS_SV_CONFIG_ALL_BITS_ENABLED_MASK; } } // Send blacklist info mLocApi->setBlacklistSv(blacklistConfig); // Send only enabled constellation config if (mGnssSvTypeConfig.enabledSvTypesMask) { GnssSvTypeConfig svTypeConfig = {sizeof(GnssSvTypeConfig), 0, 0}; svTypeConfig.enabledSvTypesMask = mGnssSvTypeConfig.enabledSvTypesMask; mLocApi->setConstellationControl(svTypeConfig); } } } void GnssAdapter::gnssGetSvTypeConfigCommand(GnssSvTypeConfigCallback callback) { struct MsgGnssGetSvTypeConfig : public LocMsg { GnssAdapter* mAdapter; LocApiBase* mApi; GnssSvTypeConfigCallback mCallback; inline MsgGnssGetSvTypeConfig( GnssAdapter* adapter, LocApiBase* api, GnssSvTypeConfigCallback callback) : LocMsg(), mAdapter(adapter), mApi(api), mCallback(callback) {} inline virtual void proc() const { if (!mAdapter->isEngineCapabilitiesKnown()) { mAdapter->mPendingMsgs.push_back(new MsgGnssGetSvTypeConfig(*this)); return; } if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); } else { // Save the callback mAdapter->gnssSetSvTypeConfigCallback(mCallback); // Send GET request to modem mApi->getConstellationControl(); } } }; sendMsg(new MsgGnssGetSvTypeConfig(this, mLocApi, callback)); } void GnssAdapter::gnssResetSvTypeConfigCommand() { struct MsgGnssResetSvTypeConfig : public LocMsg { GnssAdapter* mAdapter; LocApiBase* mApi; inline MsgGnssResetSvTypeConfig( GnssAdapter* adapter, LocApiBase* api) : LocMsg(), mAdapter(adapter), mApi(api) {} inline virtual void proc() const { if (!mAdapter->isEngineCapabilitiesKnown()) { mAdapter->mPendingMsgs.push_back(new MsgGnssResetSvTypeConfig(*this)); return; } if (!ContextBase::isFeatureSupported( LOC_SUPPORTED_FEATURE_CONSTELLATION_ENABLEMENT_V02)) { LOC_LOGe("Feature not supported."); } else { // Reset constellation config mAdapter->gnssSetSvTypeConfig({sizeof(GnssSvTypeConfig), 0, 0}); // Re-enforce SV blacklist config mAdapter->gnssSvIdConfigUpdate(); // Send reset request to modem mApi->resetConstellationControl(); } } }; sendMsg(new MsgGnssResetSvTypeConfig(this, mLocApi)); } void GnssAdapter::reportGnssSvTypeConfigEvent(const GnssSvTypeConfig& config) { struct MsgReportGnssSvTypeConfig : public LocMsg { GnssAdapter& mAdapter; const GnssSvTypeConfig mConfig; inline MsgReportGnssSvTypeConfig(GnssAdapter& adapter, const GnssSvTypeConfig& config) : LocMsg(), mAdapter(adapter), mConfig(config) {} inline virtual void proc() const { mAdapter.reportGnssSvTypeConfig(mConfig); } }; sendMsg(new MsgReportGnssSvTypeConfig(*this, config)); } void GnssAdapter::reportGnssSvTypeConfig(const GnssSvTypeConfig& config) { // Invoke Get SV Type Callback if (NULL != mGnssSvTypeConfigCb && config.size == sizeof(GnssSvTypeConfig)) { LOC_LOGd("constellations blacklisted 0x%" PRIx64 ", enabled 0x%" PRIx64, config.blacklistedSvTypesMask, config.enabledSvTypesMask); mGnssSvTypeConfigCb(config); } else { LOC_LOGe("Failed to report, size %d", (uint32_t)config.size); } } void GnssAdapter::deleteAidingData(const GnssAidingData &data, uint32_t sessionId) { struct timespec bootDeleteAidingDataTime = {}; int64_t bootDeleteTimeMs; if (clock_gettime(CLOCK_BOOTTIME, &bootDeleteAidingDataTime) == 0) { bootDeleteTimeMs = (int64_t)bootDeleteAidingDataTime.tv_sec * 1000; int64_t diffTimeBFirSecDelete = bootDeleteTimeMs - mLastDeleteAidingDataTime; if (diffTimeBFirSecDelete > DELETE_AIDING_DATA_EXPECTED_TIME_MS) { mLocApi->deleteAidingData(data, new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId); })); mLastDeleteAidingDataTime = bootDeleteTimeMs; } } } uint32_t GnssAdapter::gnssDeleteAidingDataCommand(GnssAidingData& data) { uint32_t sessionId = generateSessionId(); LOC_LOGD("%s]: id %u", __func__, sessionId); struct MsgDeleteAidingData : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; GnssAidingData mData; inline MsgDeleteAidingData(GnssAdapter& adapter, uint32_t sessionId, GnssAidingData& data) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mData(data) {} inline virtual void proc() const { if ((mData.posEngineMask & STANDARD_POSITIONING_ENGINE) != 0) { mAdapter.deleteAidingData(mData, mSessionId); SystemStatus* s = mAdapter.getSystemStatus(); if ((nullptr != s) && (mData.deleteAll)) { s->setDefaultGnssEngineStates(); } } bool retVal = mAdapter.mEngHubProxy->gnssDeleteAidingData(mData); // When SPE engine is invoked, responseCb will be invoked // from QMI Loc API call. // When SPE engine is not invoked, we also need to deliver responseCb if ((mData.posEngineMask & STANDARD_POSITIONING_ENGINE) == 0) { LocationError err = LOCATION_ERROR_NOT_SUPPORTED; if (retVal == true) { err = LOCATION_ERROR_SUCCESS; } mAdapter.reportResponse(err, mSessionId); } } }; sendMsg(new MsgDeleteAidingData(*this, sessionId, data)); return sessionId; } void GnssAdapter::gnssUpdateXtraThrottleCommand(const bool enabled) { LOC_LOGD("%s] enabled:%d", __func__, enabled); struct UpdateXtraThrottleMsg : public LocMsg { GnssAdapter& mAdapter; const bool mEnabled; inline UpdateXtraThrottleMsg(GnssAdapter& adapter, const bool enabled) : LocMsg(), mAdapter(adapter), mEnabled(enabled) {} inline virtual void proc() const { mAdapter.mXtraObserver.updateXtraThrottle(mEnabled); } }; sendMsg(new UpdateXtraThrottleMsg(*this, enabled)); } void GnssAdapter::injectLocationCommand(double latitude, double longitude, float accuracy) { LOC_LOGD("%s]: latitude %8.4f longitude %8.4f accuracy %8.4f", __func__, latitude, longitude, accuracy); struct MsgInjectLocation : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; ContextBase& mContext; BlockCPIInfo& mBlockCPI; double mLatitude; double mLongitude; float mAccuracy; bool mOnDemandCpi; inline MsgInjectLocation(GnssAdapter& adapter, LocApiBase& api, ContextBase& context, BlockCPIInfo& blockCPIInfo, double latitude, double longitude, float accuracy, bool onDemandCpi) : LocMsg(), mAdapter(adapter), mApi(api), mContext(context), mBlockCPI(blockCPIInfo), mLatitude(latitude), mLongitude(longitude), mAccuracy(accuracy), mOnDemandCpi(onDemandCpi) {} inline virtual void proc() const { if ((uptimeMillis() <= mBlockCPI.blockedTillTsMs) && (fabs(mLatitude-mBlockCPI.latitude) <= mBlockCPI.latLonDiffThreshold) && (fabs(mLongitude-mBlockCPI.longitude) <= mBlockCPI.latLonDiffThreshold)) { LOC_LOGD("%s]: positon injection blocked: lat: %f, lon: %f, accuracy: %f", __func__, mLatitude, mLongitude, mAccuracy); } else { if ((mAdapter.mOdcpiStateMask & CIVIC_ADDRESS_REQ_ACTIVE) && mAdapter.mAddressRequestCb != nullptr) { Location location = {}; location.flags |= LOCATION_HAS_LAT_LONG_BIT; location.latitude = mLatitude; location.longitude = mLongitude; location.flags |= LOCATION_HAS_ACCURACY_BIT; location.accuracy = mAccuracy; mAdapter.mAddressRequestCb(location); } mApi.injectPosition(mLatitude, mLongitude, mAccuracy, mOnDemandCpi); } } }; sendMsg(new MsgInjectLocation(*this, *mLocApi, *mContext, mBlockCPIInfo, latitude, longitude, accuracy, mOdcpiStateMask & ODCPI_REQ_ACTIVE)); } void GnssAdapter::injectLocationExtCommand(const GnssLocationInfoNotification &locationInfo) { LOC_LOGd("latitude %8.4f longitude %8.4f accuracy %8.4f, tech mask 0x%x", locationInfo.location.latitude, locationInfo.location.longitude, locationInfo.location.accuracy, locationInfo.location.techMask); struct MsgInjectLocationExt : public LocMsg { LocApiBase& mApi; ContextBase& mContext; GnssLocationInfoNotification mLocationInfo; inline MsgInjectLocationExt(LocApiBase& api, ContextBase& context, GnssLocationInfoNotification locationInfo) : LocMsg(), mApi(api), mContext(context), mLocationInfo(locationInfo) {} inline virtual void proc() const { // false to indicate for none-ODCPI mApi.injectPosition(mLocationInfo, false); } }; sendMsg(new MsgInjectLocationExt(*mLocApi, *mContext, locationInfo)); } void GnssAdapter::injectTimeCommand(int64_t time, int64_t timeReference, int32_t uncertainty) { LOC_LOGD("%s]: time %lld timeReference %lld uncertainty %d", __func__, (long long)time, (long long)timeReference, uncertainty); struct MsgInjectTime : public LocMsg { LocApiBase& mApi; ContextBase& mContext; int64_t mTime; int64_t mTimeReference; int32_t mUncertainty; inline MsgInjectTime(LocApiBase& api, ContextBase& context, int64_t time, int64_t timeReference, int32_t uncertainty) : LocMsg(), mApi(api), mContext(context), mTime(time), mTimeReference(timeReference), mUncertainty(uncertainty) {} inline virtual void proc() const { mApi.setTime(mTime, mTimeReference, mUncertainty); } }; sendMsg(new MsgInjectTime(*mLocApi, *mContext, time, timeReference, uncertainty)); } // This command is to called to block the position to be injected to the modem. // This can happen for network position that comes from modem. void GnssAdapter::blockCPICommand(double latitude, double longitude, float accuracy, int blockDurationMsec, double latLonDiffThreshold) { struct MsgBlockCPI : public LocMsg { BlockCPIInfo& mDstCPIInfo; BlockCPIInfo mSrcCPIInfo; inline MsgBlockCPI(BlockCPIInfo& dstCPIInfo, BlockCPIInfo& srcCPIInfo) : mDstCPIInfo(dstCPIInfo), mSrcCPIInfo(srcCPIInfo) {} inline virtual void proc() const { // in the same hal thread, save the cpi to be blocked // the global variable mDstCPIInfo = mSrcCPIInfo; } }; // construct the new block CPI info and queue on the same thread // for processing BlockCPIInfo blockCPIInfo; blockCPIInfo.latitude = latitude; blockCPIInfo.longitude = longitude; blockCPIInfo.accuracy = accuracy; blockCPIInfo.blockedTillTsMs = uptimeMillis() + blockDurationMsec; blockCPIInfo.latLonDiffThreshold = latLonDiffThreshold; LOC_LOGD("%s]: block CPI lat: %f, lon: %f ", __func__, latitude, longitude); // send a message to record down the coarse position // to be blocked from injection in the master copy (mBlockCPIInfo) sendMsg(new MsgBlockCPI(mBlockCPIInfo, blockCPIInfo)); } void GnssAdapter::updateSystemPowerState(PowerStateType systemPowerState) { if (POWER_STATE_UNKNOWN != systemPowerState) { mSystemPowerState = systemPowerState; /*Manage active GNSS sessions based on power event*/ switch (systemPowerState){ case POWER_STATE_SUSPEND: case POWER_STATE_SHUTDOWN: suspendSessions(); LOC_LOGd("Suspending all active sessions -- powerState: %d", systemPowerState); break; case POWER_STATE_RESUME: restartSessions(false); LOC_LOGd("Re-starting all active sessions -- powerState: %d", systemPowerState); break; default: break; } // switch mLocApi->updateSystemPowerState(mSystemPowerState); } } void GnssAdapter::updateSystemPowerStateCommand(PowerStateType systemPowerState) { LOC_LOGd("power event %d", systemPowerState); struct MsgUpdatePowerState : public LocMsg { GnssAdapter& mAdapter; PowerStateType mSystemPowerState; inline MsgUpdatePowerState(GnssAdapter& adapter, PowerStateType systemPowerState) : LocMsg(), mAdapter(adapter), mSystemPowerState(systemPowerState) {} inline virtual void proc() const { mAdapter.updateSystemPowerState(mSystemPowerState); } }; sendMsg(new MsgUpdatePowerState(*this, systemPowerState)); } void GnssAdapter::addClientCommand(LocationAPI* client, const LocationCallbacks& callbacks) { LOC_LOGD("%s]: client %p", __func__, client); struct MsgAddClient : public LocMsg { GnssAdapter& mAdapter; LocationAPI* mClient; const LocationCallbacks mCallbacks; inline MsgAddClient(GnssAdapter& adapter, LocationAPI* client, const LocationCallbacks& callbacks) : LocMsg(), mAdapter(adapter), mClient(client), mCallbacks(callbacks) {} inline virtual void proc() const { // check whether we need to notify client of cached location system info mAdapter.notifyClientOfCachedLocationSystemInfo(mClient, mCallbacks); mAdapter.saveClient(mClient, mCallbacks); } }; sendMsg(new MsgAddClient(*this, client, callbacks)); } void GnssAdapter::stopClientSessions(LocationAPI* client, bool eraseSession) { LOC_LOGD("%s]: client %p", __func__, client); /* Time-based Tracking */ std::vector vTimeBasedTrackingClient; for (auto it : mTimeBasedTrackingSessions) { if (client == it.first.client) { vTimeBasedTrackingClient.emplace_back(it.first.client, it.first.id); } } for (auto key : vTimeBasedTrackingClient) { stopTimeBasedTrackingMultiplex(key.client, key.id); if (eraseSession) eraseTrackingSession(key.client, key.id); } /* Distance-based Tracking */ for (auto it = mDistanceBasedTrackingSessions.begin(); it != mDistanceBasedTrackingSessions.end(); /* no increment here*/) { if (client == it->first.client) { mLocApi->stopDistanceBasedTracking(it->first.id, new LocApiResponse(*getContext(), [this, client, id=it->first.id, eraseSession] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { if (eraseSession) eraseTrackingSession(client, id); } } )); } ++it; // increment only when not erasing an iterator } } void GnssAdapter::updateClientsEventMask() { // need to register for leap second info // for proper nmea generation LOC_API_ADAPTER_EVENT_MASK_T mask = LOC_API_ADAPTER_BIT_LOC_SYSTEM_INFO | LOC_API_ADAPTER_BIT_EVENT_REPORT_INFO | LOC_API_ADAPTER_BIT_FEATURE_STATUS_UPDATE; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (it->second.trackingCb != nullptr || it->second.gnssLocationInfoCb != nullptr || it->second.engineLocationsInfoCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_PARSED_POSITION_REPORT; } if (it->second.gnssSvCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_SATELLITE_REPORT; } if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_ENGINE_DEBUG_DATA)) { mask |= LOC_API_ADAPTER_BIT_ENGINE_DEBUG_DATA_REPORT; } else { if ((it->second.gnssNmeaCb != nullptr) && (mNmeaMask)) { mask |= LOC_API_ADAPTER_BIT_NMEA_1HZ_REPORT; } } if (it->second.gnssMeasurementsCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_GNSS_MEASUREMENT; if (nullptr != mPowerIndicationCb) { /* If power reporting is requested this implies Android 'S' or higher, meaning we need to enable poly message (necessary for satellite PVT report). We do it this way since satellite PVT are reported in the measurements cb, they don't have their own cb, and we want to enable poly message only for Android 'S' or higher */ mask |= LOC_API_ADAPTER_BIT_GNSS_SV_POLYNOMIAL_REPORT; } } if (it->second.gnssNHzMeasurementsCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_GNSS_NHZ_MEASUREMENT; } if (it->second.gnssDataCb != nullptr) { mask |= LOC_API_ADAPTER_BIT_PARSED_POSITION_REPORT; if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_ENGINE_DEBUG_DATA)) { mask |= LOC_API_ADAPTER_BIT_ENGINE_DEBUG_DATA_REPORT; } else { mask |= LOC_API_ADAPTER_BIT_NMEA_1HZ_REPORT; updateNmeaMask(mNmeaMask | LOC_NMEA_MASK_DEBUG_V02); } } } /* ** For Automotive use cases we need to enable MEASUREMENT, POLY and EPHEMERIS ** when QDR is enabled (e.g.: either enabled via conf file or ** engine hub is loaded successfully). ** Note: this need to be called from msg queue thread. */ if((1 == ContextBase::mGps_conf.EXTERNAL_DR_ENABLED) || (true == initEngHubProxy())) { mask |= LOC_API_ADAPTER_BIT_GNSS_MEASUREMENT; mask |= LOC_API_ADAPTER_BIT_GNSS_SV_POLYNOMIAL_REPORT; mask |= LOC_API_ADAPTER_BIT_PARSED_UNPROPAGATED_POSITION_REPORT; mask |= LOC_API_ADAPTER_BIT_GNSS_SV_EPHEMERIS_REPORT; // Nhz measurement bit is set based on callback from loc eng hub // for Nhz engines. mask |= checkMask(LOC_API_ADAPTER_BIT_GNSS_NHZ_MEASUREMENT); LOC_LOGd("Auto usecase, Enable MEAS/POLY/EPHEMERIS - mask 0x%" PRIx64 "", mask); } if (mAgpsManager.isRegistered()) { mask |= LOC_API_ADAPTER_BIT_LOCATION_SERVER_REQUEST; } // Add ODCPI handling if (nullptr != mOdcpiRequestCb) { mask |= LOC_API_ADAPTER_BIT_REQUEST_WIFI; } // need to register for leap second info // for proper nmea generation mask |= LOC_API_ADAPTER_BIT_LOC_SYSTEM_INFO; // always register for NI NOTIFY VERIFY to handle internally in HAL mask |= LOC_API_ADAPTER_BIT_NI_NOTIFY_VERIFY_REQUEST; // Enable the latency report if (mask & LOC_API_ADAPTER_BIT_GNSS_MEASUREMENT) { if (mLogger.isLogEnabled()) { mask |= LOC_API_ADAPTER_BIT_LATENCY_INFORMATION; } } updateEvtMask(mask, LOC_REGISTRATION_MASK_SET); } void GnssAdapter::handleEngineUpEvent() { LOC_LOGD("%s]: ", __func__); struct MsgHandleEngineUpEvent : public LocMsg { GnssAdapter& mAdapter; inline MsgHandleEngineUpEvent(GnssAdapter& adapter) : LocMsg(), mAdapter(adapter) {} virtual void proc() const { mAdapter.setEngineCapabilitiesKnown(true); mAdapter.broadcastCapabilities(mAdapter.getCapabilities()); // must be called only after capabilities are known mAdapter.setConfig(); mAdapter.gnssSvIdConfigUpdate(); mAdapter.gnssSvTypeConfigUpdate(); mAdapter.updateSystemPowerState(mAdapter.getSystemPowerState()); mAdapter.gnssSecondaryBandConfigUpdate(); // restart sessions only in power state resume if ((POWER_STATE_SUSPEND != mAdapter.mSystemPowerState) && POWER_STATE_SHUTDOWN != mAdapter.mSystemPowerState) { mAdapter.restartSessions(true); } for (auto msg: mAdapter.mPendingMsgs) { mAdapter.sendMsg(msg); } mAdapter.mPendingMsgs.clear(); mAdapter.initGnssPowerStatistics(); } }; readConfigCommand(); sendMsg(new MsgHandleEngineUpEvent(*this)); } void GnssAdapter::restartSessions(bool modemSSR) { LOC_LOGi(":enter"); if (modemSSR) { // odcpi session is no longer active after restart mOdcpiStateMask = 0; } // SPE will be restarted now, so set this variable to false. mSPEAlreadyRunningAtHighestInterval = false; if (false == mTimeBasedTrackingSessions.empty()) { // inform engine hub that GNSS session is about to start mEngHubProxy->gnssSetFixMode(mLocPositionMode); mEngHubProxy->gnssStartFix(); checkUpdateDgnssNtrip(false); } checkAndRestartSPESession(); } void GnssAdapter::checkAndRestartSPESession() { LOC_LOGD("%s]: ", __func__); // SPE will be restarted now, so set this variable to false. mSPEAlreadyRunningAtHighestInterval = false; checkAndRestartTimeBasedSession(); for (auto it = mDistanceBasedTrackingSessions.begin(); it != mDistanceBasedTrackingSessions.end(); ++it) { mLocApi->startDistanceBasedTracking(it->first.id, it->second, new LocApiResponse(*getContext(), [] (LocationError /*err*/) {})); } } // suspend all on-going sessions void GnssAdapter::suspendSessions() { LOC_LOGi(":enter"); if (!mTimeBasedTrackingSessions.empty()) { // inform engine hub that GNSS session has stopped mEngHubProxy->gnssStopFix(); mLocApi->stopTimeBasedTracking(nullptr); if (isDgnssNmeaRequired()) { mDgnssState &= ~DGNSS_STATE_NO_NMEA_PENDING; } stopDgnssNtrip(); mPositionElapsedRealTimeCal.reset(); mSPEAlreadyRunningAtHighestInterval = false; } } void GnssAdapter::checkAndRestartTimeBasedSession() { LOC_LOGD("%s]: ", __func__); if (!mTimeBasedTrackingSessions.empty()) { // get the LocationOptions that has the smallest interval, which should be the active one TrackingOptions smallestIntervalOptions; // size is zero until set for the first time TrackingOptions highestPowerTrackingOptions; memset(&smallestIntervalOptions, 0, sizeof(smallestIntervalOptions)); memset(&highestPowerTrackingOptions, 0, sizeof(highestPowerTrackingOptions)); for (auto it = mTimeBasedTrackingSessions.begin(); it != mTimeBasedTrackingSessions.end(); ++it) { // size of zero means we havent set it yet if (0 == smallestIntervalOptions.size || it->second.minInterval < smallestIntervalOptions.minInterval) { smallestIntervalOptions = it->second; } GnssPowerMode powerMode = it->second.powerMode; // Size of zero means we havent set it yet if (0 == highestPowerTrackingOptions.size || (GNSS_POWER_MODE_INVALID != powerMode && powerMode < highestPowerTrackingOptions.powerMode)) { highestPowerTrackingOptions = it->second; } } highestPowerTrackingOptions.setLocationOptions(smallestIntervalOptions); // want to run SPE session at a fixed min interval in some automotive scenarios if(!checkAndSetSPEToRunforNHz(highestPowerTrackingOptions)) { mLocApi->startTimeBasedTracking(highestPowerTrackingOptions, nullptr); } } } void GnssAdapter::notifyClientOfCachedLocationSystemInfo( LocationAPI* client, const LocationCallbacks& callbacks) { if (mLocSystemInfo.systemInfoMask) { // client need to be notified if client has not yet previously registered // for the info but now register for it. bool notifyClientOfSystemInfo = false; // check whether we need to notify client of cached location system info // // client need to be notified if client has not yet previously registered // for the info but now register for it. if (callbacks.locationSystemInfoCb) { notifyClientOfSystemInfo = true; auto it = mClientData.find(client); if (it != mClientData.end()) { LocationCallbacks oldCallbacks = it->second; if (oldCallbacks.locationSystemInfoCb) { notifyClientOfSystemInfo = false; } } } if (notifyClientOfSystemInfo) { callbacks.locationSystemInfoCb(mLocSystemInfo); } } } bool GnssAdapter::isTimeBasedTrackingSession(LocationAPI* client, uint32_t sessionId) { LocationSessionKey key(client, sessionId); return (mTimeBasedTrackingSessions.find(key) != mTimeBasedTrackingSessions.end()); } bool GnssAdapter::isDistanceBasedTrackingSession(LocationAPI* client, uint32_t sessionId) { LocationSessionKey key(client, sessionId); return (mDistanceBasedTrackingSessions.find(key) != mDistanceBasedTrackingSessions.end()); } bool GnssAdapter::hasCallbacksToStartTracking(LocationAPI* client) { bool allowed = false; auto it = mClientData.find(client); if (it != mClientData.end()) { if (it->second.trackingCb || it->second.gnssLocationInfoCb || it->second.engineLocationsInfoCb || it->second.gnssMeasurementsCb || it->second.gnssNHzMeasurementsCb || it->second.gnssDataCb || it->second.gnssSvCb || it->second.gnssNmeaCb) { allowed = true; } else { LOC_LOGi("missing right callback to start tracking") } } else { LOC_LOGi("client %p not found", client) } return allowed; } void GnssAdapter::reportPowerStateIfChanged() { bool newPowerOn = !mTimeBasedTrackingSessions.empty() || !mDistanceBasedTrackingSessions.empty(); if (newPowerOn != mPowerOn) { mPowerOn = newPowerOn; if (mPowerStateCb != nullptr) { mPowerStateCb(mPowerOn); } } } void GnssAdapter::getPowerStateChangesCommand(std::function powerStateCb) { LOC_LOGD("%s]: ", __func__); struct MsgReportLocation : public LocMsg { GnssAdapter& mAdapter; std::function mPowerStateCb; inline MsgReportLocation(GnssAdapter& adapter, std::function powerStateCb) : LocMsg(), mAdapter(adapter), mPowerStateCb(powerStateCb) {} inline virtual void proc() const { mAdapter.savePowerStateCallback(mPowerStateCb); mPowerStateCb(mAdapter.getPowerState()); } }; sendMsg(new MsgReportLocation(*this, powerStateCb)); } void GnssAdapter::saveTrackingSession(LocationAPI* client, uint32_t sessionId, const TrackingOptions& options) { LocationSessionKey key(client, sessionId); if ((options.minDistance > 0) && ContextBase::isMessageSupported(LOC_API_ADAPTER_MESSAGE_DISTANCE_BASE_TRACKING)) { mDistanceBasedTrackingSessions[key] = options; } else { mTimeBasedTrackingSessions[key] = options; } reportPowerStateIfChanged(); // notify SystemStatus the engine tracking status getSystemStatus()->setTracking(isInSession()); mXtraObserver.notifySessionStart(); } void GnssAdapter::eraseTrackingSession(LocationAPI* client, uint32_t sessionId) { LocationSessionKey key(client, sessionId); auto it = mTimeBasedTrackingSessions.find(key); if (it != mTimeBasedTrackingSessions.end()) { mTimeBasedTrackingSessions.erase(it); } else { auto itr = mDistanceBasedTrackingSessions.find(key); if (itr != mDistanceBasedTrackingSessions.end()) { mDistanceBasedTrackingSessions.erase(itr); } } reportPowerStateIfChanged(); getSystemStatus()->setTracking(isInSession()); } bool GnssAdapter::setLocPositionMode(const LocPosMode& mode) { if (!mLocPositionMode.equals(mode)) { mLocPositionMode = mode; return true; } else { return false; } } void GnssAdapter::reportResponse(LocationAPI* client, LocationError err, uint32_t sessionId) { LOC_LOGD("%s]: client %p id %u err %u", __func__, client, sessionId, err); auto it = mClientData.find(client); if (it != mClientData.end() && it->second.responseCb != nullptr) { it->second.responseCb(err, sessionId); } else { LOC_LOGW("%s]: client %p id %u not found in data", __func__, client, sessionId); } } void GnssAdapter::reportResponse(LocationError err, uint32_t sessionId) { LOC_LOGD("%s]: id %u err %u", __func__, sessionId, err); if (mControlCallbacks.size > 0 && mControlCallbacks.responseCb != nullptr) { mControlCallbacks.responseCb(err, sessionId); } else { LOC_LOGW("%s]: control client response callback not found", __func__); } } void GnssAdapter::reportResponse(size_t count, LocationError* errs, uint32_t* ids) { IF_LOC_LOGD { std::string idsString = "["; std::string errsString = "["; if (NULL != ids && NULL != errs) { for (size_t i=0; i < count; ++i) { idsString += std::to_string(ids[i]) + " "; errsString += std::to_string(errs[i]) + " "; } } idsString += "]"; errsString += "]"; LOC_LOGD("%s]: ids %s errs %s", __func__, idsString.c_str(), errsString.c_str()); } if (mControlCallbacks.size > 0 && mControlCallbacks.collectiveResponseCb != nullptr) { mControlCallbacks.collectiveResponseCb(count, errs, ids); } else { LOC_LOGW("%s]: control client callback not found", __func__); } } uint32_t GnssAdapter::startTrackingCommand(LocationAPI* client, TrackingOptions& options) { uint32_t sessionId = generateSessionId(); LOC_LOGD("%s]: client %p id %u minInterval %u minDistance %u mode %u powermode %u tbm %u", __func__, client, sessionId, options.minInterval, options.minDistance, options.mode, options.powerMode, options.tbm); struct MsgStartTracking : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; LocationAPI* mClient; uint32_t mSessionId; mutable TrackingOptions mOptions; inline MsgStartTracking(GnssAdapter& adapter, LocApiBase& api, LocationAPI* client, uint32_t sessionId, TrackingOptions options) : LocMsg(), mAdapter(adapter), mApi(api), mClient(client), mSessionId(sessionId), mOptions(options) {} inline virtual void proc() const { // distance based tracking will need to know engine capabilities before it can start if (!mAdapter.isEngineCapabilitiesKnown() && mOptions.minDistance > 0) { mAdapter.mPendingMsgs.push_back(new MsgStartTracking(*this)); return; } LocationError err = LOCATION_ERROR_SUCCESS; if (!mAdapter.hasCallbacksToStartTracking(mClient)) { err = LOCATION_ERROR_CALLBACK_MISSING; } else if (0 == mOptions.size) { err = LOCATION_ERROR_INVALID_PARAMETER; } else { if (mOptions.minInterval < MIN_TRACKING_INTERVAL) { mOptions.minInterval = MIN_TRACKING_INTERVAL; } if (mOptions.minDistance > 0 && ContextBase::isMessageSupported( LOC_API_ADAPTER_MESSAGE_DISTANCE_BASE_TRACKING)) { mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); mApi.startDistanceBasedTracking(mSessionId, mOptions, new LocApiResponse(*mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mClient = mClient] (LocationError err) { if (LOCATION_ERROR_SUCCESS != err) { mAdapter.eraseTrackingSession(mClient, mSessionId); } mAdapter.reportResponse(mClient, err, mSessionId); })); } else { if (GNSS_POWER_MODE_M4 == mOptions.powerMode && mOptions.tbm > TRACKING_TBM_THRESHOLD_MILLIS) { LOC_LOGd("TBM (%d) > %d Falling back to M2 power mode", mOptions.tbm, TRACKING_TBM_THRESHOLD_MILLIS); mOptions.powerMode = GNSS_POWER_MODE_M2; } // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.startTimeBasedTrackingMultiplex(mClient, mSessionId, mOptions); mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } } } } }; sendMsg(new MsgStartTracking(*this, *mLocApi, client, sessionId, options)); return sessionId; } bool GnssAdapter::startTimeBasedTrackingMultiplex(LocationAPI* client, uint32_t sessionId, const TrackingOptions& options) { bool reportToClientWithNoWait = true; if (mTimeBasedTrackingSessions.empty()) { /*Reset previous NMEA reported time stamp */ mPrevNmeaRptTimeNsec = 0; startTimeBasedTracking(client, sessionId, options); // need to wait for QMI callback reportToClientWithNoWait = false; } else { // find the smallest interval and powerMode TrackingOptions multiplexedOptions = {}; // size is 0 until set for the first time GnssPowerMode multiplexedPowerMode = GNSS_POWER_MODE_INVALID; memset(&multiplexedOptions, 0, sizeof(multiplexedOptions)); for (auto it = mTimeBasedTrackingSessions.begin(); it != mTimeBasedTrackingSessions.end(); ++it) { // if not set or there is a new smallest interval, then set the new interval if (0 == multiplexedOptions.size || it->second.minInterval < multiplexedOptions.minInterval) { multiplexedOptions = it->second; } // if session is not the one we are updating and either powerMode // is not set or there is a new smallest powerMode, then set the new powerMode if (GNSS_POWER_MODE_INVALID == multiplexedPowerMode || it->second.powerMode < multiplexedPowerMode) { multiplexedPowerMode = it->second.powerMode; } //if not set or there is a new higher qualityLevelAccepted, then set the higher one if (it->second.qualityLevelAccepted > multiplexedOptions.qualityLevelAccepted) { multiplexedOptions.qualityLevelAccepted = it->second.qualityLevelAccepted; } } bool updateOptions = false; // if session we are starting has smaller interval then next smallest if (options.minInterval < multiplexedOptions.minInterval) { multiplexedOptions.minInterval = options.minInterval; updateOptions = true; } // if session we are starting has smaller powerMode then next smallest if (options.powerMode < multiplexedPowerMode) { multiplexedOptions.powerMode = options.powerMode; updateOptions = true; } // if session we are starting has higher qualityLevelAccepted then next highest if (options.qualityLevelAccepted > multiplexedOptions.qualityLevelAccepted) { multiplexedOptions.qualityLevelAccepted = options.qualityLevelAccepted; updateOptions = true; } if (updateOptions) { // restart time based tracking with the newly updated options startTimeBasedTracking(client, sessionId, multiplexedOptions); // need to wait for QMI callback reportToClientWithNoWait = false; } // else part: no QMI call is made, need to report back to client right away } return reportToClientWithNoWait; } void GnssAdapter::startTimeBasedTracking(LocationAPI* client, uint32_t sessionId, const TrackingOptions& trackingOptions) { LOC_LOGd("minInterval %u minDistance %u mode %u powermode %u tbm %u", trackingOptions.minInterval, trackingOptions.minDistance, trackingOptions.mode, trackingOptions.powerMode, trackingOptions.tbm); LocPosMode locPosMode = {}; convertOptions(locPosMode, trackingOptions); // save position mode parameters setLocPositionMode(locPosMode); // inform engine hub that GNSS session is about to start mEngHubProxy->gnssSetFixMode(mLocPositionMode); mEngHubProxy->gnssStartFix(); // want to run SPE session at a fixed min interval in some automotive scenarios // use a local copy of TrackingOptions as the TBF may get modified in the // checkAndSetSPEToRunforNHz function TrackingOptions tempOptions(trackingOptions); if (!checkAndSetSPEToRunforNHz(tempOptions)) { mLocApi->startTimeBasedTracking(tempOptions, new LocApiResponse(*getContext(), [this, client, sessionId] (LocationError err) { if (LOCATION_ERROR_SUCCESS != err) { eraseTrackingSession(client, sessionId); } else { checkUpdateDgnssNtrip(false); } reportResponse(client, err, sessionId); } )); } else { reportResponse(client, LOCATION_ERROR_SUCCESS, sessionId); } } void GnssAdapter::updateTracking(LocationAPI* client, uint32_t sessionId, const TrackingOptions& updatedOptions, const TrackingOptions& oldOptions) { LocPosMode locPosMode = {}; convertOptions(locPosMode, updatedOptions); // save position mode parameters setLocPositionMode(locPosMode); // inform engine hub that GNSS session is about to start mEngHubProxy->gnssSetFixMode(mLocPositionMode); mEngHubProxy->gnssStartFix(); // want to run SPE session at a fixed min interval in some automotive scenarios // use a local copy of TrackingOptions as the TBF may get modified in the // checkAndSetSPEToRunforNHz function TrackingOptions tempOptions(updatedOptions); if(!checkAndSetSPEToRunforNHz(tempOptions)) { mLocApi->startTimeBasedTracking(tempOptions, new LocApiResponse(*getContext(), [this, client, sessionId, oldOptions] (LocationError err) { if (LOCATION_ERROR_SUCCESS != err) { // restore the old LocationOptions saveTrackingSession(client, sessionId, oldOptions); } reportResponse(client, err, sessionId); } )); } else { reportResponse(client, LOCATION_ERROR_SUCCESS, sessionId); } } void GnssAdapter::updateTrackingOptionsCommand(LocationAPI* client, uint32_t id, TrackingOptions& options) { LOC_LOGD("%s]: client %p id %u minInterval %u mode %u", __func__, client, id, options.minInterval, options.mode); struct MsgUpdateTracking : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; LocationAPI* mClient; uint32_t mSessionId; mutable TrackingOptions mOptions; inline MsgUpdateTracking(GnssAdapter& adapter, LocApiBase& api, LocationAPI* client, uint32_t sessionId, TrackingOptions options) : LocMsg(), mAdapter(adapter), mApi(api), mClient(client), mSessionId(sessionId), mOptions(options) {} inline virtual void proc() const { // distance based tracking will need to know engine capabilities before it can start if (!mAdapter.isEngineCapabilitiesKnown() && mOptions.minDistance > 0) { mAdapter.mPendingMsgs.push_back(new MsgUpdateTracking(*this)); return; } LocationError err = LOCATION_ERROR_SUCCESS; bool isTimeBased = mAdapter.isTimeBasedTrackingSession(mClient, mSessionId); bool isDistanceBased = mAdapter.isDistanceBasedTrackingSession(mClient, mSessionId); if (!isTimeBased && !isDistanceBased) { err = LOCATION_ERROR_ID_UNKNOWN; } else if (0 == mOptions.size) { err = LOCATION_ERROR_INVALID_PARAMETER; } if (LOCATION_ERROR_SUCCESS != err) { mAdapter.reportResponse(mClient, err, mSessionId); } else { if (GNSS_POWER_MODE_M4 == mOptions.powerMode && mOptions.tbm > TRACKING_TBM_THRESHOLD_MILLIS) { LOC_LOGd("TBM (%d) > %d Falling back to M2 power mode", mOptions.tbm, TRACKING_TBM_THRESHOLD_MILLIS); mOptions.powerMode = GNSS_POWER_MODE_M2; } if (mOptions.minInterval < MIN_TRACKING_INTERVAL) { mOptions.minInterval = MIN_TRACKING_INTERVAL; } // Now update session as required if (isTimeBased && mOptions.minDistance > 0) { // switch from time based to distance based // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.stopTimeBasedTrackingMultiplex(mClient, mSessionId); // erases the time based Session mAdapter.eraseTrackingSession(mClient, mSessionId); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } // saves as distance based Session mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); mApi.startDistanceBasedTracking(mSessionId, mOptions, new LocApiResponse(*mAdapter.getContext(), [] (LocationError /*err*/) {})); } else if (isDistanceBased && mOptions.minDistance == 0) { // switch from distance based to time based mAdapter.eraseTrackingSession(mClient, mSessionId); mApi.stopDistanceBasedTracking(mSessionId, new LocApiResponse( *mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mOptions = mOptions, mClient = mClient] (LocationError /*err*/) { // Api doesn't support multiple clients for time based tracking, // so mutiplex bool reportToClientWithNoWait = mAdapter.startTimeBasedTrackingMultiplex(mClient, mSessionId, mOptions); mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } })); } else if (isTimeBased) { // update time based tracking // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.updateTrackingMultiplex(mClient, mSessionId, mOptions); mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, err, mSessionId); } } else if (isDistanceBased) { // restart distance based tracking mApi.stopDistanceBasedTracking(mSessionId, new LocApiResponse( *mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mOptions = mOptions, mClient = mClient, &mApi = mApi] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { mApi.startDistanceBasedTracking(mSessionId, mOptions, new LocApiResponse(*mAdapter.getContext(), [&mAdapter, mClient, mSessionId, mOptions] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { mAdapter.saveTrackingSession(mClient, mSessionId, mOptions); } mAdapter.reportResponse(mClient, err, mSessionId); })); } })); } } } }; sendMsg(new MsgUpdateTracking(*this, *mLocApi, client, id, options)); } bool GnssAdapter::updateTrackingMultiplex(LocationAPI* client, uint32_t id, const TrackingOptions& trackingOptions) { bool reportToClientWithNoWait = true; LocationSessionKey key(client, id); // get the session we are updating auto it = mTimeBasedTrackingSessions.find(key); // cache the clients existing LocationOptions TrackingOptions oldOptions = it->second; // if session we are updating exists and the minInterval or powerMode has changed if (it != mTimeBasedTrackingSessions.end() && (it->second.minInterval != trackingOptions.minInterval || it->second.powerMode != trackingOptions.powerMode)) { // find the smallest interval and powerMode, other than the session we are updating TrackingOptions multiplexedOptions = {}; // size is 0 until set for the first time GnssPowerMode multiplexedPowerMode = GNSS_POWER_MODE_INVALID; memset(&multiplexedOptions, 0, sizeof(multiplexedOptions)); for (auto it2 = mTimeBasedTrackingSessions.begin(); it2 != mTimeBasedTrackingSessions.end(); ++it2) { // if session is not the one we are updating and either interval // is not set or there is a new smallest interval, then set the new interval if (it2->first != key && (0 == multiplexedOptions.size || it2->second.minInterval < multiplexedOptions.minInterval)) { multiplexedOptions = it2->second; } // if session is not the one we are updating and either powerMode // is not set or there is a new smallest powerMode, then set the new powerMode if (it2->first != key && (GNSS_POWER_MODE_INVALID == multiplexedPowerMode || it2->second.powerMode < multiplexedPowerMode)) { multiplexedPowerMode = it2->second.powerMode; } // else part: no QMI call is made, need to report back to client right away } bool updateOptions = false; // if session we are updating has smaller interval then next smallest if (trackingOptions.minInterval < multiplexedOptions.minInterval) { multiplexedOptions.minInterval = trackingOptions.minInterval; updateOptions = true; } // if session we are updating has smaller powerMode then next smallest if (trackingOptions.powerMode < multiplexedPowerMode) { multiplexedOptions.powerMode = trackingOptions.powerMode; updateOptions = true; } // if only one session exists, then tracking should be updated with it if (1 == mTimeBasedTrackingSessions.size()) { multiplexedOptions = trackingOptions; updateOptions = true; } if (updateOptions) { // restart time based tracking with the newly updated options updateTracking(client, id, multiplexedOptions, oldOptions); // need to wait for QMI callback reportToClientWithNoWait = false; } } return reportToClientWithNoWait; } void GnssAdapter::stopTrackingCommand(LocationAPI* client, uint32_t id) { LOC_LOGD("%s]: client %p id %u", __func__, client, id); struct MsgStopTracking : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; LocationAPI* mClient; uint32_t mSessionId; inline MsgStopTracking(GnssAdapter& adapter, LocApiBase& api, LocationAPI* client, uint32_t sessionId) : LocMsg(), mAdapter(adapter), mApi(api), mClient(client), mSessionId(sessionId) {} inline virtual void proc() const { bool isTimeBased = mAdapter.isTimeBasedTrackingSession(mClient, mSessionId); bool isDistanceBased = mAdapter.isDistanceBasedTrackingSession(mClient, mSessionId); if (isTimeBased || isDistanceBased) { if (isTimeBased) { // Api doesn't support multiple clients for time based tracking, so mutiplex bool reportToClientWithNoWait = mAdapter.stopTimeBasedTrackingMultiplex(mClient, mSessionId); mAdapter.eraseTrackingSession(mClient, mSessionId); if (reportToClientWithNoWait) { mAdapter.reportResponse(mClient, LOCATION_ERROR_SUCCESS, mSessionId); } } else if (isDistanceBased) { mApi.stopDistanceBasedTracking(mSessionId, new LocApiResponse( *mAdapter.getContext(), [&mAdapter = mAdapter, mSessionId = mSessionId, mClient = mClient] (LocationError err) { if (LOCATION_ERROR_SUCCESS == err) { mAdapter.eraseTrackingSession(mClient, mSessionId); } mAdapter.reportResponse(mClient, err, mSessionId); })); } } else { mAdapter.reportResponse(mClient, LOCATION_ERROR_ID_UNKNOWN, mSessionId); } } }; sendMsg(new MsgStopTracking(*this, *mLocApi, client, id)); } bool GnssAdapter::stopTimeBasedTrackingMultiplex(LocationAPI* client, uint32_t id) { bool reportToClientWithNoWait = true; if (1 == mTimeBasedTrackingSessions.size()) { stopTracking(client, id); // need to wait for QMI callback reportToClientWithNoWait = false; } else { LocationSessionKey key(client, id); // get the session we are stopping auto it = mTimeBasedTrackingSessions.find(key); if (it != mTimeBasedTrackingSessions.end()) { // find the smallest interval and powerMode, other than the session we are stopping TrackingOptions multiplexedOptions = {}; // size is 0 until set for the first time GnssPowerMode multiplexedPowerMode = GNSS_POWER_MODE_INVALID; memset(&multiplexedOptions, 0, sizeof(multiplexedOptions)); for (auto it2 = mTimeBasedTrackingSessions.begin(); it2 != mTimeBasedTrackingSessions.end(); ++it2) { // if session is not the one we are stopping and either interval // is not set or there is a new smallest interval, then set the new interval if (it2->first != key && (0 == multiplexedOptions.size || it2->second.minInterval < multiplexedOptions.minInterval)) { multiplexedOptions = it2->second; } // if session is not the one we are stopping and either powerMode // is not set or there is a new smallest powerMode, then set the new powerMode if (it2->first != key && (GNSS_POWER_MODE_INVALID == multiplexedPowerMode || it2->second.powerMode < multiplexedPowerMode)) { multiplexedPowerMode = it2->second.powerMode; } } // if session we are stopping has smaller interval then next smallest or // if session we are stopping has smaller powerMode then next smallest if (it->second.minInterval < multiplexedOptions.minInterval || it->second.powerMode < multiplexedPowerMode) { multiplexedOptions.powerMode = multiplexedPowerMode; // restart time based tracking with the newly updated options startTimeBasedTracking(client, id, multiplexedOptions); // need to wait for QMI callback reportToClientWithNoWait = false; } // else part: no QMI call is made, need to report back to client right away } } return reportToClientWithNoWait; } void GnssAdapter::stopTracking(LocationAPI* client, uint32_t id) { // inform engine hub that GNSS session has stopped mEngHubProxy->gnssStopFix(); // client is nullptr when we want to stop any tracking session, // e.g. when suspend. mLocApi->stopTimeBasedTracking((nullptr == client) ? nullptr : new LocApiResponse(*getContext(), [this, client, id] (LocationError err) { reportResponse(client, err, id); })); if (isDgnssNmeaRequired()) { mDgnssState &= ~DGNSS_STATE_NO_NMEA_PENDING; } stopDgnssNtrip(); mPositionElapsedRealTimeCal.reset(); mSPEAlreadyRunningAtHighestInterval = false; } bool GnssAdapter::hasNiNotifyCallback(LocationAPI* client) { auto it = mClientData.find(client); return (it != mClientData.end() && it->second.gnssNiCb); } void GnssAdapter::gnssNiResponseCommand(LocationAPI* client, uint32_t id, GnssNiResponse response) { LOC_LOGD("%s]: client %p id %u response %u", __func__, client, id, response); struct MsgGnssNiResponse : public LocMsg { GnssAdapter& mAdapter; LocationAPI* mClient; uint32_t mSessionId; GnssNiResponse mResponse; inline MsgGnssNiResponse(GnssAdapter& adapter, LocationAPI* client, uint32_t sessionId, GnssNiResponse response) : LocMsg(), mAdapter(adapter), mClient(client), mSessionId(sessionId), mResponse(response) {} inline virtual void proc() const { NiData& niData = mAdapter.getNiData(); LocationError err = LOCATION_ERROR_SUCCESS; if (!mAdapter.hasNiNotifyCallback(mClient)) { err = LOCATION_ERROR_ID_UNKNOWN; } else { NiSession* pSession = NULL; if (mSessionId == niData.sessionEs.reqID && NULL != niData.sessionEs.rawRequest) { pSession = &niData.sessionEs; // ignore any SUPL NI non-Es session if a SUPL NI ES is accepted if (mResponse == GNSS_NI_RESPONSE_ACCEPT && NULL != niData.session.rawRequest) { pthread_mutex_lock(&niData.session.tLock); niData.session.resp = GNSS_NI_RESPONSE_IGNORE; niData.session.respRecvd = true; pthread_cond_signal(&niData.session.tCond); pthread_mutex_unlock(&niData.session.tLock); } } else if (mSessionId == niData.session.reqID && NULL != niData.session.rawRequest) { pSession = &niData.session; } if (pSession) { LOC_LOGI("%s]: gnssNiResponseCommand: send user mResponse %u for id %u", __func__, mResponse, mSessionId); pthread_mutex_lock(&pSession->tLock); pSession->resp = mResponse; pSession->respRecvd = true; pthread_cond_signal(&pSession->tCond); pthread_mutex_unlock(&pSession->tLock); } else { err = LOCATION_ERROR_ID_UNKNOWN; LOC_LOGE("%s]: gnssNiResponseCommand: id %u not an active session", __func__, mSessionId); } } mAdapter.reportResponse(mClient, err, mSessionId); } }; sendMsg(new MsgGnssNiResponse(*this, client, id, response)); } void GnssAdapter::gnssNiResponseCommand(GnssNiResponse response, void* rawRequest) { LOC_LOGD("%s]: response %u", __func__, response); struct MsgGnssNiResponse : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; const GnssNiResponse mResponse; const void* mPayload; inline MsgGnssNiResponse(GnssAdapter& adapter, LocApiBase& api, const GnssNiResponse response, const void* rawRequest) : LocMsg(), mAdapter(adapter), mApi(api), mResponse(response), mPayload(rawRequest) {} inline virtual ~MsgGnssNiResponse() { } inline virtual void proc() const { mApi.informNiResponse(mResponse, mPayload); } }; sendMsg(new MsgGnssNiResponse(*this, *mLocApi, response, rawRequest)); } uint32_t GnssAdapter::enableCommand(LocationTechnologyType techType) { uint32_t sessionId = generateSessionId(); LOC_LOGD("%s]: id %u techType %u", __func__, sessionId, techType); struct MsgEnableGnss : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; ContextBase& mContext; uint32_t mSessionId; LocationTechnologyType mTechType; inline MsgEnableGnss(GnssAdapter& adapter, LocApiBase& api, ContextBase& context, uint32_t sessionId, LocationTechnologyType techType) : LocMsg(), mAdapter(adapter), mApi(api), mContext(context), mSessionId(sessionId), mTechType(techType) {} inline virtual void proc() const { LocationError err = LOCATION_ERROR_SUCCESS; uint32_t afwControlId = mAdapter.getAfwControlId(); if (mTechType != LOCATION_TECHNOLOGY_TYPE_GNSS) { err = LOCATION_ERROR_INVALID_PARAMETER; } else if (afwControlId > 0) { err = LOCATION_ERROR_ALREADY_STARTED; } else { mContext.modemPowerVote(true); mAdapter.setAfwControlId(mSessionId); GnssConfigGpsLock gpsLock = GNSS_CONFIG_GPS_LOCK_NONE; if (mAdapter.mSupportNfwControl) { ContextBase::mGps_conf.GPS_LOCK &= GNSS_CONFIG_GPS_LOCK_NFW_ALL; gpsLock = ContextBase::mGps_conf.GPS_LOCK; } mApi.sendMsg(new LocApiMsg([&mApi = mApi, gpsLock]() { mApi.setGpsLockSync(gpsLock); })); mAdapter.mXtraObserver.updateLockStatus(gpsLock); } mAdapter.reportResponse(err, mSessionId); } }; if (mContext != NULL) { sendMsg(new MsgEnableGnss(*this, *mLocApi, *mContext, sessionId, techType)); } else { LOC_LOGE("%s]: Context is NULL", __func__); } return sessionId; } void GnssAdapter::disableCommand(uint32_t id) { LOC_LOGD("%s]: id %u", __func__, id); struct MsgDisableGnss : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; ContextBase& mContext; uint32_t mSessionId; inline MsgDisableGnss(GnssAdapter& adapter, LocApiBase& api, ContextBase& context, uint32_t sessionId) : LocMsg(), mAdapter(adapter), mApi(api), mContext(context), mSessionId(sessionId) {} inline virtual void proc() const { LocationError err = LOCATION_ERROR_SUCCESS; uint32_t afwControlId = mAdapter.getAfwControlId(); if (afwControlId != mSessionId) { err = LOCATION_ERROR_ID_UNKNOWN; } else { mContext.modemPowerVote(false); mAdapter.setAfwControlId(0); if (mAdapter.mSupportNfwControl) { /* We need to disable MO (AFW) */ ContextBase::mGps_conf.GPS_LOCK |= GNSS_CONFIG_GPS_LOCK_MO; } GnssConfigGpsLock gpsLock = ContextBase::mGps_conf.GPS_LOCK; mApi.sendMsg(new LocApiMsg([&mApi = mApi, gpsLock]() { mApi.setGpsLockSync(gpsLock); })); mAdapter.mXtraObserver.updateLockStatus(gpsLock); } mAdapter.reportResponse(err, mSessionId); } }; if (mContext != NULL) { sendMsg(new MsgDisableGnss(*this, *mLocApi, *mContext, id)); } } // This function computes the VRP based latitude, longitude and alittude, and // north, east and up velocity and save the result into EHubTechReport. void GnssAdapter::computeVRPBasedLla(const UlpLocation& loc, GpsLocationExtended& locExt, const LeverArmConfigInfo& leverArmConfigInfo) { float leverArm[3]; float rollPitchYaw[3]; double lla[3]; uint16_t locFlags = loc.gpsLocation.flags; uint64_t locExtFlags = locExt.flags; // check for SPE fix if (!((locExtFlags & GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_TYPE) && (locExt.locOutputEngType == LOC_OUTPUT_ENGINE_SPE))){ LOC_LOGv("not SPE fix, return"); return; } // we can only do translation if we have VRP based lever ARM info LeverArmTypeMask leverArmFlags = leverArmConfigInfo.leverArmValidMask; if (!(leverArmFlags & LEVER_ARM_TYPE_GNSS_TO_VRP_BIT)) { LOC_LOGd("no VRP based lever ARM info"); return; } leverArm[0] = leverArmConfigInfo.gnssToVRP.forwardOffsetMeters; leverArm[1] = leverArmConfigInfo.gnssToVRP.sidewaysOffsetMeters; leverArm[2] = leverArmConfigInfo.gnssToVRP.upOffsetMeters; if ((locFlags & LOC_GPS_LOCATION_HAS_LAT_LONG) && (locFlags & LOC_GPS_LOCATION_HAS_ALTITUDE) && (locFlags & LOCATION_HAS_BEARING_BIT)) { lla[0] = loc.gpsLocation.latitude * DEG2RAD; lla[1] = loc.gpsLocation.longitude * DEG2RAD; lla[2] = loc.gpsLocation.altitude; rollPitchYaw[0] = 0.0f; rollPitchYaw[1] = 0.0f; rollPitchYaw[2] = loc.gpsLocation.bearing * DEG2RAD; loc_convert_lla_gnss_to_vrp(lla, rollPitchYaw, leverArm); // assign the converted value into position report and // set up valid mask locExt.llaVRPBased.latitude = lla[0] * RAD2DEG; locExt.llaVRPBased.longitude = lla[1] * RAD2DEG; locExt.llaVRPBased.altitude = lla[2]; locExt.flags |= GPS_LOCATION_EXTENDED_HAS_LLA_VRP_BASED; } else { LOC_LOGd("SPE fix missing latitude/longitude/alitutde"); return; } } void GnssAdapter::reportPositionEvent(const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended, enum loc_sess_status status, LocPosTechMask techMask, GnssDataNotification* pDataNotify, int msInWeek) { // this position is from QMI LOC API, then send report to engine hub // also, send out SPE fix promptly to the clients that have registered // with SPE report LOC_LOGd("reportPositionEvent, eng type: %d, unpro %d, sess status %d msInWeek %d", locationExtended.locOutputEngType, ulpLocation.unpropagatedPosition, status, msInWeek); struct MsgReportSPEPosition : public LocMsg { GnssAdapter& mAdapter; mutable UlpLocation mUlpLocation; mutable GpsLocationExtended mLocationExtended; enum loc_sess_status mStatus; LocPosTechMask mTechMask; mutable GnssDataNotification mDataNotify; int mMsInWeek; inline MsgReportSPEPosition(GnssAdapter& adapter, const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended, enum loc_sess_status status, LocPosTechMask techMask, GnssDataNotification dataNotify, int msInWeek) : LocMsg(), mAdapter(adapter), mUlpLocation(ulpLocation), mLocationExtended(locationExtended), mStatus(status), mTechMask(techMask), mDataNotify(dataNotify), mMsInWeek(msInWeek) {} inline virtual void proc() const { if (mAdapter.mTimeBasedTrackingSessions.empty() && mAdapter.mDistanceBasedTrackingSessions.empty()) { LOC_LOGd("reportPositionEvent, no session on-going, throw away the SPE reports"); return; } if (false == mUlpLocation.unpropagatedPosition && mDataNotify.size != 0) { if (mMsInWeek >= 0) { mAdapter.getDataInformation((GnssDataNotification&)mDataNotify, mMsInWeek); } mAdapter.reportData(mDataNotify); } // save the association of GPS timestamp and qtimer tick cnt in PVT report mAdapter.mPositionElapsedRealTimeCal .saveGpsTimeAndQtimerPairInPvtReport(mLocationExtended); if (true == mAdapter.initEngHubProxy()){ // send the SPE fix to engine hub mAdapter.mEngHubProxy->gnssReportPosition(mUlpLocation, mLocationExtended, mStatus); // report out all SPE fix if it is not propagated, even for failed fix if (false == mUlpLocation.unpropagatedPosition) { EngineLocationInfo engLocationInfo = {}; engLocationInfo.location = mUlpLocation; engLocationInfo.locationExtended = mLocationExtended; engLocationInfo.sessionStatus = mStatus; // obtain the VRP based latitude/longitude/altitude for SPE fix computeVRPBasedLla(engLocationInfo.location, engLocationInfo.locationExtended, mAdapter.mLocConfigInfo.leverArmConfigInfo); mAdapter.reportEnginePositions(1, &engLocationInfo); } return; } // unpropagated report: is only for engine hub to consume and no need // to send out to the clients if (true == mUlpLocation.unpropagatedPosition) { return; } // extract bug report info - this returns true if consumed by systemstatus SystemStatus* s = mAdapter.getSystemStatus(); if ((nullptr != s) && ((LOC_SESS_SUCCESS == mStatus) || (LOC_SESS_INTERMEDIATE == mStatus))){ s->eventPosition(mUlpLocation, mLocationExtended); } mAdapter.reportPosition(mUlpLocation, mLocationExtended, mStatus, mTechMask); } }; if (mContext != NULL) { GnssDataNotification dataNotifyCopy = {}; if (pDataNotify) { dataNotifyCopy = *pDataNotify; dataNotifyCopy.size = sizeof(dataNotifyCopy); } sendMsg(new MsgReportSPEPosition(*this, ulpLocation, locationExtended, status, techMask, dataNotifyCopy, msInWeek)); } } void GnssAdapter::reportEnginePositionsEvent(unsigned int count, EngineLocationInfo* locationArr) { struct MsgReportEnginePositions : public LocMsg { GnssAdapter& mAdapter; unsigned int mCount; EngineLocationInfo mEngLocInfo[LOC_OUTPUT_ENGINE_COUNT]; inline MsgReportEnginePositions(GnssAdapter& adapter, unsigned int count, EngineLocationInfo* locationArr) : LocMsg(), mAdapter(adapter), mCount(count) { if (mCount > LOC_OUTPUT_ENGINE_COUNT) { mCount = LOC_OUTPUT_ENGINE_COUNT; } if (mCount > 0) { memcpy(mEngLocInfo, locationArr, sizeof(EngineLocationInfo)*mCount); } } inline virtual void proc() const { mAdapter.reportEnginePositions(mCount, mEngLocInfo); } }; sendMsg(new MsgReportEnginePositions(*this, count, locationArr)); } bool GnssAdapter::needReportForAllClients(const UlpLocation& ulpLocation, enum loc_sess_status status, LocPosTechMask techMask) { bool reported = false; #ifdef USE_GLIB if (true == initEngHubProxy()) { reported = true; } #endif return reported || LocApiBase::needReport(ulpLocation, status, techMask); } bool GnssAdapter::needReportForClient(LocationAPI* client, enum loc_sess_status status) { if (LOC_SESS_SUCCESS == status || (client == nullptr && LOC_SESS_INTERMEDIATE == status && mDistanceBasedTrackingSessions.size() > 0)) { return true; } if (status != LOC_SESS_FAILURE) { for (auto it = mDistanceBasedTrackingSessions.begin(); it != mDistanceBasedTrackingSessions.end(); ++it) { if (it->first.client == client) { // Always report intermediate fixes to dbt clients return true; } } } for (auto it = mTimeBasedTrackingSessions.begin(); it != mTimeBasedTrackingSessions.end(); ++it) { // report intermediate fix when TBT session allows, like flp; // report any fix (even failed fix) when TBT session allows, like LE. if ((it->first.client == client || client == nullptr) && it->second.qualityLevelAccepted >= status) { return true; } } return false; } bool GnssAdapter::needToGenerateNmeaReport(const uint32_t &gpsTimeOfWeekMs, const struct timespec32_t &apTimeStamp) { bool retVal = false; uint64_t currentTimeNsec = 0; if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !mTimeBasedTrackingSessions.empty()) { currentTimeNsec = (apTimeStamp.tv_sec * BILLION_NSEC + apTimeStamp.tv_nsec); if ((GNSS_NMEA_REPORT_RATE_NHZ == ContextBase::sNmeaReportRate) || (GPS_DEFAULT_FIX_INTERVAL_MS <= mLocPositionMode.min_interval)) { retVal = true; } else { /*tbf is less than 1000 milli-seconds and NMEA reporting rate is set to 1Hz */ /* Always send NMEA string for first position report * Send when gpsTimeOfWeekMs is closely aligned with integer boundary */ if ((0 == mPrevNmeaRptTimeNsec) || ((0 != gpsTimeOfWeekMs) && (NMEA_MIN_THRESHOLD_MSEC >= (gpsTimeOfWeekMs % 1000)))) { retVal = true; } else { uint64_t timeDiffMsec = ((currentTimeNsec - mPrevNmeaRptTimeNsec) / 1000000); // Send when the delta time becomes >= 1 sec if (NMEA_MAX_THRESHOLD_MSEC <= timeDiffMsec) { retVal = true; } } } if (true == retVal) { mPrevNmeaRptTimeNsec = currentTimeNsec; } } return retVal; } void GnssAdapter::logLatencyInfo() { if (0 == mGnssLatencyInfoQueue.size()) { LOC_LOGv("mGnssLatencyInfoQueue.size is 0"); return; } mGnssLatencyInfoQueue.front().hlosQtimer5 = getQTimerTickCount(); if (0 == mGnssLatencyInfoQueue.front().hlosQtimer3) { /* if SPE from engine hub is not reported then hlosQtimer3 = 0, set it equal to hlosQtimer2 to make sense */ LOC_LOGv("hlosQtimer3 is 0, setting it to hlosQtimer2"); mGnssLatencyInfoQueue.front().hlosQtimer3 = mGnssLatencyInfoQueue.front().hlosQtimer2; } if (0 == mGnssLatencyInfoQueue.front().hlosQtimer4) { /* if PPE from engine hub is not reported then hlosQtimer4 = 0, set it equal to hlosQtimer3 to make sense */ LOC_LOGv("hlosQtimer4 is 0, setting it to hlosQtimer3"); mGnssLatencyInfoQueue.front().hlosQtimer4 = mGnssLatencyInfoQueue.front().hlosQtimer3; } if (mGnssLatencyInfoQueue.front().hlosQtimer4 < mGnssLatencyInfoQueue.front().hlosQtimer3) { /* hlosQtimer3 is timestamped when SPE from engine hub is reported, and hlosQtimer4 is timestamped when PPE from engine hub is reported. The order is random though, hence making sure the timestamps are sorted */ LOC_LOGv("hlosQtimer4 is < hlosQtimer3, swapping them"); std::swap(mGnssLatencyInfoQueue.front().hlosQtimer3, mGnssLatencyInfoQueue.front().hlosQtimer4); } LOC_LOGv("meQtimer1=%" PRIi64 " " "meQtimer2=%" PRIi64 " " "meQtimer3=%" PRIi64 " " "peQtimer1=%" PRIi64 " " "peQtimer2=%" PRIi64 " " "peQtimer3=%" PRIi64 " " "smQtimer1=%" PRIi64 " " "smQtimer2=%" PRIi64 " " "smQtimer3=%" PRIi64 " " "locMwQtimer=%" PRIi64 " " "hlosQtimer1=%" PRIi64 " " "hlosQtimer2=%" PRIi64 " " "hlosQtimer3=%" PRIi64 " " "hlosQtimer4=%" PRIi64 " " "hlosQtimer5=%" PRIi64 " ", mGnssLatencyInfoQueue.front().meQtimer1, mGnssLatencyInfoQueue.front().meQtimer2, mGnssLatencyInfoQueue.front().meQtimer3, mGnssLatencyInfoQueue.front().peQtimer1, mGnssLatencyInfoQueue.front().peQtimer2, mGnssLatencyInfoQueue.front().peQtimer3, mGnssLatencyInfoQueue.front().smQtimer1, mGnssLatencyInfoQueue.front().smQtimer2, mGnssLatencyInfoQueue.front().smQtimer3, mGnssLatencyInfoQueue.front().locMwQtimer, mGnssLatencyInfoQueue.front().hlosQtimer1, mGnssLatencyInfoQueue.front().hlosQtimer2, mGnssLatencyInfoQueue.front().hlosQtimer3, mGnssLatencyInfoQueue.front().hlosQtimer4, mGnssLatencyInfoQueue.front().hlosQtimer5); mLogger.log(mGnssLatencyInfoQueue.front()); mGnssLatencyInfoQueue.pop(); LOC_LOGv("mGnssLatencyInfoQueue.size after pop=%zu", mGnssLatencyInfoQueue.size()); } // only fused report (when engine hub is enabled) or // SPE report (when engine hub is disabled) will reach this function void GnssAdapter::reportPosition(const UlpLocation& ulpLocation, const GpsLocationExtended& locationExtended, enum loc_sess_status status, LocPosTechMask techMask) { bool reportToAllClients = needReportForAllClients(ulpLocation, status, techMask); bool reportToAnyClient = needReportForAnyClient(status); if (reportToAllClients || reportToAnyClient) { GnssLocationInfoNotification locationInfo = {}; convertLocationInfo(locationInfo, locationExtended, status); convertLocation(locationInfo.location, ulpLocation, locationExtended); fillElapsedRealTime(locationExtended, locationInfo.location); logLatencyInfo(); for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (reportToAllClients || needReportForClient(it->first, status)) { if (nullptr != it->second.gnssLocationInfoCb) { it->second.gnssLocationInfoCb(locationInfo); } else if ((nullptr != it->second.engineLocationsInfoCb) && (false == initEngHubProxy())) { // if engine hub is disabled, this is SPE fix from modem // we need to mark one copy marked as fused and one copy marked as PPE // and dispatch it to the engineLocationsInfoCb GnssLocationInfoNotification engLocationsInfo[2]; engLocationsInfo[0] = locationInfo; engLocationsInfo[0].locOutputEngType = LOC_OUTPUT_ENGINE_FUSED; engLocationsInfo[0].flags |= GNSS_LOCATION_INFO_OUTPUT_ENG_TYPE_BIT; engLocationsInfo[1] = locationInfo; it->second.engineLocationsInfoCb(2, engLocationsInfo); } else if (nullptr != it->second.trackingCb) { it->second.trackingCb(locationInfo.location); } } } mGnssSvIdUsedInPosAvail = false; mGnssMbSvIdUsedInPosAvail = false; if (reportToAllClients) { if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_GNSS_SV_USED_DATA) { mGnssSvIdUsedInPosAvail = true; mGnssSvIdUsedInPosition = locationExtended.gnss_sv_used_ids; if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_MULTIBAND) { mGnssMbSvIdUsedInPosAvail = true; mGnssMbSvIdUsedInPosition = locationExtended.gnss_mb_sv_used_ids; } } // if PACE is enabled if ((true == mLocConfigInfo.paceConfigInfo.isValid) && (true == mLocConfigInfo.paceConfigInfo.enable)) { // If fix has sensor contribution, and it is fused fix with DRE engine // contributing to the fix, inject to modem if ((LOC_POS_TECH_MASK_SENSORS & techMask) && (locationInfo.flags & GNSS_LOCATION_INFO_OUTPUT_ENG_TYPE_BIT) && (locationInfo.locOutputEngType == LOC_OUTPUT_ENGINE_FUSED) && (locationInfo.flags & GNSS_LOCATION_INFO_OUTPUT_ENG_MASK_BIT) && (locationInfo.locOutputEngMask & DEAD_RECKONING_ENGINE)) { mLocApi->injectPosition(locationInfo, false); } } } } if (needToGenerateNmeaReport(locationExtended.gpsTime.gpsTimeOfWeekMs, locationExtended.timeStamp.apTimeStamp)) { /*Only BlankNMEA sentence needs to be processed and sent, if both lat, long is 0 & horReliability is not set. */ bool blank_fix = ((0 == ulpLocation.gpsLocation.latitude) && (0 == ulpLocation.gpsLocation.longitude) && (LOC_RELIABILITY_NOT_SET == locationExtended.horizontal_reliability)); uint8_t generate_nmea = (reportToAllClients && LOC_SESS_SUCCESS == status && !blank_fix); bool custom_nmea_gga = (1 == ContextBase::mGps_conf.CUSTOM_NMEA_GGA_FIX_QUALITY_ENABLED); bool isTagBlockGroupingEnabled = (1 == ContextBase::mGps_conf.NMEA_TAG_BLOCK_GROUPING_ENABLED); std::vector nmeaArraystr; int indexOfGGA = -1; loc_nmea_generate_pos(ulpLocation, locationExtended, mLocSystemInfo, generate_nmea, custom_nmea_gga, nmeaArraystr, indexOfGGA, isTagBlockGroupingEnabled); stringstream ss; for (auto itor = nmeaArraystr.begin(); itor != nmeaArraystr.end(); ++itor) { ss << *itor; } string s = ss.str(); reportNmea(s.c_str(), s.length()); /* DgnssNtrip */ if (-1 != indexOfGGA && isDgnssNmeaRequired()) { mDgnssState |= DGNSS_STATE_NO_NMEA_PENDING; mStartDgnssNtripParams.nmea = std::move(nmeaArraystr[indexOfGGA]); bool isLocationValid = (0 != ulpLocation.gpsLocation.latitude) || (0 != ulpLocation.gpsLocation.longitude); checkUpdateDgnssNtrip(isLocationValid); } } } void GnssAdapter::reportEngDebugDataInfo(const GnssEngineDebugDataInfo& gnssEngineDebugDataInfo) { if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_ENGINE_DEBUG_DATA)) { LOC_LOGd("Recived Engine debug data info"); SystemStatus* s = getSystemStatus(); if (nullptr != s) { s->setEngineDebugDataInfo(gnssEngineDebugDataInfo); } } } void GnssAdapter::reportEngDebugDataInfoEvent(GnssEngineDebugDataInfo& gnssEngineDebugDataInfo) { struct MsgReportEngDebugDataInfo : public LocMsg { GnssAdapter& mAdapter; const GnssEngineDebugDataInfo mGnssEngineDebugDataInfo; inline MsgReportEngDebugDataInfo(GnssAdapter& adapter, GnssEngineDebugDataInfo& gnssEngineDebugDataInfo) : mAdapter(adapter), mGnssEngineDebugDataInfo(gnssEngineDebugDataInfo) {} inline virtual void proc() const { mAdapter.reportEngDebugDataInfo(mGnssEngineDebugDataInfo); } }; sendMsg(new MsgReportEngDebugDataInfo(*this, gnssEngineDebugDataInfo)); } void GnssAdapter::reportLatencyInfoEvent(const GnssLatencyInfo& gnssLatencyInfo) { struct MsgReportLatencyInfo : public LocMsg { GnssAdapter& mAdapter; GnssLatencyInfo mGnssLatencyInfo; inline MsgReportLatencyInfo(GnssAdapter& adapter, const GnssLatencyInfo& gnssLatencyInfo) : mAdapter(adapter), mGnssLatencyInfo(gnssLatencyInfo) {} inline virtual void proc() const { mAdapter.mGnssLatencyInfoQueue.push(mGnssLatencyInfo); LOC_LOGv("mGnssLatencyInfoQueue.size after push=%zu", mAdapter.mGnssLatencyInfoQueue.size()); } }; sendMsg(new MsgReportLatencyInfo(*this, gnssLatencyInfo)); } void GnssAdapter::reportEnginePositions(unsigned int count, const EngineLocationInfo* locationArr) { bool needReportEnginePositions = false; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.engineLocationsInfoCb) { needReportEnginePositions = true; break; } } GnssLocationInfoNotification locationInfo[LOC_OUTPUT_ENGINE_COUNT] = {}; for (unsigned int i = 0; i < count; i++) { const EngineLocationInfo* engLocation = (locationArr+i); // if it is fused/default location, call reportPosition maintain legacy behavior if ((GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_TYPE & engLocation->locationExtended.flags) && (LOC_OUTPUT_ENGINE_FUSED == engLocation->locationExtended.locOutputEngType)) { reportPosition(engLocation->location, engLocation->locationExtended, engLocation->sessionStatus, engLocation->location.tech_mask); } if (needReportEnginePositions) { convertLocationInfo(locationInfo[i], engLocation->locationExtended, engLocation->sessionStatus); convertLocation(locationInfo[i].location, engLocation->location, engLocation->locationExtended); fillElapsedRealTime(engLocation->locationExtended, locationInfo[i].location); } } const EngineLocationInfo* engLocation = locationArr; LOC_LOGv("engLocation->locationExtended.locOutputEngType=%d", engLocation->locationExtended.locOutputEngType); if (0 != mGnssLatencyInfoQueue.size()) { if ((GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_TYPE & engLocation->locationExtended.flags) && (LOC_OUTPUT_ENGINE_SPE == engLocation->locationExtended.locOutputEngType)) { mGnssLatencyInfoQueue.front().hlosQtimer3 = getQTimerTickCount(); LOC_LOGv("SPE hlosQtimer3=%" PRIi64 " ", mGnssLatencyInfoQueue.front().hlosQtimer3); } if ((GPS_LOCATION_EXTENDED_HAS_OUTPUT_ENG_TYPE & engLocation->locationExtended.flags) && (LOC_OUTPUT_ENGINE_PPE == engLocation->locationExtended.locOutputEngType)) { mGnssLatencyInfoQueue.front().hlosQtimer4 = getQTimerTickCount(); LOC_LOGv("PPE hlosQtimer4=%" PRIi64 " ", mGnssLatencyInfoQueue.front().hlosQtimer4); } } if (needReportEnginePositions) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.engineLocationsInfoCb && needReportForClient(it->first, engLocation->sessionStatus)) { it->second.engineLocationsInfoCb(count, locationInfo); } } } } void GnssAdapter::reportSvEvent(const GnssSvNotification& svNotify) { struct MsgReportSv : public LocMsg { GnssAdapter& mAdapter; const GnssSvNotification mSvNotify; inline MsgReportSv(GnssAdapter& adapter, const GnssSvNotification& svNotify) : LocMsg(), mAdapter(adapter), mSvNotify(svNotify) {} inline virtual void proc() const { mAdapter.reportSv((GnssSvNotification&)mSvNotify); } }; sendMsg(new MsgReportSv(*this, svNotify)); } void GnssAdapter::reportSv(GnssSvNotification& svNotify) { int numSv = svNotify.count; uint16_t gnssSvId = 0; uint64_t svUsedIdMask = 0; for (int i=0; i < numSv; i++) { svUsedIdMask = 0; gnssSvId = svNotify.gnssSvs[i].svId; GnssSignalTypeMask signalTypeMask = svNotify.gnssSvs[i].gnssSignalTypeMask; switch (svNotify.gnssSvs[i].type) { case GNSS_SV_TYPE_GPS: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_GPS_L1CA: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l1ca_sv_used_ids_mask; break; case GNSS_SIGNAL_GPS_L1C: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l1c_sv_used_ids_mask; break; case GNSS_SIGNAL_GPS_L2: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l2_sv_used_ids_mask; break; case GNSS_SIGNAL_GPS_L5: svUsedIdMask = mGnssMbSvIdUsedInPosition.gps_l5_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.gps_sv_used_ids_mask; } } break; case GNSS_SV_TYPE_GLONASS: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_GLONASS_G1: svUsedIdMask = mGnssMbSvIdUsedInPosition.glo_g1_sv_used_ids_mask; break; case GNSS_SIGNAL_GLONASS_G2: svUsedIdMask = mGnssMbSvIdUsedInPosition.glo_g2_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.glo_sv_used_ids_mask; } } // map the svid to respective constellation range 1..xx // then repective constellation svUsedIdMask map correctly to svid gnssSvId = gnssSvId - GLO_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_BEIDOU: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_BEIDOU_B1I: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b1i_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B1C: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b1c_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B2I: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b2i_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B2AI: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b2ai_sv_used_ids_mask; break; case GNSS_SIGNAL_BEIDOU_B2AQ: svUsedIdMask = mGnssMbSvIdUsedInPosition.bds_b2aq_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.bds_sv_used_ids_mask; } } gnssSvId = gnssSvId - BDS_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_GALILEO: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_GALILEO_E1: svUsedIdMask = mGnssMbSvIdUsedInPosition.gal_e1_sv_used_ids_mask; break; case GNSS_SIGNAL_GALILEO_E5A: svUsedIdMask = mGnssMbSvIdUsedInPosition.gal_e5a_sv_used_ids_mask; break; case GNSS_SIGNAL_GALILEO_E5B: svUsedIdMask = mGnssMbSvIdUsedInPosition.gal_e5b_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.gal_sv_used_ids_mask; } } gnssSvId = gnssSvId - GAL_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_QZSS: if (mGnssSvIdUsedInPosAvail) { if (mGnssMbSvIdUsedInPosAvail) { switch (signalTypeMask) { case GNSS_SIGNAL_QZSS_L1CA: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l1ca_sv_used_ids_mask; break; case GNSS_SIGNAL_QZSS_L1S: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l1s_sv_used_ids_mask; break; case GNSS_SIGNAL_QZSS_L2: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l2_sv_used_ids_mask; break; case GNSS_SIGNAL_QZSS_L5: svUsedIdMask = mGnssMbSvIdUsedInPosition.qzss_l5_sv_used_ids_mask; break; } } else { svUsedIdMask = mGnssSvIdUsedInPosition.qzss_sv_used_ids_mask; } } gnssSvId = gnssSvId - QZSS_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_NAVIC: if (mGnssSvIdUsedInPosAvail) { svUsedIdMask = mGnssSvIdUsedInPosition.navic_sv_used_ids_mask; } gnssSvId = gnssSvId - NAVIC_SV_PRN_MIN + 1; break; default: svUsedIdMask = 0; break; } // If SV ID was used in previous position fix, then set USED_IN_FIX // flag, else clear the USED_IN_FIX flag. if (svFitsMask(svUsedIdMask, gnssSvId) && (svUsedIdMask & (1ULL << (gnssSvId - 1)))) { svNotify.gnssSvs[i].gnssSvOptionsMask |= GNSS_SV_OPTIONS_USED_IN_FIX_BIT; } } for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssSvCb) { it->second.gnssSvCb(svNotify); } } if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !mTimeBasedTrackingSessions.empty()) { std::vector nmeaArraystr; loc_nmea_generate_sv(svNotify, nmeaArraystr); stringstream ss; for (auto itor = nmeaArraystr.begin(); itor != nmeaArraystr.end(); ++itor) { ss << *itor; } string s = ss.str(); reportNmea(s.c_str(), s.length()); } mGnssSvIdUsedInPosAvail = false; mGnssMbSvIdUsedInPosAvail = false; // report to engine hub to deliver to registered plugin mEngHubProxy->gnssReportSv(svNotify); } void GnssAdapter::reportNmeaEvent(const char* nmea, size_t length) { if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !loc_nmea_is_debug(nmea, length)) { return; } struct MsgReportNmea : public LocMsg { GnssAdapter& mAdapter; const char* mNmea; size_t mLength; inline MsgReportNmea(GnssAdapter& adapter, const char* nmea, size_t length) : LocMsg(), mAdapter(adapter), mNmea(new char[length+1]), mLength(length) { if (mNmea == nullptr) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); return; } strlcpy((char*)mNmea, nmea, length+1); } inline virtual ~MsgReportNmea() { delete[] mNmea; } inline virtual void proc() const { // extract bug report info - this returns true if consumed by systemstatus bool ret = false; SystemStatus* s = mAdapter.getSystemStatus(); if (nullptr != s) { ret = s->setNmeaString(mNmea, mLength); } if (false == ret) { // forward NMEA message to upper layer mAdapter.reportNmea(mNmea, mLength); // DgnssNtrip mAdapter.reportGGAToNtrip(mNmea); } } }; sendMsg(new MsgReportNmea(*this, nmea, length)); } void GnssAdapter::reportNmea(const char* nmea, size_t length) { GnssNmeaNotification nmeaNotification = {}; nmeaNotification.size = sizeof(GnssNmeaNotification); struct timeval tv; gettimeofday(&tv, (struct timezone *) NULL); int64_t now = tv.tv_sec * 1000LL + tv.tv_usec / 1000; nmeaNotification.timestamp = now; nmeaNotification.nmea = nmea; nmeaNotification.length = length; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssNmeaCb) { it->second.gnssNmeaCb(nmeaNotification); } } if (isNMEAPrintEnabled()) { LOC_LOGd("[%" PRId64 ", %zu] %s", now, length, nmea); } } void GnssAdapter::reportDataEvent(const GnssDataNotification& dataNotify, int msInWeek) { struct MsgReportData : public LocMsg { GnssAdapter& mAdapter; GnssDataNotification mDataNotify; int mMsInWeek; inline MsgReportData(GnssAdapter& adapter, const GnssDataNotification& dataNotify, int msInWeek) : LocMsg(), mAdapter(adapter), mDataNotify(dataNotify), mMsInWeek(msInWeek) { } inline virtual void proc() const { if (mMsInWeek >= 0) { mAdapter.getDataInformation((GnssDataNotification&)mDataNotify, mMsInWeek); } mAdapter.reportData((GnssDataNotification&)mDataNotify); } }; sendMsg(new MsgReportData(*this, dataNotify, msInWeek)); } void GnssAdapter::reportData(GnssDataNotification& dataNotify) { for (int sig = 0; sig < GNSS_LOC_MAX_NUMBER_OF_SIGNAL_TYPES; sig++) { if (GNSS_LOC_DATA_JAMMER_IND_BIT == (dataNotify.gnssDataMask[sig] & GNSS_LOC_DATA_JAMMER_IND_BIT)) { LOC_LOGv("jammerInd[%d]=%f", sig, dataNotify.jammerInd[sig]); } if (GNSS_LOC_DATA_AGC_BIT == (dataNotify.gnssDataMask[sig] & GNSS_LOC_DATA_AGC_BIT)) { LOC_LOGv("agc[%d]=%f", sig, dataNotify.agc[sig]); } } for (auto it = mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssDataCb) { it->second.gnssDataCb(dataNotify); } } } bool GnssAdapter::requestNiNotifyEvent(const GnssNiNotification ¬ify, const void* data, const LocInEmergency emergencyState) { LOC_LOGI("%s]: notif_type: %d, timeout: %d, default_resp: %d" "requestor_id: %s (encoding: %d) text: %s text (encoding: %d) extras: %s " "emergencyState = %d", __func__, notify.type, notify.timeout, notify.timeoutResponse, notify.requestor, notify.requestorEncoding, notify.message, notify.messageEncoding, notify.extras, emergencyState); struct MsgReportNiNotify : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; const GnssNiNotification mNotify; const void* mData; const LocInEmergency mEmergencyState; inline MsgReportNiNotify(GnssAdapter& adapter, LocApiBase& api, const GnssNiNotification& notify, const void* data, const LocInEmergency emergencyState) : LocMsg(), mAdapter(adapter), mApi(api), mNotify(notify), mData(data), mEmergencyState(emergencyState) {} inline virtual void proc() const { bool bIsInEmergency = false; bool bInformNiAccept = false; bIsInEmergency = ((LOC_IN_EMERGENCY_UNKNOWN == mEmergencyState) && // older modems (mAdapter.getE911State(mNotify.type))) || (LOC_IN_EMERGENCY_SET == mEmergencyState); // newer modems if ((mAdapter.mSupportNfwControl || 0 == mAdapter.getAfwControlId()) && (GNSS_NI_TYPE_SUPL == mNotify.type || GNSS_NI_TYPE_EMERGENCY_SUPL == mNotify.type) && !bIsInEmergency && !(GNSS_NI_OPTIONS_PRIVACY_OVERRIDE_BIT & mNotify.options) && (GNSS_CONFIG_GPS_LOCK_NFW_SUPL & ContextBase::mGps_conf.GPS_LOCK) && 1 == ContextBase::mGps_conf.NI_SUPL_DENY_ON_NFW_LOCKED) { /* If all these conditions are TRUE, then deny the NI Request: -'Q' Lock behavior OR 'P' Lock behavior and GNSS is Locked -NI SUPL Request type or NI SUPL Emergency Request type -NOT in an Emergency Call Session -NOT Privacy Override option -NFW is locked and config item NI_SUPL_DENY_ON_NFW_LOCKED = 1 */ mApi.informNiResponse(GNSS_NI_RESPONSE_DENY, mData); } else if ((GNSS_NI_TYPE_SUPL == mNotify.type || GNSS_NI_TYPE_EMERGENCY_SUPL == mNotify.type) && (GNSS_NI_OPTIONS_PRIVACY_OVERRIDE_BIT & mNotify.options)) { mApi.informNiResponse(GNSS_NI_RESPONSE_ACCEPT, mData); } else if (GNSS_NI_TYPE_EMERGENCY_SUPL == mNotify.type) { bInformNiAccept = bIsInEmergency || (GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_NO == ContextBase::mGps_conf.SUPL_ES); if (bInformNiAccept) { mAdapter.requestNiNotify(mNotify, mData, bInformNiAccept); } else { mApi.informNiResponse(GNSS_NI_RESPONSE_DENY, mData); } } else if (GNSS_NI_TYPE_CONTROL_PLANE == mNotify.type) { if (bIsInEmergency && (1 == ContextBase::mGps_conf.CP_MTLR_ES)) { mApi.informNiResponse(GNSS_NI_RESPONSE_ACCEPT, mData); } else { mAdapter.requestNiNotify(mNotify, mData, false); } } else { mAdapter.requestNiNotify(mNotify, mData, false); } } }; sendMsg(new MsgReportNiNotify(*this, *mLocApi, notify, data, emergencyState)); return true; } void GnssAdapter::reportLocationSystemInfoEvent(const LocationSystemInfo & locationSystemInfo) { // send system info to engine hub mEngHubProxy->gnssReportSystemInfo(locationSystemInfo); struct MsgLocationSystemInfo : public LocMsg { GnssAdapter& mAdapter; LocationSystemInfo mSystemInfo; inline MsgLocationSystemInfo(GnssAdapter& adapter, const LocationSystemInfo& systemInfo) : LocMsg(), mAdapter(adapter), mSystemInfo(systemInfo) {} inline virtual void proc() const { mAdapter.reportLocationSystemInfo(mSystemInfo); } }; sendMsg(new MsgLocationSystemInfo(*this, locationSystemInfo)); } void GnssAdapter::reportLocationSystemInfo(const LocationSystemInfo & locationSystemInfo) { // save the info into the master copy piece by piece, as other system info // may come at different time if (locationSystemInfo.systemInfoMask & LOCATION_SYS_INFO_LEAP_SECOND) { mLocSystemInfo.systemInfoMask |= LOCATION_SYS_INFO_LEAP_SECOND; const LeapSecondSystemInfo &srcLeapSecondSysInfo = locationSystemInfo.leapSecondSysInfo; LeapSecondSystemInfo &dstLeapSecondSysInfo = mLocSystemInfo.leapSecondSysInfo; if (srcLeapSecondSysInfo.leapSecondInfoMask & LEAP_SECOND_SYS_INFO_CURRENT_LEAP_SECONDS_BIT) { dstLeapSecondSysInfo.leapSecondInfoMask |= LEAP_SECOND_SYS_INFO_CURRENT_LEAP_SECONDS_BIT; dstLeapSecondSysInfo.leapSecondCurrent = srcLeapSecondSysInfo.leapSecondCurrent; } // once leap second change event is complete, modem may send up event invalidate the leap // second change info while AP is still processing report during leap second transition // so, we choose to keep this info around even though it is old if (srcLeapSecondSysInfo.leapSecondInfoMask & LEAP_SECOND_SYS_INFO_LEAP_SECOND_CHANGE_BIT) { dstLeapSecondSysInfo.leapSecondInfoMask |= LEAP_SECOND_SYS_INFO_LEAP_SECOND_CHANGE_BIT; dstLeapSecondSysInfo.leapSecondChangeInfo = srcLeapSecondSysInfo.leapSecondChangeInfo; } } // we received new info, inform client of the newly received info if (locationSystemInfo.systemInfoMask) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (it->second.locationSystemInfoCb != nullptr) { it->second.locationSystemInfoCb(locationSystemInfo); } } } } static void* niThreadProc(void *args) { NiSession* pSession = (NiSession*)args; int rc = 0; /* return code from pthread calls */ struct timespec present_time = {}; struct timespec expire_time = {}; pthread_mutex_lock(&pSession->tLock); /* Calculate absolute expire time */ clock_gettime(CLOCK_REALTIME, &present_time); expire_time.tv_sec = present_time.tv_sec + pSession->respTimeLeft; expire_time.tv_nsec = present_time.tv_nsec; LOC_LOGD("%s]: time out set for abs time %ld with delay %d sec", __func__, (long)expire_time.tv_sec, pSession->respTimeLeft); while (!pSession->respRecvd) { rc = pthread_cond_timedwait(&pSession->tCond, &pSession->tLock, &expire_time); if (rc == ETIMEDOUT) { pSession->resp = GNSS_NI_RESPONSE_NO_RESPONSE; LOC_LOGD("%s]: time out after valting for specified time. Ret Val %d", __func__, rc); break; } } LOC_LOGD("%s]: Java layer has sent us a user response and return value from " "pthread_cond_timedwait = %d pSession->resp is %u", __func__, rc, pSession->resp); pSession->respRecvd = false; /* Reset the user response flag for the next session*/ // adding this check to support modem restart, in which case, we need the thread // to exit without calling sending data. We made sure that rawRequest is NULL in // loc_eng_ni_reset_on_engine_restart() GnssAdapter* adapter = pSession->adapter; GnssNiResponse resp; void* rawRequest = NULL; bool sendResponse = false; if (NULL != pSession->rawRequest) { if (pSession->resp != GNSS_NI_RESPONSE_IGNORE) { resp = pSession->resp; rawRequest = pSession->rawRequest; sendResponse = true; } else { free(pSession->rawRequest); } pSession->rawRequest = NULL; } pthread_mutex_unlock(&pSession->tLock); pSession->respTimeLeft = 0; pSession->reqID = 0; if (sendResponse) { adapter->gnssNiResponseCommand(resp, rawRequest); } return NULL; } bool GnssAdapter::requestNiNotify(const GnssNiNotification& notify, const void* data, const bool bInformNiAccept) { NiSession* pSession = NULL; gnssNiCallback gnssNiCb = nullptr; for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (nullptr != it->second.gnssNiCb) { gnssNiCb = it->second.gnssNiCb; break; } } if (nullptr == gnssNiCb) { if (GNSS_NI_TYPE_EMERGENCY_SUPL == notify.type) { if (bInformNiAccept) { mLocApi->informNiResponse(GNSS_NI_RESPONSE_ACCEPT, data); NiData& niData = getNiData(); // ignore any SUPL NI non-Es session if a SUPL NI ES is accepted if (NULL != niData.session.rawRequest) { pthread_mutex_lock(&niData.session.tLock); niData.session.resp = GNSS_NI_RESPONSE_IGNORE; niData.session.respRecvd = true; pthread_cond_signal(&niData.session.tCond); pthread_mutex_unlock(&niData.session.tLock); } } } EXIT_LOG(%s, "no clients with gnssNiCb."); return false; } if (notify.type == GNSS_NI_TYPE_EMERGENCY_SUPL) { if (NULL != mNiData.sessionEs.rawRequest) { LOC_LOGI("%s]: supl es NI in progress, new supl es NI ignored, type: %d", __func__, notify.type); if (NULL != data) { free((void*)data); } } else { pSession = &mNiData.sessionEs; } } else { if (NULL != mNiData.session.rawRequest || NULL != mNiData.sessionEs.rawRequest) { LOC_LOGI("%s]: supl NI in progress, new supl NI ignored, type: %d", __func__, notify.type); if (NULL != data) { free((void*)data); } } else { pSession = &mNiData.session; } } if (pSession) { /* Save request */ pSession->rawRequest = (void*)data; pSession->reqID = ++mNiData.reqIDCounter; pSession->adapter = this; int sessionId = pSession->reqID; /* For robustness, spawn a thread at this point to timeout to clear up the notification * status, even though the OEM layer in java does not do so. **/ pSession->respTimeLeft = 5 + (notify.timeout != 0 ? notify.timeout : LOC_NI_NO_RESPONSE_TIME); int rc = 0; rc = pthread_create(&pSession->thread, NULL, niThreadProc, pSession); if (rc) { LOC_LOGE("%s]: Loc NI thread is not created.", __func__); } pthread_setname_np(pSession->thread, "NiThread"); rc = pthread_detach(pSession->thread); if (rc) { LOC_LOGE("%s]: Loc NI thread is not detached.", __func__); } if (nullptr != gnssNiCb) { gnssNiCb(sessionId, notify); } } return true; } void GnssAdapter::reportGnssMeasurementsEvent(const GnssMeasurements& gnssMeasurements, int msInWeek) { LOC_LOGD("%s]: msInWeek=%d", __func__, msInWeek); if (0 != gnssMeasurements.gnssMeasNotification.count) { struct MsgReportGnssMeasurementData : public LocMsg { GnssAdapter& mAdapter; GnssMeasurements mGnssMeasurements; inline MsgReportGnssMeasurementData(GnssAdapter& adapter, const GnssMeasurements& gnssMeasurements, int msInWeek) : LocMsg(), mAdapter(adapter), mGnssMeasurements(gnssMeasurements) { if (-1 != msInWeek) { mAdapter.getAgcInformation(mGnssMeasurements.gnssMeasNotification, msInWeek); } } inline virtual void proc() const { mAdapter.mPositionElapsedRealTimeCal.saveGpsTimeAndQtimerPairInMeasReport( mGnssMeasurements.gnssSvMeasurementSet); mAdapter.reportGnssMeasurementData(mGnssMeasurements.gnssMeasNotification); } }; sendMsg(new MsgReportGnssMeasurementData(*this, gnssMeasurements, msInWeek)); } mEngHubProxy->gnssReportSvMeasurement(gnssMeasurements.gnssSvMeasurementSet); if (mDGnssNeedReport) { reportDGnssDataUsable(gnssMeasurements.gnssSvMeasurementSet); } } void GnssAdapter::reportGnssMeasurementData(const GnssMeasurementsNotification& measurements) { for (auto it=mClientData.begin(); it != mClientData.end(); ++it) { if (!measurements.isNhz) { if (nullptr != it->second.gnssMeasurementsCb) { it->second.gnssMeasurementsCb(measurements); } } else { // nHz measurement if (nullptr != it->second.gnssNHzMeasurementsCb) { it->second.gnssNHzMeasurementsCb(measurements); } } } } void GnssAdapter::reportDGnssDataUsable(const GnssSvMeasurementSet &svMeasurementSet) { uint32_t i; bool preDGnssDataUsage = mDGnssDataUsage; mDGnssDataUsage = false; for (i = 0; i < svMeasurementSet.svMeasCount; i++) { const Gnss_SVMeasurementStructType& svMeas = svMeasurementSet.svMeas[i]; if (svMeas.dgnssSvMeas.dgnssMeasStatus) { mDGnssDataUsage = true; break; } } if (mDGnssDataUsage != preDGnssDataUsage) { if (mCdfwInterface) { mCdfwInterface->reportUsable(mQDgnssListenerHDL, mDGnssDataUsage); } } } void GnssAdapter::reportSvPolynomialEvent(GnssSvPolynomial &svPolynomial) { LOC_LOGD("%s]: ", __func__); mEngHubProxy->gnssReportSvPolynomial(svPolynomial); } void GnssAdapter::reportSvEphemerisEvent(GnssSvEphemerisReport & svEphemeris) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssReportSvEphemeris(svEphemeris); } bool GnssAdapter::requestOdcpiEvent(OdcpiRequestInfo& request) { struct MsgRequestOdcpi : public LocMsg { GnssAdapter& mAdapter; OdcpiRequestInfo mOdcpiRequest; inline MsgRequestOdcpi(GnssAdapter& adapter, OdcpiRequestInfo& request) : LocMsg(), mAdapter(adapter), mOdcpiRequest(request) {} inline virtual void proc() const { mAdapter.requestOdcpi(mOdcpiRequest); } }; sendMsg(new MsgRequestOdcpi(*this, request)); return true; } void GnssAdapter::requestOdcpi(const OdcpiRequestInfo& request) { if (nullptr != mOdcpiRequestCb) { bool sendEmergencyCallStatusEvent = false; LOC_LOGd("request: type %d, tbf %d, isEmergency %d" " requestActive: %d timerActive: %d", request.type, request.tbfMillis, request.isEmergencyMode, mOdcpiStateMask, mOdcpiTimer.isActive()); // ODCPI START and ODCPI STOP from modem can come in quick succession // so the mOdcpiTimer helps avoid spamming the framework as well as // extending the odcpi session past 30 seconds if needed if (ODCPI_REQUEST_TYPE_START == request.type) { if (!(mOdcpiStateMask & ODCPI_REQ_ACTIVE) && false == mOdcpiTimer.isActive()) { fireOdcpiRequest(request); mOdcpiStateMask |= ODCPI_REQ_ACTIVE; mOdcpiTimer.start(); sendEmergencyCallStatusEvent = true; // if the current active odcpi session is non-emergency, and the new // odcpi request is emergency, replace the odcpi request with new request // and restart the timer } else if (false == mOdcpiRequest.isEmergencyMode && true == request.isEmergencyMode) { fireOdcpiRequest(request); mOdcpiStateMask |= ODCPI_REQ_ACTIVE; if (true == mOdcpiTimer.isActive()) { mOdcpiTimer.restart(); } else { mOdcpiTimer.start(); } sendEmergencyCallStatusEvent = true; // if ODCPI request is not active but the timer is active, then // just update the active state and wait for timer to expire // before requesting new ODCPI to avoid spamming ODCPI requests } else if (!(mOdcpiStateMask & ODCPI_REQ_ACTIVE) && true == mOdcpiTimer.isActive()) { mOdcpiStateMask |= ODCPI_REQ_ACTIVE; } mOdcpiRequest = request; //Check if Modem needs civic address if (mAddressRequestCb != nullptr && request.isCivicAddressRequired) { mOdcpiStateMask |= CIVIC_ADDRESS_REQ_ACTIVE; } // the request is being stopped, but allow timer to expire first // before stopping the timer just in case more ODCPI requests come // to avoid spamming more odcpi requests to the framework } else if (ODCPI_REQUEST_TYPE_STOP == request.type) { LOC_LOGd("request: type %d, isEmergency %d", request.type, request.isEmergencyMode); fireOdcpiRequest(request); mOdcpiStateMask = 0; sendEmergencyCallStatusEvent = true; } else { LOC_LOGE("Invalid ODCPI request type.."); } // Raise InEmergencyCall event if (sendEmergencyCallStatusEvent && request.isEmergencyMode) { SystemStatus* systemstatus = getSystemStatus(); if (nullptr != systemstatus) { systemstatus->eventInEmergencyCall(0 != mOdcpiStateMask); } else { LOC_LOGe("Failed to get system status instance."); } } } else { LOC_LOGw("ODCPI request not supported"); } } bool GnssAdapter::reportDeleteAidingDataEvent(GnssAidingData& aidingData) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssDeleteAidingData(aidingData); return true; } bool GnssAdapter::reportKlobucharIonoModelEvent(GnssKlobucharIonoModel & ionoModel) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssReportKlobucharIonoModel(ionoModel); return true; } bool GnssAdapter::reportGnssAdditionalSystemInfoEvent( GnssAdditionalSystemInfo & additionalSystemInfo) { LOC_LOGD("%s]:", __func__); mEngHubProxy->gnssReportAdditionalSystemInfo(additionalSystemInfo); return true; } bool GnssAdapter::reportQwesCapabilities( const std::unordered_map &featureMap) { struct MsgReportQwesFeatureStatus : public LocMsg { GnssAdapter& mAdapter; const std::unordered_map mFeatureMap; inline MsgReportQwesFeatureStatus(GnssAdapter& adapter, const std::unordered_map &featureMap) : LocMsg(), mAdapter(adapter), mFeatureMap(std::move(featureMap)) {} inline virtual void proc() const { LOC_LOGi("ReportQwesFeatureStatus After caps %" PRIx64 " ", mAdapter.getCapabilities()); mAdapter.broadcastCapabilities(mAdapter.getCapabilities()); } }; sendMsg(new MsgReportQwesFeatureStatus(*this, featureMap)); return true; } void GnssAdapter::initOdcpiCommand(const OdcpiRequestCallback& callback, OdcpiPrioritytype priority, OdcpiCallbackTypeMask typeMask) { struct MsgInitOdcpi : public LocMsg { GnssAdapter& mAdapter; OdcpiRequestCallback mOdcpiCb; OdcpiPrioritytype mPriority; OdcpiCallbackTypeMask mTypeMask; inline MsgInitOdcpi(GnssAdapter& adapter, const OdcpiRequestCallback& callback, OdcpiPrioritytype priority, OdcpiCallbackTypeMask typeMask) : LocMsg(), mAdapter(adapter), mOdcpiCb(callback), mPriority(priority), mTypeMask(typeMask) {} inline virtual void proc() const { mAdapter.initOdcpi(mOdcpiCb, mPriority, mTypeMask); } }; sendMsg(new MsgInitOdcpi(*this, callback, priority, typeMask)); } void GnssAdapter::deRegisterOdcpiCommand(OdcpiPrioritytype priority, OdcpiCallbackTypeMask typeMask) { struct MsgDeRegisterNonEsOdcpi : public LocMsg { GnssAdapter& mAdapter; OdcpiPrioritytype mPriority; OdcpiCallbackTypeMask mTypeMask; inline MsgDeRegisterNonEsOdcpi(GnssAdapter& adapter, OdcpiPrioritytype priority, OdcpiCallbackTypeMask typeMask) : LocMsg(), mAdapter(adapter), mPriority(priority), mTypeMask(typeMask) {} inline virtual void proc() const { mAdapter.deRegisterOdcpi(mPriority, mTypeMask); } }; sendMsg(new MsgDeRegisterNonEsOdcpi(*this, priority, typeMask)); } void GnssAdapter::fireOdcpiRequest(const OdcpiRequestInfo& request) { if (request.isEmergencyMode) { mOdcpiRequestCb(request); } else { std::unordered_map::iterator iter; for (int priority = ODCPI_HANDLER_PRIORITY_HIGH; priority >= ODCPI_HANDLER_PRIORITY_LOW && iter == mNonEsOdcpiReqCbMap.end(); priority--) { iter = mNonEsOdcpiReqCbMap.find((OdcpiPrioritytype)priority); } if (iter != mNonEsOdcpiReqCbMap.end()) { iter->second(request); } } } void GnssAdapter::initOdcpi(const OdcpiRequestCallback& callback, OdcpiPrioritytype priority, OdcpiCallbackTypeMask typeMask) { if (typeMask & EMERGENCY_ODCPI) { LOC_LOGd("In priority: %d, Curr priority: %d", priority, mCallbackPriority); if (priority >= mCallbackPriority) { mOdcpiRequestCb = callback; mCallbackPriority = priority; /* Register for WIFI request */ updateEvtMask(LOC_API_ADAPTER_BIT_REQUEST_WIFI, LOC_REGISTRATION_MASK_ENABLED); } } if (typeMask & NON_EMERGENCY_ODCPI) { //If this is for non emergency odcpi, //Only set callback to mNonEsOdcpiReqCbMap according to its priority //Will overwrite callback with same priority in this map mNonEsOdcpiReqCbMap[priority] = callback; } } void GnssAdapter::injectOdcpiCommand(const Location& location) { struct MsgInjectOdcpi : public LocMsg { GnssAdapter& mAdapter; Location mLocation; inline MsgInjectOdcpi(GnssAdapter& adapter, const Location& location, ContextBase& context): LocMsg(), mAdapter(adapter), mLocation(location) { // Update techMask to tell whether ALE FLP or Android FLP if (context.getLBSProxyBase()->getIzatFusedProviderOverride()) { mLocation.techMask |= LOCATION_TECHNOLOGY_HYBRID_ALE_BIT; } } inline virtual void proc() const { mAdapter.injectOdcpi(mLocation); } }; sendMsg(new MsgInjectOdcpi(*this, location, *mContext)); } void GnssAdapter::injectOdcpi(const Location& location) { LOC_LOGd("ODCPI Injection: requestActive: %d timerActive: %d" "lat %.7f long %.7f", mOdcpiStateMask, mOdcpiTimer.isActive(), location.latitude, location.longitude); if ((mOdcpiStateMask & CIVIC_ADDRESS_REQ_ACTIVE) && mAddressRequestCb != nullptr) { mAddressRequestCb(location); } mLocApi->injectPosition(location, true); } void GnssAdapter::setAddressRequestCbCommand( const std::function& addressRequestCb) { struct MsgSetAddrReqCb : public LocMsg { GnssAdapter& mAdapter; std::function mAddrReqCb; inline MsgSetAddrReqCb(GnssAdapter& adapter, const std::function& addressRequestCb) : LocMsg(), mAdapter(adapter), mAddrReqCb(addressRequestCb){} inline virtual void proc() const { mAdapter.setAddressRequestCb(mAddrReqCb); } }; sendMsg(new MsgSetAddrReqCb(*this, addressRequestCb)); } void GnssAdapter::injectLocationAndAddrCommand( const Location& location, const GnssCivicAddress& addr) { struct MsgInjectLocAndAddr : public LocMsg { GnssAdapter& mAdapter; Location mLocation; GnssCivicAddress mAddress; inline MsgInjectLocAndAddr(GnssAdapter& adapter, const Location& location, const GnssCivicAddress& addr) : LocMsg(), mAdapter(adapter), mLocation(location), mAddress(addr) {} inline virtual void proc() const { LOC_LOGd("[%s] Location: %x, %" PRIu64 ", %f, %f, %f \n" "Address: adminArea: %s, countryCode: %s, countryName: %s,\n" "featureName: %s, latitude: %f, longitude: %f\n" "locale: %s, locality: %s, phone: %s, postalCode: %s\n" "premises: %s, subAdminArea: %s, subLocality: %s" "thoroughfare: %s, subThoroughfare: %s, url: %s", __func__, mLocation.flags, mLocation.timestamp, mLocation.latitude, mLocation.longitude, mLocation.accuracy, mAddress.adminArea.c_str(), mAddress.countryCode.c_str(), mAddress.countryName.c_str(), mAddress.featureName.c_str(), mAddress.latitude, mAddress.longitude, mAddress.locale.c_str(), mAddress.locality.c_str(), mAddress.phone.c_str(), mAddress.postalCode.c_str(), mAddress.premises.c_str(), mAddress.subAdminArea.c_str(), mAddress.subLocality.c_str(), mAddress.thoroughfare.c_str(), mAddress.subThoroughfare.c_str(), mAddress.url.c_str()); mAdapter.injectLocationAndAddr(mLocation, mAddress); } }; sendMsg(new MsgInjectLocAndAddr(*this, location, addr)); } // Called in the context of LocTimer thread void OdcpiTimer::timeOutCallback() { if (nullptr != mAdapter) { mAdapter->odcpiTimerExpireEvent(); } } // Called in the context of LocTimer thread void GnssAdapter::odcpiTimerExpireEvent() { struct MsgOdcpiTimerExpire : public LocMsg { GnssAdapter& mAdapter; inline MsgOdcpiTimerExpire(GnssAdapter& adapter) : LocMsg(), mAdapter(adapter) {} inline virtual void proc() const { mAdapter.odcpiTimerExpire(); } }; sendMsg(new MsgOdcpiTimerExpire(*this)); } void GnssAdapter::odcpiTimerExpire() { LOC_LOGd("requestActive: %d timerActive: %d", mOdcpiStateMask, mOdcpiTimer.isActive()); // if ODCPI request is still active after timer // expires, request again and restart timer if (mOdcpiStateMask & ODCPI_REQ_ACTIVE) { fireOdcpiRequest(mOdcpiRequest); mOdcpiTimer.restart(); } else { mOdcpiTimer.stop(); } } void GnssAdapter::invokeGnssEnergyConsumedCallback(uint64_t energyConsumedSinceFirstBoot) { if (mGnssEnergyConsumedCb) { mGnssEnergyConsumedCb(energyConsumedSinceFirstBoot); mGnssEnergyConsumedCb = nullptr; } if (!mGnssPowerStatisticsInit) { /* We need to change the reference in case HAL process restarts (i.e. crashes) We maintain mBootReferenceEnergy value in the file system At the point mBootReferenceEnergy needs to get initialized we will use the following logic: if (boot time > 30 sec) use the value in the file system for mBootReferenceEnergy else use the value we get here from the modem for mBootReferenceEnergy */ struct timespec currentTime = {}; int64_t sinceBootTimeNanos = 0; FILE *fp = NULL; mBootReferenceEnergy = energyConsumedSinceFirstBoot; if (NULL != (fp = fopen("/data/vendor/location/energy.conf", "a+b"))) { rewind(fp); if (ElapsedRealtimeEstimator::getCurrentTime(currentTime, sinceBootTimeNanos)) { LOC_LOGv("sinceBootTimeNanos: %" PRIu64 " ", sinceBootTimeNanos); if ((uint32_t)(sinceBootTimeNanos / 1000000000) > 30) { int fr = fread(&mBootReferenceEnergy, sizeof(mBootReferenceEnergy), 1, fp); if (1 != fr) { mBootReferenceEnergy = energyConsumedSinceFirstBoot; LOC_LOGw("fread failed ferror(fp)=%d fr=%d", ferror(fp), fr); } } else { fwrite(&mBootReferenceEnergy, sizeof(mBootReferenceEnergy), 1, fp); } } else { LOC_LOGw("getCurrentTime failed"); fwrite(&mBootReferenceEnergy, sizeof(mBootReferenceEnergy), 1, fp); } fclose(fp); } else { LOC_LOGw("fopen failed"); } LOC_LOGd("mBootReferenceEnergy: %" PRIu64 " energyConsumedSinceFirstBoot: %" PRIu64 " ", mBootReferenceEnergy, energyConsumedSinceFirstBoot); mGnssPowerStatisticsInit = true; mPowerElapsedRealTimeCal.reset(); } else if (nullptr != mPowerIndicationCb) { GnssPowerStatistics gnssPowerStatistics = {}; gnssPowerStatistics.size = sizeof(GnssPowerStatistics); gnssPowerStatistics.totalEnergyMilliJoule = (double)(energyConsumedSinceFirstBoot - mBootReferenceEnergy) / 10.0; LOC_LOGv("energyConsumedSinceFirstBoot: %" PRId64", " " mBootReferenceEnergy: %" PRId64", " " gnssPowerStatistics.totalEnergyMilliJoule: %f", energyConsumedSinceFirstBoot, mBootReferenceEnergy, gnssPowerStatistics.totalEnergyMilliJoule); gnssPowerStatistics.elapsedRealTime = elapsedRealtime(); gnssPowerStatistics.elapsedRealTimeUnc = mPowerElapsedRealTimeCal.getElapsedRealtimeUncNanos(); mPowerIndicationCb(gnssPowerStatistics); } } bool GnssAdapter::reportGnssEngEnergyConsumedEvent(uint64_t energyConsumedSinceFirstBoot){ LOC_LOGd("energyConsumedSinceFirstBoot: %" PRIu64 " ", energyConsumedSinceFirstBoot); struct MsgReportGnssGnssEngEnergyConsumed : public LocMsg { GnssAdapter& mAdapter; uint64_t mGnssEnergyConsumedSinceFirstBoot; inline MsgReportGnssGnssEngEnergyConsumed(GnssAdapter& adapter, uint64_t energyConsumed) : LocMsg(), mAdapter(adapter), mGnssEnergyConsumedSinceFirstBoot(energyConsumed) {} inline virtual void proc() const { mAdapter.invokeGnssEnergyConsumedCallback(mGnssEnergyConsumedSinceFirstBoot); } }; if (~0 != energyConsumedSinceFirstBoot) { sendMsg(new MsgReportGnssGnssEngEnergyConsumed(*this, energyConsumedSinceFirstBoot)); } else { LOC_LOGe("energyConsumedSinceFirstBoot not valid!"); } return true; } void GnssAdapter::initDefaultAgps() { LOC_LOGD("%s]: ", __func__); void *handle = nullptr; LocAgpsGetAgpsCbInfo getAgpsCbInfo = (LocAgpsGetAgpsCbInfo)dlGetSymFromLib(handle, "libloc_net_iface.so", "LocNetIfaceAgps_getAgpsCbInfo"); // Below step is to make sure we init nativeAgpsHandler // for Android platforms only AgpsCbInfo cbInfo = {}; if (nullptr != getAgpsCbInfo) { cbInfo = getAgpsCbInfo(agpsOpenResultCb, agpsCloseResultCb, this); } else { cbInfo = mNativeAgpsHandler.getAgpsCbInfo(); } if (cbInfo.statusV4Cb == nullptr) { LOC_LOGE("%s]: statusV4Cb is nullptr!", __func__); dlclose(handle); return; } initAgps(cbInfo); } void GnssAdapter::initDefaultAgpsCommand() { LOC_LOGD("%s]: ", __func__); struct MsgInitDefaultAgps : public LocMsg { GnssAdapter& mAdapter; inline MsgInitDefaultAgps(GnssAdapter& adapter) : LocMsg(), mAdapter(adapter) { } inline virtual void proc() const { mAdapter.initDefaultAgps(); } }; sendMsg(new MsgInitDefaultAgps(*this)); } /* INIT LOC AGPS MANAGER */ void GnssAdapter::initAgps(const AgpsCbInfo& cbInfo) { LOC_LOGD("%s]:cbInfo.atlType - %d", __func__, cbInfo.atlType); if (!((ContextBase::mGps_conf.CAPABILITIES & LOC_GPS_CAPABILITY_MSB) || (ContextBase::mGps_conf.CAPABILITIES & LOC_GPS_CAPABILITY_MSA))) { return; } mAgpsManager.createAgpsStateMachines(cbInfo); /* Register for AGPS event mask */ updateEvtMask(LOC_API_ADAPTER_BIT_LOCATION_SERVER_REQUEST, LOC_REGISTRATION_MASK_ENABLED); } void GnssAdapter::initAgpsCommand(const AgpsCbInfo& cbInfo){ LOC_LOGI("GnssAdapter::initAgpsCommand"); /* Message to initialize AGPS module */ struct AgpsMsgInit: public LocMsg { const AgpsCbInfo mCbInfo; GnssAdapter& mAdapter; inline AgpsMsgInit(const AgpsCbInfo& cbInfo, GnssAdapter& adapter) : LocMsg(), mCbInfo(cbInfo), mAdapter(adapter) { LOC_LOGV("AgpsMsgInit"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgInit::proc()"); mAdapter.initAgps(mCbInfo); } }; /* Send message to initialize AGPS Manager */ sendMsg(new AgpsMsgInit(cbInfo, *this)); } void GnssAdapter::initNfwCommand(const NfwCbInfo& cbInfo) { LOC_LOGi("GnssAdapter::initNfwCommand"); /* Message to initialize NFW */ struct MsgInitNfw : public LocMsg { const NfwCbInfo mCbInfo; GnssAdapter& mAdapter; inline MsgInitNfw(const NfwCbInfo& cbInfo, GnssAdapter& adapter) : LocMsg(), mCbInfo(cbInfo), mAdapter(adapter) { LOC_LOGv("MsgInitNfw"); } inline virtual void proc() const { LOC_LOGv("MsgInitNfw::proc()"); mAdapter.initNfw(mCbInfo); } }; /* Send message to initialize NFW */ sendMsg(new MsgInitNfw(cbInfo, *this)); } void GnssAdapter::reportNfwNotificationEvent(GnssNfwNotification& notification) { LOC_LOGi("GnssAdapter::reportNfwNotificationEvent"); struct MsgReportNfwNotification : public LocMsg { const GnssNfwNotification mNotification; GnssAdapter& mAdapter; inline MsgReportNfwNotification(const GnssNfwNotification& notification, GnssAdapter& adapter) : LocMsg(), mNotification(notification), mAdapter(adapter) { LOC_LOGv("MsgReportNfwNotification"); } inline virtual void proc() const { LOC_LOGv("MsgReportNfwNotification::proc()"); mAdapter.reportNfwNotification(mNotification); } }; sendMsg(new MsgReportNfwNotification(notification, *this)); } /* GnssAdapter::requestATL * Method triggered in QMI thread as part of handling below message: * eQMI_LOC_SERVER_REQUEST_OPEN_V02 * Triggers the AGPS state machine to setup AGPS call for below WWAN types: * eQMI_LOC_WWAN_TYPE_INTERNET_V02 * eQMI_LOC_WWAN_TYPE_AGNSS_V02 * eQMI_LOC_WWAN_TYPE_AGNSS_EMERGENCY_V02 */ bool GnssAdapter::requestATL(int connHandle, LocAGpsType agpsType, LocApnTypeMask apnTypeMask, LocSubId subId){ LOC_LOGi("GnssAdapter::requestATL handle=%d agpsType=0x%X apnTypeMask=0x%X subId=%d", connHandle, agpsType, apnTypeMask, subId); sendMsg( new AgpsMsgRequestATL( &mAgpsManager, connHandle, (AGpsExtType)agpsType, apnTypeMask, subId)); return true; } /* GnssAdapter::releaseATL * Method triggered in QMI thread as part of handling below message: * eQMI_LOC_SERVER_REQUEST_CLOSE_V02 * Triggers teardown of an existing AGPS call */ bool GnssAdapter::releaseATL(int connHandle){ LOC_LOGI("GnssAdapter::releaseATL"); /* Release SUPL/INTERNET/SUPL_ES ATL */ struct AgpsMsgReleaseATL: public LocMsg { AgpsManager* mAgpsManager; int mConnHandle; inline AgpsMsgReleaseATL(AgpsManager* agpsManager, int connHandle) : LocMsg(), mAgpsManager(agpsManager), mConnHandle(connHandle) { LOC_LOGV("AgpsMsgReleaseATL"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgReleaseATL::proc()"); mAgpsManager->releaseATL(mConnHandle); } }; sendMsg( new AgpsMsgReleaseATL(&mAgpsManager, connHandle)); return true; } void GnssAdapter::reportPdnTypeFromWds(int pdnType, AGpsExtType agpsType, std::string apnName, AGpsBearerType bearerType) { LOC_LOGd("pdnType from WDS QMI: %d, agpsType: %d, apnName: %s, bearerType: %d", pdnType, agpsType, apnName.c_str(), bearerType); struct MsgReportAtlPdn : public LocMsg { GnssAdapter& mAdapter; int mPdnType; AgpsManager* mAgpsManager; AGpsExtType mAgpsType; string mApnName; AGpsBearerType mBearerType; inline MsgReportAtlPdn(GnssAdapter& adapter, int pdnType, AgpsManager* agpsManager, AGpsExtType agpsType, const string& apnName, AGpsBearerType bearerType) : LocMsg(), mAdapter(adapter), mPdnType(pdnType), mAgpsManager(agpsManager), mAgpsType(agpsType), mApnName(apnName), mBearerType(bearerType) {} inline virtual void proc() const { mAgpsManager->reportAtlOpenSuccess(mAgpsType, const_cast(mApnName.c_str()), mApnName.length(), mPdnType<=0? mBearerType:mPdnType); } }; AGpsBearerType atlPdnType = (pdnType+1) & 3; // convert WDS QMI pdn type to AgpsBearerType sendMsg(new MsgReportAtlPdn(*this, atlPdnType, &mAgpsManager, agpsType, apnName, bearerType)); } void GnssAdapter::dataConnOpenCommand( AGpsExtType agpsType, const char* apnName, int apnLen, AGpsBearerType bearerType){ LOC_LOGI("GnssAdapter::frameworkDataConnOpen"); struct AgpsMsgAtlOpenSuccess: public LocMsg { GnssAdapter& mAdapter; AgpsManager* mAgpsManager; AGpsExtType mAgpsType; char* mApnName; AGpsBearerType mBearerType; inline AgpsMsgAtlOpenSuccess(GnssAdapter& adapter, AgpsManager* agpsManager, AGpsExtType agpsType, const char* apnName, int apnLen, AGpsBearerType bearerType) : LocMsg(), mAdapter(adapter), mAgpsManager(agpsManager), mAgpsType(agpsType), mApnName(new char[apnLen + 1]), mBearerType(bearerType) { LOC_LOGV("AgpsMsgAtlOpenSuccess"); if (mApnName == nullptr) { LOC_LOGE("%s] new allocation failed, fatal error.", __func__); // Reporting the failure here mAgpsManager->reportAtlClosed(mAgpsType); return; } memcpy(mApnName, apnName, apnLen); mApnName[apnLen] = 0; } inline ~AgpsMsgAtlOpenSuccess() { delete[] mApnName; } inline virtual void proc() const { LOC_LOGv("AgpsMsgAtlOpenSuccess::proc()"); string apn(mApnName); //Use QMI WDS API to query IP Protocol from modem profile void* libHandle = nullptr; getPdnTypeFromWds* getPdnTypeFunc = (getPdnTypeFromWds*)dlGetSymFromLib(libHandle, #ifdef USE_GLIB "libloc_api_wds.so", "_Z10getPdnTypeRKNSt7__cxx1112basic_string"\ "IcSt11char_traitsIcESaIcEEESt8functionIFviEE"); #else "libloc_api_wds.so", "_Z10getPdnTypeRKNSt3__112basic_stringIcNS_11char_traits"\ "IcEENS_9allocatorIcEEEENS_8functionIFviEEE"); #endif std::function wdsPdnTypeCb = std::bind(&GnssAdapter::reportPdnTypeFromWds, &mAdapter, std::placeholders::_1, mAgpsType, apn, mBearerType); if (getPdnTypeFunc != nullptr && apn.length() > 0) { LOC_LOGv("dlGetSymFromLib success"); (*getPdnTypeFunc)(apn, wdsPdnTypeCb); } else { mAgpsManager->reportAtlOpenSuccess(mAgpsType, mApnName, apn.length(), mBearerType); } } }; // Added inital length checks for apnlen check to avoid security issues // In case of failure reporting the same if (NULL == apnName || apnLen > MAX_APN_LEN || (strlen(apnName) != apnLen)) { LOC_LOGe("%s]: incorrect apnlen length or incorrect apnName", __func__); mAgpsManager.reportAtlClosed(agpsType); } else { sendMsg( new AgpsMsgAtlOpenSuccess(*this, &mAgpsManager, agpsType, apnName, apnLen, bearerType)); } } void GnssAdapter::dataConnClosedCommand(AGpsExtType agpsType){ LOC_LOGI("GnssAdapter::frameworkDataConnClosed"); struct AgpsMsgAtlClosed: public LocMsg { AgpsManager* mAgpsManager; AGpsExtType mAgpsType; inline AgpsMsgAtlClosed(AgpsManager* agpsManager, AGpsExtType agpsType) : LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType) { LOC_LOGV("AgpsMsgAtlClosed"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgAtlClosed::proc()"); mAgpsManager->reportAtlClosed(mAgpsType); } }; sendMsg( new AgpsMsgAtlClosed(&mAgpsManager, (AGpsExtType)agpsType)); } void GnssAdapter::dataConnFailedCommand(AGpsExtType agpsType){ LOC_LOGI("GnssAdapter::frameworkDataConnFailed"); struct AgpsMsgAtlOpenFailed: public LocMsg { AgpsManager* mAgpsManager; AGpsExtType mAgpsType; inline AgpsMsgAtlOpenFailed(AgpsManager* agpsManager, AGpsExtType agpsType) : LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType) { LOC_LOGV("AgpsMsgAtlOpenFailed"); } inline virtual void proc() const { LOC_LOGV("AgpsMsgAtlOpenFailed::proc()"); mAgpsManager->reportAtlOpenFailed(mAgpsType); } }; sendMsg( new AgpsMsgAtlOpenFailed(&mAgpsManager, (AGpsExtType)agpsType)); } void GnssAdapter::convertSatelliteInfo(std::vector& out, const GnssSvType& in_constellation, const SystemStatusReports& in) { uint64_t sv_mask = 0ULL; uint32_t svid_min = 0; uint32_t svid_num = 0; uint32_t svid_idx = 0; uint64_t eph_health_good_mask = 0ULL; uint64_t eph_health_bad_mask = 0ULL; uint64_t server_perdiction_available_mask = 0ULL; float server_perdiction_age = 0.0f; // set constellationi based parameters switch (in_constellation) { case GNSS_SV_TYPE_GPS: svid_min = GNSS_BUGREPORT_GPS_MIN; svid_num = GPS_NUM; svid_idx = 0; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mGpsGoodMask; eph_health_bad_mask = in.mSvHealth.back().mGpsBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mGpsXtraValid; server_perdiction_age = (float)(in.mXtra.back().mGpsXtraAge); } break; case GNSS_SV_TYPE_GLONASS: svid_min = GNSS_BUGREPORT_GLO_MIN; svid_num = GLO_NUM; svid_idx = GPS_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mGloGoodMask; eph_health_bad_mask = in.mSvHealth.back().mGloBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mGloXtraValid; server_perdiction_age = (float)(in.mXtra.back().mGloXtraAge); } break; case GNSS_SV_TYPE_QZSS: svid_min = GNSS_BUGREPORT_QZSS_MIN; svid_num = QZSS_NUM; svid_idx = GPS_NUM+GLO_NUM+BDS_NUM+GAL_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mQzssGoodMask; eph_health_bad_mask = in.mSvHealth.back().mQzssBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mQzssXtraValid; server_perdiction_age = (float)(in.mXtra.back().mQzssXtraAge); } break; case GNSS_SV_TYPE_BEIDOU: svid_min = GNSS_BUGREPORT_BDS_MIN; svid_num = BDS_NUM; svid_idx = GPS_NUM+GLO_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mBdsGoodMask; eph_health_bad_mask = in.mSvHealth.back().mBdsBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mBdsXtraValid; server_perdiction_age = (float)(in.mXtra.back().mBdsXtraAge); } break; case GNSS_SV_TYPE_GALILEO: svid_min = GNSS_BUGREPORT_GAL_MIN; svid_num = GAL_NUM; svid_idx = GPS_NUM+GLO_NUM+BDS_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mGalGoodMask; eph_health_bad_mask = in.mSvHealth.back().mGalBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mGalXtraValid; server_perdiction_age = (float)(in.mXtra.back().mGalXtraAge); } break; case GNSS_SV_TYPE_NAVIC: svid_min = GNSS_BUGREPORT_NAVIC_MIN; svid_num = NAVIC_NUM; svid_idx = GPS_NUM+GLO_NUM+QZSS_NUM+BDS_NUM+GAL_NUM; if (!in.mSvHealth.empty()) { eph_health_good_mask = in.mSvHealth.back().mNavicGoodMask; eph_health_bad_mask = in.mSvHealth.back().mNavicBadMask; } if (!in.mXtra.empty()) { server_perdiction_available_mask = in.mXtra.back().mNavicXtraValid; server_perdiction_age = (float)(in.mXtra.back().mNavicXtraAge); } break; default: return; } // extract each sv info from systemstatus report for(uint32_t i=0; igetReport(reports, true, false); r.size = sizeof(r); // location block r.mLocation.size = sizeof(r.mLocation); if(!reports.mLocation.empty() && reports.mLocation.back().mValid) { r.mLocation.mValid = true; r.mLocation.mLocation.latitude = reports.mLocation.back().mLocation.gpsLocation.latitude; r.mLocation.mLocation.longitude = reports.mLocation.back().mLocation.gpsLocation.longitude; r.mLocation.mLocation.altitude = reports.mLocation.back().mLocation.gpsLocation.altitude; r.mLocation.mLocation.speed = (double)(reports.mLocation.back().mLocation.gpsLocation.speed); r.mLocation.mLocation.bearing = (double)(reports.mLocation.back().mLocation.gpsLocation.bearing); r.mLocation.mLocation.accuracy = (double)(reports.mLocation.back().mLocation.gpsLocation.accuracy); r.mLocation.verticalAccuracyMeters = reports.mLocation.back().mLocationEx.vert_unc; r.mLocation.speedAccuracyMetersPerSecond = reports.mLocation.back().mLocationEx.speed_unc; r.mLocation.bearingAccuracyDegrees = reports.mLocation.back().mLocationEx.bearing_unc; r.mLocation.mUtcReported = reports.mLocation.back().mUtcReported; } else if(!reports.mBestPosition.empty() && reports.mBestPosition.back().mValid) { r.mLocation.mValid = true; r.mLocation.mLocation.latitude = (double)(reports.mBestPosition.back().mBestLat) * RAD2DEG; r.mLocation.mLocation.longitude = (double)(reports.mBestPosition.back().mBestLon) * RAD2DEG; r.mLocation.mLocation.altitude = reports.mBestPosition.back().mBestAlt; r.mLocation.mLocation.accuracy = (double)(reports.mBestPosition.back().mBestHepe); r.mLocation.mUtcReported = reports.mBestPosition.back().mUtcReported; } else { r.mLocation.mValid = false; } if (r.mLocation.mValid) { LOC_LOGV("getDebugReport - lat=%f lon=%f alt=%f speed=%f", r.mLocation.mLocation.latitude, r.mLocation.mLocation.longitude, r.mLocation.mLocation.altitude, r.mLocation.mLocation.speed); } // time block r.mTime.size = sizeof(r.mTime); if(!reports.mTimeAndClock.empty() && reports.mTimeAndClock.back().mTimeValid) { r.mTime.mValid = true; r.mTime.timeEstimate = (((int64_t)(reports.mTimeAndClock.back().mGpsWeek)*7 + GNSS_UTC_TIME_OFFSET)*24*60*60 - (int64_t)(reports.mTimeAndClock.back().mLeapSeconds))*1000ULL + (int64_t)(reports.mTimeAndClock.back().mGpsTowMs); if (reports.mTimeAndClock.back().mTimeUncNs > 0) { // TimeUncNs value is available r.mTime.timeUncertaintyNs = (float)(reports.mTimeAndClock.back().mLeapSecUnc)*1000.0f + (float)(reports.mTimeAndClock.back().mTimeUncNs); } else { // fall back to legacy TimeUnc r.mTime.timeUncertaintyNs = ((float)(reports.mTimeAndClock.back().mTimeUnc) + (float)(reports.mTimeAndClock.back().mLeapSecUnc))*1000.0f; } r.mTime.frequencyUncertaintyNsPerSec = (float)(reports.mTimeAndClock.back().mClockFreqBiasUnc); LOC_LOGV("getDebugReport - timeestimate=%" PRIu64 " unc=%f frequnc=%f", r.mTime.timeEstimate, r.mTime.timeUncertaintyNs, r.mTime.frequencyUncertaintyNsPerSec); } else { r.mTime.mValid = false; } // satellite info block convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_GPS, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_GLONASS, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_QZSS, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_BEIDOU, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_GALILEO, reports); convertSatelliteInfo(r.mSatelliteInfo, GNSS_SV_TYPE_NAVIC, reports); LOC_LOGV("getDebugReport - satellite=%zu", r.mSatelliteInfo.size()); return true; } /* get AGC information from system status and fill it */ void GnssAdapter::getAgcInformation(GnssMeasurementsNotification& measurements, int msInWeek) { SystemStatus* systemstatus = getSystemStatus(); if (nullptr != systemstatus) { SystemStatusReports reports = {}; systemstatus->getReport(reports, true, false); if ((!reports.mRfAndParams.empty()) && (!reports.mTimeAndClock.empty()) && (abs(msInWeek - (int)reports.mTimeAndClock.back().mGpsTowMs) < 2000)) { for (size_t i = 0; i < measurements.count; i++) { switch (measurements.measurements[i].svType) { case GNSS_SV_TYPE_GPS: case GNSS_SV_TYPE_QZSS: measurements.measurements[i].agcLevelDb = -((double)reports.mRfAndParams.back().mJammerGps / 100.0); measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_GALILEO: measurements.measurements[i].agcLevelDb = -((double)reports.mRfAndParams.back().mJammerGal / 100.0); measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_GLONASS: measurements.measurements[i].agcLevelDb = -((double)reports.mRfAndParams.back().mJammerGlo / 100.0); measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_BEIDOU: measurements.measurements[i].agcLevelDb = -((double)reports.mRfAndParams.back().mJammerBds / 100.0); measurements.measurements[i].flags |= GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT; break; case GNSS_SV_TYPE_SBAS: case GNSS_SV_TYPE_UNKNOWN: default: break; } } } } } /* get Data information from system status and fill it */ void GnssAdapter::getDataInformation(GnssDataNotification& data, int msInWeek) { SystemStatus* systemstatus = getSystemStatus(); LOC_LOGV("%s]: msInWeek=%d", __func__, msInWeek); if (nullptr != systemstatus) { SystemStatusReports reports = {}; systemstatus->getReport(reports, true, false); if ((!reports.mRfAndParams.empty()) && (!reports.mTimeAndClock.empty()) && (abs(msInWeek - (int)reports.mTimeAndClock.back().mGpsTowMs) < 2000)) { for (int sig = GNSS_LOC_SIGNAL_TYPE_GPS_L1CA; sig < GNSS_LOC_MAX_NUMBER_OF_SIGNAL_TYPES; sig++) { data.gnssDataMask[sig] = 0; data.jammerInd[sig] = 0.0; data.agc[sig] = 0.0; } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerGps) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GPS_L1CA] |= GNSS_LOC_DATA_AGC_BIT | GNSS_LOC_DATA_JAMMER_IND_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_GPS_L1CA] = -((double)reports.mRfAndParams.back().mJammerGps / 100.0); data.jammerInd[GNSS_LOC_SIGNAL_TYPE_GPS_L1CA] = ((double)reports.mRfAndParams.back().mJammerGps / 100.0); data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_QZSS_L1CA] |= GNSS_LOC_DATA_AGC_BIT | GNSS_LOC_DATA_JAMMER_IND_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_QZSS_L1CA] = -((double)reports.mRfAndParams.back().mJammerGps / 100.0); data.jammerInd[GNSS_LOC_SIGNAL_TYPE_QZSS_L1CA] = ((double)reports.mRfAndParams.back().mJammerGps / 100.0); data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_SBAS_L1_CA] |= GNSS_LOC_DATA_AGC_BIT | GNSS_LOC_DATA_JAMMER_IND_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_SBAS_L1_CA] = -((double)reports.mRfAndParams.back().mJammerGps / 100.0); data.jammerInd[GNSS_LOC_SIGNAL_TYPE_SBAS_L1_CA] = ((double)reports.mRfAndParams.back().mJammerGps / 100.0); } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerGlo) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GLONASS_G1] |= GNSS_LOC_DATA_AGC_BIT | GNSS_LOC_DATA_JAMMER_IND_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_GLONASS_G1] = -((double)reports.mRfAndParams.back().mJammerGlo / 100.0); data.jammerInd[GNSS_LOC_SIGNAL_TYPE_GLONASS_G1] = ((double)reports.mRfAndParams.back().mJammerGlo / 100.0); } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerBds) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_BEIDOU_B1_I] |= GNSS_LOC_DATA_AGC_BIT | GNSS_LOC_DATA_JAMMER_IND_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_BEIDOU_B1_I] = -((double)reports.mRfAndParams.back().mJammerBds / 100.0); data.jammerInd[GNSS_LOC_SIGNAL_TYPE_BEIDOU_B1_I] = ((double)reports.mRfAndParams.back().mJammerBds / 100.0); } if (GNSS_INVALID_JAMMER_IND != reports.mRfAndParams.back().mJammerGal) { data.gnssDataMask[GNSS_LOC_SIGNAL_TYPE_GALILEO_E1_C] |= GNSS_LOC_DATA_AGC_BIT | GNSS_LOC_DATA_JAMMER_IND_BIT; data.agc[GNSS_LOC_SIGNAL_TYPE_GALILEO_E1_C] = -((double)reports.mRfAndParams.back().mJammerGal / 100.0); data.jammerInd[GNSS_LOC_SIGNAL_TYPE_GALILEO_E1_C] = ((double)reports.mRfAndParams.back().mJammerGal / 100.0); } } } } /* Callbacks registered with loc_net_iface library */ static void agpsOpenResultCb (bool isSuccess, AGpsExtType agpsType, const char* apn, AGpsBearerType bearerType, void* userDataPtr) { LOC_LOGD("%s]: ", __func__); if (userDataPtr == nullptr) { LOC_LOGE("%s]: userDataPtr is nullptr.", __func__); return; } if (apn == nullptr) { LOC_LOGE("%s]: apn is nullptr.", __func__); return; } GnssAdapter* adapter = (GnssAdapter*)userDataPtr; if (isSuccess) { adapter->dataConnOpenCommand(agpsType, apn, strlen(apn), bearerType); } else { adapter->dataConnFailedCommand(agpsType); } } static void agpsCloseResultCb (bool isSuccess, AGpsExtType agpsType, void* userDataPtr) { LOC_LOGD("%s]: ", __func__); if (userDataPtr == nullptr) { LOC_LOGE("%s]: userDataPtr is nullptr.", __func__); return; } GnssAdapter* adapter = (GnssAdapter*)userDataPtr; if (isSuccess) { adapter->dataConnClosedCommand(agpsType); } else { adapter->dataConnFailedCommand(agpsType); } } void GnssAdapter::saveGnssEnergyConsumedCallback(GnssEnergyConsumedCallback energyConsumedCb) { mGnssEnergyConsumedCb = energyConsumedCb; } void GnssAdapter::getGnssEnergyConsumedCommand(GnssEnergyConsumedCallback energyConsumedCb) { struct MsgGetGnssEnergyConsumed : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; GnssEnergyConsumedCallback mEnergyConsumedCb; inline MsgGetGnssEnergyConsumed(GnssAdapter& adapter, LocApiBase& api, GnssEnergyConsumedCallback energyConsumedCb) : LocMsg(), mAdapter(adapter), mApi(api), mEnergyConsumedCb(energyConsumedCb){} inline virtual void proc() const { mAdapter.saveGnssEnergyConsumedCallback(mEnergyConsumedCb); mApi.getGnssEnergyConsumed(); } }; sendMsg(new MsgGetGnssEnergyConsumed(*this, *mLocApi, energyConsumedCb)); } uint32_t GnssAdapter::getNfwControlBits(const std::vector& enabledNfws) { uint32_t nfwControlBits = 0; for (auto& pkgName : enabledNfws) { auto nfw = mNfws.find(pkgName); if (mNfws.end() != nfw) { nfwControlBits |= nfw->second; } } nfwControlBits = ~nfwControlBits & GNSS_CONFIG_GPS_LOCK_NFW_ALL; LOC_LOGd("nfwControlBits=0x%X", nfwControlBits); return nfwControlBits; } void GnssAdapter::nfwControlCommand(std::vector& enabledNfws) { struct MsgControlNfwLocationAccess : public LocMsg { GnssAdapter& mAdapter; LocApiBase& mApi; const std::vector mEnabledNfws; inline MsgControlNfwLocationAccess(GnssAdapter& adapter, LocApiBase& api, const std::vector& enabledNfws) : LocMsg(), mAdapter(adapter), mApi(api), mEnabledNfws(std::move(enabledNfws)) {} inline virtual void proc() const { if (!mAdapter.isEngineCapabilitiesKnown()) { mAdapter.mPendingMsgs.push_back( new MsgControlNfwLocationAccess(mAdapter, mApi, mEnabledNfws)); return; } GnssConfigGpsLock gpsLock; uint32_t nfwControlBits; nfwControlBits = mAdapter.getNfwControlBits(mEnabledNfws); gpsLock = ContextBase::mGps_conf.GPS_LOCK; gpsLock &= GNSS_CONFIG_GPS_LOCK_MO; gpsLock |= nfwControlBits; ContextBase::mGps_conf.GPS_LOCK = gpsLock; LOC_LOGv("gpsLock = 0x%X nfwControlBits = 0x%X", gpsLock, nfwControlBits); mApi.sendMsg(new LocApiMsg([&mApi = mApi, gpsLock]() { mApi.setGpsLockSync((GnssConfigGpsLock)gpsLock); })); } }; if (mSupportNfwControl) { sendMsg(new MsgControlNfwLocationAccess(*this, *mLocApi, enabledNfws)); } else { LOC_LOGw("NFW control is not supported, do not use this for NFW"); } } // Set tunc constrained mode, use 0 session id to indicate // that no callback is needed. Session id 0 is used for calls that // are not invoked from the integration api, e.g.: initial configuration // from the configure file void GnssAdapter::setConstrainedTunc(bool enable, float tuncConstraint, uint32_t energyBudget, uint32_t sessionId) { mLocConfigInfo.tuncConfigInfo.isValid = true; mLocConfigInfo.tuncConfigInfo.enable = enable; mLocConfigInfo.tuncConfigInfo.tuncThresholdMs = tuncConstraint; mLocConfigInfo.tuncConfigInfo.energyBudget = energyBudget; LocApiResponse* locApiResponse = nullptr; if (sessionId != 0) { locApiResponse = new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); } } mLocApi->setConstrainedTuncMode( enable, tuncConstraint, energyBudget, locApiResponse); } uint32_t GnssAdapter::setConstrainedTuncCommand (bool enable, float tuncConstraint, uint32_t energyBudget) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgEnableTUNC : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; bool mEnable; float mTuncConstraint; uint32_t mEnergyBudget; inline MsgEnableTUNC(GnssAdapter& adapter, uint32_t sessionId, bool enable, float tuncConstraint, uint32_t energyBudget) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mEnable(enable), mTuncConstraint(tuncConstraint), mEnergyBudget(energyBudget) {} inline virtual void proc() const { mAdapter.setConstrainedTunc(mEnable, mTuncConstraint, mEnergyBudget, mSessionId); } }; sendMsg(new MsgEnableTUNC(*this, sessionId, enable, tuncConstraint, energyBudget)); return sessionId; } // Set position assisted clock estimator, use 0 session id to indicate // that no callback is needed. Session id 0 is used for calls that are // not invoked from the integration api, e.g.: initial configuration // from the configure file. void GnssAdapter::setPositionAssistedClockEstimator(bool enable, uint32_t sessionId) { mLocConfigInfo.paceConfigInfo.isValid = true; mLocConfigInfo.paceConfigInfo.enable = enable; LocApiResponse* locApiResponse = nullptr; if (sessionId != 0) { locApiResponse = new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); } } mLocApi->setPositionAssistedClockEstimatorMode(enable, locApiResponse); } uint32_t GnssAdapter::setPositionAssistedClockEstimatorCommand(bool enable) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgEnablePACE : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; bool mEnable; inline MsgEnablePACE(GnssAdapter& adapter, uint32_t sessionId, bool enable) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mEnable(enable){} inline virtual void proc() const { mAdapter.setPositionAssistedClockEstimator(mEnable, mSessionId); } }; sendMsg(new MsgEnablePACE(*this, sessionId, enable)); return sessionId; } void GnssAdapter::gnssUpdateSvConfig( uint32_t sessionId, const GnssSvTypeConfig& constellationEnablementConfig, const GnssSvIdConfig& blacklistSvConfig) { // suspend all tracking sessions to apply the constellation config suspendSessions(); if (constellationEnablementConfig.size == sizeof(constellationEnablementConfig)) { // check whether if any constellation is removed from the new config GnssSvTypesMask currentEnabledMask = mGnssSvTypeConfig.enabledSvTypesMask; GnssSvTypesMask newEnabledMask = constellationEnablementConfig.enabledSvTypesMask; GnssSvTypesMask enabledRemoved = currentEnabledMask & (currentEnabledMask ^ newEnabledMask); // Send reset if any constellation is removed from the enabled list if (enabledRemoved != 0) { mLocApi->resetConstellationControl(); } // if the constellation config is valid, issue request to modem // to enable/disable constellation mLocApi->setConstellationControl(mGnssSvTypeConfig); } else if (constellationEnablementConfig.size == 0) { // when the size is not set, meaning reset to modem default mLocApi->resetConstellationControl(); } // save the constellation settings to be used for modem SSR mGnssSvTypeConfig = constellationEnablementConfig; // handle blacklisted SV settings mGnssSvIdConfig = blacklistSvConfig; // process blacklist svs info mBlacklistedSvIds.clear(); // need to save the balcklisted sv info into mBlacklistedSvIds as well convertFromGnssSvIdConfig(blacklistSvConfig, mBlacklistedSvIds); LocApiResponse* locApiResponse = new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); } mLocApi->setBlacklistSv(mGnssSvIdConfig, locApiResponse); // resume all tracking sessions after the constellation config has been applied restartSessions(false); } uint32_t GnssAdapter::gnssUpdateSvConfigCommand( const GnssSvTypeConfig& constellationEnablementConfig, const GnssSvIdConfig& blacklistSvConfig) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgUpdateSvConfig : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; GnssSvTypeConfig mConstellationEnablementConfig; GnssSvIdConfig mBlacklistSvIdConfig; inline MsgUpdateSvConfig(GnssAdapter& adapter, uint32_t sessionId, const GnssSvTypeConfig& constellationEnablementConfig, const GnssSvIdConfig& blacklistSvConfig) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mConstellationEnablementConfig(constellationEnablementConfig), mBlacklistSvIdConfig(blacklistSvConfig) {} inline virtual void proc() const { mAdapter.gnssUpdateSvConfig(mSessionId, mConstellationEnablementConfig, mBlacklistSvIdConfig); } }; if (sessionId != 0) { sendMsg(new MsgUpdateSvConfig(*this, sessionId, constellationEnablementConfig, blacklistSvConfig)); } return sessionId; } void GnssAdapter::gnssUpdateSecondaryBandConfig( uint32_t sessionId, const GnssSvTypeConfig& secondaryBandConfig) { LocApiResponse* locApiResponse = new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); } // handle secondary band info mGnssSeconaryBandConfig = secondaryBandConfig; gnssSecondaryBandConfigUpdate(locApiResponse); } uint32_t GnssAdapter::gnssUpdateSecondaryBandConfigCommand( const GnssSvTypeConfig& secondaryBandConfig) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgUpdateSecondaryBandConfig : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; GnssSvTypeConfig mSecondaryBandConfig; inline MsgUpdateSecondaryBandConfig(GnssAdapter& adapter, uint32_t sessionId, const GnssSvTypeConfig& secondaryBandConfig) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mSecondaryBandConfig(secondaryBandConfig) {} inline virtual void proc() const { mAdapter.gnssUpdateSecondaryBandConfig(mSessionId, mSecondaryBandConfig); } }; if (sessionId != 0) { sendMsg(new MsgUpdateSecondaryBandConfig(*this, sessionId, secondaryBandConfig)); } return sessionId; } // This function currently retrieves secondary band configuration // for constellation enablement/disablement. void GnssAdapter::gnssGetSecondaryBandConfig(uint32_t sessionId) { LocApiResponse* locApiResponse = new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); } mLocApi->getConstellationMultiBandConfig(sessionId, locApiResponse); } uint32_t GnssAdapter::gnssGetSecondaryBandConfigCommand() { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgGetSecondaryBandConfig : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; inline MsgGetSecondaryBandConfig(GnssAdapter& adapter, uint32_t sessionId) : LocMsg(), mAdapter(adapter), mSessionId(sessionId) {} inline virtual void proc() const { mAdapter.gnssGetSecondaryBandConfig(mSessionId); } }; if (sessionId != 0) { sendMsg(new MsgGetSecondaryBandConfig(*this, sessionId)); } return sessionId; } void GnssAdapter::configLeverArm(uint32_t sessionId, const LeverArmConfigInfo& configInfo) { LocationError err = LOCATION_ERROR_NOT_SUPPORTED; // save the lever ARM config info for translating SPE positions from // GNSS antenna based to VRP based if (configInfo.leverArmValidMask & LEVER_ARM_TYPE_GNSS_TO_VRP_BIT) { mLocConfigInfo.leverArmConfigInfo.leverArmValidMask |= LEVER_ARM_TYPE_GNSS_TO_VRP_BIT; mLocConfigInfo.leverArmConfigInfo.gnssToVRP = configInfo.gnssToVRP; err = LOCATION_ERROR_SUCCESS; } if (configInfo.leverArmValidMask & LEVER_ARM_TYPE_DR_IMU_TO_GNSS_BIT) { if (mDreIntEnabled && mEngHubProxy->configLeverArm(configInfo)) { err = LOCATION_ERROR_SUCCESS; } } reportResponse(err, sessionId); } uint32_t GnssAdapter::configLeverArmCommand(const LeverArmConfigInfo& configInfo) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgConfigLeverArm : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; LeverArmConfigInfo mConfigInfo; inline MsgConfigLeverArm(GnssAdapter& adapter, uint32_t sessionId, const LeverArmConfigInfo& configInfo) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mConfigInfo(configInfo) {} inline virtual void proc() const { mAdapter.configLeverArm(mSessionId, mConfigInfo); } }; sendMsg(new MsgConfigLeverArm(*this, sessionId, configInfo)); return sessionId; } bool GnssAdapter::initMeasCorr(bool bSendCbWhenNotSupported) { LOC_LOGv("GnssAdapter::initMeasCorr"); /* Message to initialize Measurement Corrections */ struct MsgInitMeasCorr : public LocMsg { GnssAdapter& mAdapter; GnssMeasurementCorrectionsCapabilitiesMask mCapMask; inline MsgInitMeasCorr(GnssAdapter& adapter, GnssMeasurementCorrectionsCapabilitiesMask capMask) : LocMsg(), mAdapter(adapter), mCapMask(capMask) { LOC_LOGv("MsgInitMeasCorr"); } inline virtual void proc() const { LOC_LOGv("MsgInitMeasCorr::proc()"); mAdapter.mMeasCorrSetCapabilitiesCb(mCapMask); } }; if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_MEASUREMENTS_CORRECTION)) { sendMsg(new MsgInitMeasCorr(*this, GNSS_MEAS_CORR_LOS_SATS | GNSS_MEAS_CORR_EXCESS_PATH_LENGTH | GNSS_MEAS_CORR_REFLECTING_PLANE)); return true; } else { LOC_LOGv("MEASUREMENTS_CORRECTION feature is not supported in the modem"); if (bSendCbWhenNotSupported) { sendMsg(new MsgInitMeasCorr(*this, 0)); } return false; } } bool GnssAdapter::openMeasCorrCommand(const measCorrSetCapabilitiesCb setCapabilitiesCb) { LOC_LOGi("GnssAdapter::openMeasCorrCommand"); /* Send message to initialize Measurement Corrections */ mMeasCorrSetCapabilitiesCb = setCapabilitiesCb; mIsMeasCorrInterfaceOpen = true; if (isEngineCapabilitiesKnown()) { LOC_LOGv("Capabilities are known, proceed with measurement corrections init"); return initMeasCorr(false); } else { LOC_LOGv("Capabilities are not known, wait for open"); return true; } } bool GnssAdapter::measCorrSetCorrectionsCommand(const GnssMeasurementCorrections gnssMeasCorr) { LOC_LOGi("GnssAdapter::measCorrSetCorrectionsCommand"); /* Message to set Measurement Corrections */ struct MsgSetCorrectionsMeasCorr : public LocMsg { const GnssMeasurementCorrections mGnssMeasCorr; GnssAdapter& mAdapter; LocApiBase& mApi; inline MsgSetCorrectionsMeasCorr( const GnssMeasurementCorrections gnssMeasCorr, GnssAdapter& adapter, LocApiBase& api) : LocMsg(), mGnssMeasCorr(gnssMeasCorr), mAdapter(adapter), mApi(api) { LOC_LOGv("MsgSetCorrectionsMeasCorr"); } inline virtual void proc() const { LOC_LOGv("MsgSetCorrectionsMeasCorr::proc()"); mApi.setMeasurementCorrections(mGnssMeasCorr); } }; if (ContextBase::isFeatureSupported(LOC_SUPPORTED_FEATURE_MEASUREMENTS_CORRECTION)) { sendMsg(new MsgSetCorrectionsMeasCorr(gnssMeasCorr, *this, *mLocApi)); return true; } else { LOC_LOGw("Measurement Corrections are not supported!"); return false; } } uint32_t GnssAdapter::antennaInfoInitCommand(const antennaInfoCb antennaInfoCallback) { LOC_LOGi("GnssAdapter::antennaInfoInitCommand"); /* Message to initialize Antenna Information */ struct MsgInitAi : public LocMsg { const antennaInfoCb mAntennaInfoCb; GnssAdapter& mAdapter; inline MsgInitAi(const antennaInfoCb antennaInfoCallback, GnssAdapter& adapter) : LocMsg(), mAntennaInfoCb(antennaInfoCallback), mAdapter(adapter) { LOC_LOGv("MsgInitAi"); } inline virtual void proc() const { LOC_LOGv("MsgInitAi::proc()"); mAdapter.reportGnssAntennaInformation(mAntennaInfoCb); } }; sendMsg(new MsgInitAi(antennaInfoCallback, *this)); return ANTENNA_INFO_SUCCESS; } void GnssAdapter::configRobustLocation(uint32_t sessionId, bool enable, bool enableForE911) { mLocConfigInfo.robustLocationConfigInfo.isValid = true; mLocConfigInfo.robustLocationConfigInfo.enable = enable; mLocConfigInfo.robustLocationConfigInfo.enableFor911 = enableForE911; LocApiResponse* locApiResponse = nullptr; if (sessionId != 0) { locApiResponse = new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); } } mLocApi->configRobustLocation(enable, enableForE911, locApiResponse); } uint32_t GnssAdapter::configRobustLocationCommand( bool enable, bool enableForE911) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgConfigRobustLocation : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; bool mEnable; bool mEnableForE911; inline MsgConfigRobustLocation(GnssAdapter& adapter, uint32_t sessionId, bool enable, bool enableForE911) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mEnable(enable), mEnableForE911(enableForE911) {} inline virtual void proc() const { mAdapter.configRobustLocation(mSessionId, mEnable, mEnableForE911); } }; sendMsg(new MsgConfigRobustLocation(*this, sessionId, enable, enableForE911)); return sessionId; } void GnssAdapter::configMinGpsWeek(uint32_t sessionId, uint16_t minGpsWeek) { // suspend all sessions for modem to take the min GPS week config suspendSessions(); LocApiResponse* locApiResponse = nullptr; if (sessionId != 0) { locApiResponse = new LocApiResponse(*getContext(), [this, sessionId] (LocationError err) { reportResponse(err, sessionId);}); if (!locApiResponse) { LOC_LOGe("memory alloc failed"); } } mLocApi->configMinGpsWeek(minGpsWeek, locApiResponse); // resume all tracking sessions after the min GPS week config // has been changed restartSessions(false); } uint32_t GnssAdapter::configMinGpsWeekCommand(uint16_t minGpsWeek) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgConfigMinGpsWeek : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; uint16_t mMinGpsWeek; inline MsgConfigMinGpsWeek(GnssAdapter& adapter, uint32_t sessionId, uint16_t minGpsWeek) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mMinGpsWeek(minGpsWeek) {} inline virtual void proc() const { mAdapter.configMinGpsWeek(mSessionId, mMinGpsWeek); } }; sendMsg(new MsgConfigMinGpsWeek(*this, sessionId, minGpsWeek)); return sessionId; } uint32_t GnssAdapter::configDeadReckoningEngineParamsCommand( const DeadReckoningEngineConfig& dreConfig) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u", sessionId); struct MsgConfigDrEngine : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; DeadReckoningEngineConfig mDreConfig; inline MsgConfigDrEngine(GnssAdapter& adapter, uint32_t sessionId, const DeadReckoningEngineConfig& dreConfig) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mDreConfig(dreConfig) {} inline virtual void proc() const { LocationError err = LOCATION_ERROR_NOT_SUPPORTED; if (true == mAdapter.mEngHubProxy->configDeadReckoningEngineParams(mDreConfig)) { err = LOCATION_ERROR_SUCCESS; } mAdapter.reportResponse(err, mSessionId); } }; sendMsg(new MsgConfigDrEngine(*this, sessionId, dreConfig)); return sessionId; } uint32_t GnssAdapter::configEngineRunStateCommand( PositioningEngineMask engType, LocEngineRunState engState) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGe("session id %u, eng type 0x%x, eng state %d, dre enabled %d", sessionId, engType, engState, mDreIntEnabled); struct MsgConfigEngineRunState : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; PositioningEngineMask mEngType; LocEngineRunState mEngState; inline MsgConfigEngineRunState(GnssAdapter& adapter, uint32_t sessionId, PositioningEngineMask engType, LocEngineRunState engState) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mEngType(engType), mEngState(engState) {} inline virtual void proc() const { LocationError err = LOCATION_ERROR_NOT_SUPPORTED; // Currently, only DR engine supports pause/resume request if ((mEngType == DEAD_RECKONING_ENGINE) && (mAdapter.mDreIntEnabled == true)) { if (true == mAdapter.mEngHubProxy->configEngineRunState(mEngType, mEngState)) { err = LOCATION_ERROR_SUCCESS; } } mAdapter.reportResponse(err, mSessionId); } }; sendMsg(new MsgConfigEngineRunState(*this, sessionId, engType, engState)); return sessionId; } uint32_t GnssAdapter::configOutputNmeaTypesCommand(GnssNmeaTypesMask enabledNmeaTypes) { // generated session id will be none-zero uint32_t sessionId = generateSessionId(); LOC_LOGd("session id %u, enabled nmea = 0x%x", sessionId, enabledNmeaTypes); struct MsgConfigOutputNmeaType : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; GnssNmeaTypesMask mEnabledNmeaTypes; inline MsgConfigOutputNmeaType(GnssAdapter& adapter, uint32_t sessionId, GnssNmeaTypesMask enabledNmeaTypes) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mEnabledNmeaTypes(enabledNmeaTypes) {} inline virtual void proc() const { loc_nmea_config_output_types(mEnabledNmeaTypes); mAdapter.reportResponse(LOCATION_ERROR_SUCCESS, mSessionId); } }; sendMsg(new MsgConfigOutputNmeaType(*this, sessionId, enabledNmeaTypes)); return sessionId; } void GnssAdapter::powerIndicationInitCommand(const powerIndicationCb powerIndicationCallback) { LOC_LOGi("GnssAdapter::powerIndicationInitCommand"); struct MsgPowerIndicationInit : public LocMsg { const powerIndicationCb mPowerIndicationCb; GnssAdapter& mAdapter; inline MsgPowerIndicationInit(const powerIndicationCb powerIndicationCallback, GnssAdapter& adapter) : LocMsg(), mPowerIndicationCb(powerIndicationCallback), mAdapter(adapter) { LOC_LOGv("MsgPowerIndicationInit"); } inline virtual void proc() const { LOC_LOGv("MsgPowerIndicationInit::proc()"); mAdapter.setPowerIndicationCb(mPowerIndicationCb); } }; sendMsg(new MsgPowerIndicationInit(powerIndicationCallback, *this)); } void GnssAdapter::powerIndicationRequestCommand() { LOC_LOGi("GnssAdapter::powerIndicationRequestCommand"); struct MsgPowerIndicationRequest : public LocMsg { LocApiBase& mApi; inline MsgPowerIndicationRequest(LocApiBase& api) : LocMsg(), mApi(api) { LOC_LOGv("MsgPowerIndicationRequest"); } inline virtual void proc() const { LOC_LOGv("MsgPowerIndicationRequest::proc()"); mApi.getGnssEnergyConsumed(); } }; sendMsg(new MsgPowerIndicationRequest(*mLocApi)); } void GnssAdapter::reportGnssConfigEvent(uint32_t sessionId, const GnssConfig& gnssConfig) { struct MsgReportGnssConfig : public LocMsg { GnssAdapter& mAdapter; uint32_t mSessionId; mutable GnssConfig mGnssConfig; inline MsgReportGnssConfig(GnssAdapter& adapter, uint32_t sessionId, const GnssConfig& gnssConfig) : LocMsg(), mAdapter(adapter), mSessionId(sessionId), mGnssConfig(gnssConfig) {} inline virtual void proc() const { // Invoke control clients config callback if (nullptr != mAdapter.mControlCallbacks.gnssConfigCb) { mAdapter.mControlCallbacks.gnssConfigCb(mSessionId, mGnssConfig); } else { LOC_LOGe("Failed to report, callback not registered"); } } }; sendMsg(new MsgReportGnssConfig(*this, sessionId, gnssConfig)); } /* ==== Eng Hub Proxy ================================================================= */ /* ======== UTILITIES ================================================================= */ void GnssAdapter::initEngHubProxyCommand() { LOC_LOGd(); struct MsgInitEngHubProxy : public LocMsg { GnssAdapter* mAdapter; inline MsgInitEngHubProxy(GnssAdapter* adapter) : LocMsg(), mAdapter(adapter) {} inline virtual void proc() const { mAdapter->initEngHubProxy(); } }; sendMsg(new MsgInitEngHubProxy(this)); } bool GnssAdapter::initEngHubProxy() { static bool firstTime = true; static bool engHubLoadSuccessful = false; const char *error = nullptr; unsigned int processListLength = 0; loc_process_info_s_type* processInfoList = nullptr; do { // load eng hub only once if (firstTime == false) { break; } int rc = loc_read_process_conf(LOC_PATH_IZAT_CONF, &processListLength, &processInfoList); if (rc != 0) { LOC_LOGE("%s]: failed to parse conf file", __func__); break; } EngineServiceInfo engServiceInfo = {}; bool pluginDaemonEnabled = false; // go over the conf table to see whether any plugin daemon is enabled for (unsigned int i = 0; i < processListLength; i++) { if ((strncmp(processInfoList[i].name[0], PROCESS_NAME_ENGINE_SERVICE, strlen(PROCESS_NAME_ENGINE_SERVICE)) == 0) && (processInfoList[i].proc_status == ENABLED)) { pluginDaemonEnabled = true; if (processInfoList[i].args[1]!= nullptr) { // check if this is DRE-INT engine if (strncmp(processInfoList[i].args[1], "DRE-INT", sizeof("DRE-INT")) == 0) { mDreIntEnabled = true; } else if (strncmp(processInfoList[i].args[1], "PPE-INT", sizeof("PPE-INT")) == 0) { // check if this is PPE-INT engine engServiceInfo.ppeIntEnabled = true; } } } } // no plugin daemon is enabled for this platform, // check if external engine is present for which we need // libloc_eng_hub.so to be loaded if (pluginDaemonEnabled == false) { UTIL_READ_CONF(LOC_PATH_IZAT_CONF, izatConfParamTable); if (!loadEngHubForExternalEngine) { break; } } // load the engine hub .so, if the .so is not present // all EngHubProxyBase calls will turn into no-op. void *handle = nullptr; if ((handle = dlopen("libloc_eng_hub.so", RTLD_NOW)) == nullptr) { if ((error = dlerror()) != nullptr) { LOC_LOGE("%s]: libloc_eng_hub.so not found %s !", __func__, error); } break; } // prepare the callback functions // callback function for engine hub to report back position event GnssAdapterReportEnginePositionsEventCb reportPositionEventCb = [this](int count, EngineLocationInfo* locationArr) { // report from engine hub on behalf of PPE will be treated as fromUlp reportEnginePositionsEvent(count, locationArr); }; // callback function for engine hub to request for complete aiding data GnssAdapterReqAidingDataCb reqAidingDataCb = [this] (const GnssAidingDataSvMask& svDataMask) { mLocApi->requestForAidingData(svDataMask); }; GnssAdapterUpdateNHzRequirementCb updateNHzRequirementCb = [this] (bool nHzNeeded, bool nHzMeasNeeded) { if (nHzMeasNeeded && (!checkMask(LOC_API_ADAPTER_BIT_GNSS_NHZ_MEASUREMENT))) { updateEvtMask(LOC_API_ADAPTER_BIT_GNSS_NHZ_MEASUREMENT, LOC_REGISTRATION_MASK_ENABLED); } else if (checkMask(LOC_API_ADAPTER_BIT_GNSS_NHZ_MEASUREMENT)) { updateEvtMask(LOC_API_ADAPTER_BIT_GNSS_NHZ_MEASUREMENT, LOC_REGISTRATION_MASK_DISABLED); } if (mNHzNeeded != nHzNeeded) { mNHzNeeded = nHzNeeded; checkAndRestartSPESession(); } }; GnssAdapterUpdateQwesFeatureStatusCb updateQwesFeatureStatusCb = [this] (const std::unordered_map &featureMap) { ContextBase::setQwesFeatureStatus(featureMap); reportQwesCapabilities(featureMap); }; getEngHubProxyFn* getter = (getEngHubProxyFn*) dlsym(handle, "getEngHubProxy"); if(getter != nullptr) { // Wait for the script(rootdir/etc/init.qcom.rc) to create socket folder locUtilWaitForDir(SOCKET_DIR_EHUB); EngineHubProxyBase* hubProxy = (*getter) (mMsgTask, mContext, mSystemStatus->getOsObserver(), engServiceInfo, reportPositionEventCb, reqAidingDataCb, updateNHzRequirementCb, updateQwesFeatureStatusCb); if (hubProxy != nullptr) { mEngHubProxy = hubProxy; engHubLoadSuccessful = true; } } else { LOC_LOGD("%s]: entered, did not find function", __func__); } LOC_LOGD("%s]: first time initialization %d, returned %d", __func__, firstTime, engHubLoadSuccessful); } while (0); if (processInfoList != nullptr) { free (processInfoList); processInfoList = nullptr; } firstTime = false; return engHubLoadSuccessful; } std::vector GnssAdapter::parseDoublesString(char* dString) { std::vector dVector; char* tmp = NULL; char* substr; dVector.clear(); for (substr = strtok_r(dString, " ", &tmp); substr != NULL; substr = strtok_r(NULL, " ", &tmp)) { dVector.push_back(std::stod(substr)); } return dVector; } void GnssAdapter::initGnssPowerStatistics() { if (!mGnssPowerStatisticsInit) { mLocApi->getGnssEnergyConsumed(); } } void GnssAdapter::reportGnssAntennaInformation(const antennaInfoCb antennaInfoCallback) { #define MAX_TEXT_WIDTH 50 #define MAX_COLUMN_WIDTH 20 /* parse antenna_corrections file and fill in a vector of GnssAntennaInformation data structure */ std::vector gnssAntennaInformations; GnssAntennaInformation gnssAntennaInfo; uint32_t antennaInfoVectorSize; loc_param_s_type ant_info_vector_table[] = { { "ANTENNA_INFO_VECTOR_SIZE", &antennaInfoVectorSize, NULL, 'n' } }; UTIL_READ_CONF(LOC_PATH_ANT_CORR, ant_info_vector_table); for (uint32_t i = 0; i < antennaInfoVectorSize; i++) { double carrierFrequencyMHz; char pcOffsetStr[LOC_MAX_PARAM_STRING]; uint32_t numberOfRows = 0; uint32_t numberOfColumns = 0; uint32_t numberOfRowsSGC = 0; uint32_t numberOfColumnsSGC = 0; gnssAntennaInfo.phaseCenterVariationCorrectionMillimeters.clear(); gnssAntennaInfo.phaseCenterVariationCorrectionUncertaintyMillimeters.clear(); gnssAntennaInfo.signalGainCorrectionDbi.clear(); gnssAntennaInfo.signalGainCorrectionUncertaintyDbi.clear(); string s1 = "CARRIER_FREQUENCY_"; s1 += to_string(i); string s2 = "PC_OFFSET_"; s2 += to_string(i); string s3 = "NUMBER_OF_ROWS_"; s3 += to_string(i); string s4 = "NUMBER_OF_COLUMNS_"; s4 += to_string(i); string s5 = "NUMBER_OF_ROWS_SGC_"; s5 += to_string(i); string s6 = "NUMBER_OF_COLUMNS_SGC_"; s6 += to_string(i); gnssAntennaInfo.size = sizeof(gnssAntennaInfo); loc_param_s_type ant_cf_table[] = { { s1.c_str(), &carrierFrequencyMHz, NULL, 'f' }, { s2.c_str(), &pcOffsetStr, NULL, 's' }, { s3.c_str(), &numberOfRows, NULL, 'n' }, { s4.c_str(), &numberOfColumns, NULL, 'n' }, { s5.c_str(), &numberOfRowsSGC, NULL, 'n' }, { s6.c_str(), &numberOfColumnsSGC, NULL, 'n' }, }; UTIL_READ_CONF(LOC_PATH_ANT_CORR, ant_cf_table); if (0 == numberOfRowsSGC) { numberOfRowsSGC = numberOfRows; } if (0 == numberOfColumnsSGC) { numberOfColumnsSGC = numberOfColumns; } gnssAntennaInfo.carrierFrequencyMHz = carrierFrequencyMHz; // now parse pcOffsetStr to get each entry std::vector pcOffset; pcOffset = parseDoublesString(pcOffsetStr); gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters.size = sizeof(gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters); gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters.x = pcOffset[0]; gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters.xUncertainty = pcOffset[1]; gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters.y = pcOffset[2]; gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters.yUncertainty = pcOffset[3]; gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters.z = pcOffset[4]; gnssAntennaInfo.phaseCenterOffsetCoordinateMillimeters.zUncertainty = pcOffset[5]; uint16_t array_size = MAX_TEXT_WIDTH + MAX_COLUMN_WIDTH*numberOfColumns; uint16_t array_size_SGC = MAX_TEXT_WIDTH + MAX_COLUMN_WIDTH*numberOfColumnsSGC; for (uint32_t j = 0; j < numberOfRows; j++) { char pcVarCorrStr[array_size]; char pcVarCorrUncStr[array_size]; string s1 = "PC_VARIATION_CORRECTION_" + to_string(i) + "_ROW_"; s1 += to_string(j); string s2 = "PC_VARIATION_CORRECTION_UNC_" + to_string(i) + "_ROW_"; s2 += to_string(j); loc_param_s_type ant_row_table[] = { { s1.c_str(), &pcVarCorrStr, NULL, 's' }, { s2.c_str(), &pcVarCorrUncStr, NULL, 's' }, }; UTIL_READ_CONF_LONG(LOC_PATH_ANT_CORR, ant_row_table, array_size); gnssAntennaInfo.phaseCenterVariationCorrectionMillimeters.push_back( parseDoublesString(pcVarCorrStr)); gnssAntennaInfo.phaseCenterVariationCorrectionUncertaintyMillimeters.push_back( parseDoublesString(pcVarCorrUncStr)); } for (uint32_t j = 0; j < numberOfRowsSGC; j++) { char sigGainCorrStr[array_size_SGC]; char sigGainCorrUncStr[array_size_SGC]; string s3 = "SIGNAL_GAIN_CORRECTION_" + to_string(i) + "_ROW_"; s3 += to_string(j); string s4 = "SIGNAL_GAIN_CORRECTION_UNC_" + to_string(i) + "_ROW_"; s4 += to_string(j); loc_param_s_type ant_row_table[] = { { s3.c_str(), &sigGainCorrStr, NULL, 's' }, { s4.c_str(), &sigGainCorrUncStr, NULL, 's' }, }; UTIL_READ_CONF_LONG(LOC_PATH_ANT_CORR, ant_row_table, array_size_SGC); gnssAntennaInfo.signalGainCorrectionDbi.push_back( parseDoublesString(sigGainCorrStr)); gnssAntennaInfo.signalGainCorrectionUncertaintyDbi.push_back( parseDoublesString(sigGainCorrUncStr)); } gnssAntennaInformations.push_back(std::move(gnssAntennaInfo)); } if (antennaInfoVectorSize > 0) { antennaInfoCallback(gnssAntennaInformations); } } /* ==== DGnss Usable Reporter ========================================================= */ void GnssAdapter::initCDFWServiceCommand() { struct MsgInitCDFWService : public LocMsg { GnssAdapter* mAdapter; inline MsgInitCDFWService(GnssAdapter* adapter) : LocMsg(), mAdapter(adapter) {} inline virtual void proc() const { mAdapter->initCDFWService(); } }; sendMsg(new MsgInitCDFWService(this)); } /* ======== UTILITIES ================================================================= */ void GnssAdapter::initCDFWService() { LOC_LOGd("mCdfwInterface %p", mCdfwInterface); if (nullptr == mCdfwInterface) { void* libHandle = nullptr; const char* libName = "libcdfw.so"; libHandle = nullptr; getCdfwInterface getter = (getCdfwInterface)dlGetSymFromLib(libHandle, libName, "getQCdfwInterface"); if (nullptr == getter) { LOC_LOGe("dlGetSymFromLib getQCdfwInterface failed"); } else { mCdfwInterface = getter(); } if (nullptr != mCdfwInterface) { QDgnssSessionActiveCb qDgnssSessionActiveCb = [this] (bool sessionActive) { mDGnssNeedReport = sessionActive; }; mCdfwInterface->startDgnssApiService(*mMsgTask); mQDgnssListenerHDL = mCdfwInterface->createUsableReporter(qDgnssSessionActiveCb); } } //Read Ntrip params form gps.conf on automobile PLs #ifdef USE_GLIB readPPENtripConfig(); #endif } /*==== DGnss Ntrip Source ==========================================================*/ void GnssAdapter::enablePPENtripStreamCommand(const GnssNtripConnectionParams& params, bool enableRTKEngine) { (void)enableRTKEngine; //future parameter, not used if (0 == params.size || params.hostNameOrIp.empty() || params.mountPoint.empty() || params.username.empty() || params.password.empty()) { LOC_LOGe("Ntrip parameters are invalid!"); return; } struct enableNtripMsg : public LocMsg { GnssAdapter& mAdapter; const GnssNtripConnectionParams mParams; inline enableNtripMsg(GnssAdapter& adapter, const GnssNtripConnectionParams& params) : LocMsg(), mAdapter(adapter), mParams(std::move(params)) {} inline virtual void proc() const { mAdapter.handleEnablePPENtrip(mParams); } }; sendMsg(new enableNtripMsg(*this, params)); } void GnssAdapter::handleEnablePPENtrip(const GnssNtripConnectionParams& params) { LOC_LOGd("%d %s %d %s %s %s %d mSendNmeaConsent %d", params.useSSL, params.hostNameOrIp.data(), params.port, params.mountPoint.data(), params.username.data(), params.password.data(), params.requiresNmeaLocation, mSendNmeaConsent); GnssNtripConnectionParams* pNtripParams = &(mStartDgnssNtripParams.ntripParams); if (pNtripParams->useSSL == params.useSSL && 0 == pNtripParams->hostNameOrIp.compare(params.hostNameOrIp) && pNtripParams->port == params.port && 0 == pNtripParams->mountPoint.compare(params.mountPoint) && 0 == pNtripParams->username.compare(params.username) && 0 == pNtripParams->password.compare(params.password) && pNtripParams->requiresNmeaLocation == params.requiresNmeaLocation && mDgnssState & DGNSS_STATE_ENABLE_NTRIP_COMMAND) { LOC_LOGd("received same Ntrip param"); return; } mDgnssState |= DGNSS_STATE_ENABLE_NTRIP_COMMAND; mDgnssState |= DGNSS_STATE_NO_NMEA_PENDING; mDgnssState &= ~DGNSS_STATE_NTRIP_SESSION_STARTED; mStartDgnssNtripParams.ntripParams = std::move(params); mStartDgnssNtripParams.nmea.clear(); if (mSendNmeaConsent && pNtripParams->requiresNmeaLocation) { mDgnssState &= ~DGNSS_STATE_NO_NMEA_PENDING; mDgnssLastNmeaBootTimeMilli = 0; return; } checkUpdateDgnssNtrip(false); } void GnssAdapter::disablePPENtripStreamCommand() { struct disableNtripMsg : public LocMsg { GnssAdapter& mAdapter; inline disableNtripMsg(GnssAdapter& adapter) : LocMsg(), mAdapter(adapter) {} inline virtual void proc() const { mAdapter.handleDisablePPENtrip(); } }; sendMsg(new disableNtripMsg(*this)); } void GnssAdapter::handleDisablePPENtrip() { mDgnssState &= ~DGNSS_STATE_ENABLE_NTRIP_COMMAND; mDgnssState |= DGNSS_STATE_NO_NMEA_PENDING; stopDgnssNtrip(); } void GnssAdapter::checkUpdateDgnssNtrip(bool isLocationValid) { LOC_LOGd("isInSession %d mDgnssState 0x%x isLocationValid %d", isInSession(), mDgnssState, isLocationValid); if (isInSession()) { uint64_t curBootTime = getBootTimeMilliSec(); if (mDgnssState == (DGNSS_STATE_ENABLE_NTRIP_COMMAND | DGNSS_STATE_NO_NMEA_PENDING)) { mDgnssState |= DGNSS_STATE_NTRIP_SESSION_STARTED; mXtraObserver.startDgnssSource(mStartDgnssNtripParams); if (isDgnssNmeaRequired()) { mDgnssLastNmeaBootTimeMilli = curBootTime; } } else if ((mDgnssState & DGNSS_STATE_NTRIP_SESSION_STARTED) && isLocationValid && isDgnssNmeaRequired() && curBootTime - mDgnssLastNmeaBootTimeMilli > DGNSS_RANGE_UPDATE_TIME_10MIN_IN_MILLI ) { mXtraObserver.updateNmeaToDgnssServer(mStartDgnssNtripParams.nmea); mDgnssLastNmeaBootTimeMilli = curBootTime; } } } void GnssAdapter::stopDgnssNtrip() { LOC_LOGd("isInSession %d mDgnssState 0x%x", isInSession(), mDgnssState); mStartDgnssNtripParams.nmea.clear(); if (mDgnssState & DGNSS_STATE_NTRIP_SESSION_STARTED) { mDgnssState &= ~DGNSS_STATE_NTRIP_SESSION_STARTED; mXtraObserver.stopDgnssSource(); } } void GnssAdapter::reportGGAToNtrip(const char* nmea) { #define POS_OF_GGA (3) //start position of "GGA" #define COMMAS_BEFORE_VALID (6) //"$GPGGA,,,,,,0,,,,,,,,*hh" if (!isDgnssNmeaRequired()) { return; } if (nullptr == nmea || 0 == strlen(nmea)) { return; } string nmeaString(nmea); size_t foundPos = nmeaString.find("GGA"); size_t foundNth = 0; string GGAString; if (foundPos != string::npos && foundPos >= POS_OF_GGA) { size_t foundNextSentence = nmeaString.find("$", foundPos); if (foundNextSentence != string::npos) { /* remove other sentences after GGA */ GGAString = nmeaString.substr(foundPos - POS_OF_GGA, foundNextSentence); } else { /* GGA is the last sentence */ GGAString = nmeaString.substr(foundPos - POS_OF_GGA); } LOC_LOGd("GGAString %s", GGAString.c_str()); foundPos = GGAString.find(","); while (foundPos != string::npos && foundNth < COMMAS_BEFORE_VALID) { foundPos++; foundNth++; foundPos = GGAString.find(",", foundPos); } if (COMMAS_BEFORE_VALID == foundNth && GGAString.at(foundPos-1) != '0') { mDgnssState |= DGNSS_STATE_NO_NMEA_PENDING; mStartDgnssNtripParams.nmea = std::move(GGAString); checkUpdateDgnssNtrip(true); } } return; } void GnssAdapter::readPPENtripConfig() { static char NtripParamsString[LOC_MAX_PARAM_STRING]; if (mDgnssState & DGNSS_STATE_ENABLE_NTRIP_COMMAND) { return; } // A sample Ntrip_Params -> 199.106.116.10 5000 Avante_Ref CV2X 1234 0 0 static loc_param_s_type gpsConfParamTable[] = { {"Ntrip_Params", &NtripParamsString, nullptr, 's'} }; UTIL_READ_CONF(LOC_PATH_GPS_CONF, gpsConfParamTable); LOC_LOGd("Ntrip_Params=%s", NtripParamsString); if (0 == strlen(NtripParamsString)) { return; } // assign params to mStartDgnssNtripParams GnssNtripConnectionParams* pNtripParams = &(mStartDgnssNtripParams.ntripParams); string next(NtripParamsString); stringstream ss(next); #define GET_NEXT() getline(ss, next, ' '); \ LOC_LOGd("%s", next.c_str()); GET_NEXT(); pNtripParams->hostNameOrIp = std::move(next); GET_NEXT(); pNtripParams->port = std::stoi(next); GET_NEXT(); pNtripParams->mountPoint = std::move(next); GET_NEXT(); pNtripParams->username = std::move(next); GET_NEXT(); pNtripParams->password = std::move(next); GET_NEXT(); mSendNmeaConsent = true; GET_NEXT(); pNtripParams->requiresNmeaLocation = next.compare("0") ? true : false; GET_NEXT(); pNtripParams->useSSL = next.compare("0") ? true : false; LOC_LOGd("%d %s %d %s %s %s %d", pNtripParams->useSSL, pNtripParams->hostNameOrIp.data(), pNtripParams->port, pNtripParams->mountPoint.data(), pNtripParams->username.data(), pNtripParams->password.data(), pNtripParams->requiresNmeaLocation); /* set up state*/ mDgnssState |= DGNSS_STATE_ENABLE_NTRIP_COMMAND; mDgnssState |= DGNSS_STATE_NO_NMEA_PENDING; mDgnssState &= ~DGNSS_STATE_NTRIP_SESSION_STARTED; mStartDgnssNtripParams.nmea.clear(); if (pNtripParams->requiresNmeaLocation) { mDgnssState &= ~DGNSS_STATE_NO_NMEA_PENDING; } }