2005-06-08 09:18:34 +02:00
|
|
|
/*
|
|
|
|
* (C) Copyright David Gibson <dwg@au1.ibm.com>, IBM Corporation. 2005.
|
|
|
|
*
|
2007-09-18 03:44:04 +02:00
|
|
|
*
|
2005-06-08 09:18:34 +02:00
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
|
|
* License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* General Public License for more details.
|
2007-09-18 03:44:04 +02:00
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
|
|
* USA
|
2005-06-08 09:18:34 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include "dtc.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Tree building functions
|
|
|
|
*/
|
|
|
|
|
2010-02-24 08:22:17 +01:00
|
|
|
void add_label(struct label **labels, char *label)
|
|
|
|
{
|
|
|
|
struct label *new = xmalloc(sizeof(*new));
|
|
|
|
|
|
|
|
new->label = label;
|
|
|
|
new->next = *labels;
|
|
|
|
*labels = new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct property *build_property(char *name, struct data val)
|
2005-06-08 09:18:34 +02:00
|
|
|
{
|
|
|
|
struct property *new = xmalloc(sizeof(*new));
|
|
|
|
|
2010-02-24 08:22:17 +01:00
|
|
|
memset(new, 0, sizeof(*new));
|
|
|
|
|
2005-06-08 09:18:34 +02:00
|
|
|
new->name = name;
|
|
|
|
new->val = val;
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct property *chain_property(struct property *first, struct property *list)
|
|
|
|
{
|
|
|
|
assert(first->next == NULL);
|
2007-09-18 03:44:04 +02:00
|
|
|
|
2005-06-08 09:18:34 +02:00
|
|
|
first->next = list;
|
2007-09-18 03:44:04 +02:00
|
|
|
return first;
|
2005-06-08 09:18:34 +02:00
|
|
|
}
|
|
|
|
|
2007-10-22 23:09:56 +02:00
|
|
|
struct property *reverse_properties(struct property *first)
|
|
|
|
{
|
|
|
|
struct property *p = first;
|
|
|
|
struct property *head = NULL;
|
|
|
|
struct property *next;
|
|
|
|
|
|
|
|
while (p) {
|
|
|
|
next = p->next;
|
|
|
|
p->next = head;
|
|
|
|
head = p;
|
|
|
|
p = next;
|
|
|
|
}
|
|
|
|
return head;
|
|
|
|
}
|
|
|
|
|
2005-06-08 09:18:34 +02:00
|
|
|
struct node *build_node(struct property *proplist, struct node *children)
|
|
|
|
{
|
|
|
|
struct node *new = xmalloc(sizeof(*new));
|
|
|
|
struct node *child;
|
|
|
|
|
|
|
|
memset(new, 0, sizeof(*new));
|
|
|
|
|
2007-10-22 23:09:56 +02:00
|
|
|
new->proplist = reverse_properties(proplist);
|
2005-06-08 09:18:34 +02:00
|
|
|
new->children = children;
|
|
|
|
|
|
|
|
for_each_child(new, child) {
|
|
|
|
child->parent = new;
|
|
|
|
}
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
2010-02-24 08:22:17 +01:00
|
|
|
struct node *name_node(struct node *node, char *name)
|
2005-06-08 09:18:34 +02:00
|
|
|
{
|
|
|
|
assert(node->name == NULL);
|
|
|
|
|
|
|
|
node->name = name;
|
2005-06-16 06:36:37 +02:00
|
|
|
|
2005-06-08 09:18:34 +02:00
|
|
|
return node;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct node *chain_node(struct node *first, struct node *list)
|
|
|
|
{
|
|
|
|
assert(first->next_sibling == NULL);
|
|
|
|
|
|
|
|
first->next_sibling = list;
|
|
|
|
return first;
|
|
|
|
}
|
|
|
|
|
|
|
|
void add_property(struct node *node, struct property *prop)
|
|
|
|
{
|
2005-10-21 09:26:45 +02:00
|
|
|
struct property **p;
|
|
|
|
|
|
|
|
prop->next = NULL;
|
|
|
|
|
|
|
|
p = &node->proplist;
|
|
|
|
while (*p)
|
|
|
|
p = &((*p)->next);
|
|
|
|
|
|
|
|
*p = prop;
|
2005-06-08 09:18:34 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void add_child(struct node *parent, struct node *child)
|
|
|
|
{
|
2005-10-21 09:26:45 +02:00
|
|
|
struct node **p;
|
|
|
|
|
|
|
|
child->next_sibling = NULL;
|
2008-07-07 03:19:13 +02:00
|
|
|
child->parent = parent;
|
2005-10-21 09:26:45 +02:00
|
|
|
|
|
|
|
p = &parent->children;
|
|
|
|
while (*p)
|
|
|
|
p = &((*p)->next_sibling);
|
|
|
|
|
|
|
|
*p = child;
|
2005-06-08 09:18:34 +02:00
|
|
|
}
|
|
|
|
|
2010-02-24 08:22:17 +01:00
|
|
|
struct reserve_info *build_reserve_entry(uint64_t address, uint64_t size)
|
2005-10-24 10:18:38 +02:00
|
|
|
{
|
|
|
|
struct reserve_info *new = xmalloc(sizeof(*new));
|
|
|
|
|
2010-02-24 08:22:17 +01:00
|
|
|
memset(new, 0, sizeof(*new));
|
|
|
|
|
2005-10-24 10:18:38 +02:00
|
|
|
new->re.address = address;
|
|
|
|
new->re.size = size;
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct reserve_info *chain_reserve_entry(struct reserve_info *first,
|
|
|
|
struct reserve_info *list)
|
|
|
|
{
|
|
|
|
assert(first->next == NULL);
|
|
|
|
|
|
|
|
first->next = list;
|
|
|
|
return first;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct reserve_info *add_reserve_entry(struct reserve_info *list,
|
|
|
|
struct reserve_info *new)
|
|
|
|
{
|
|
|
|
struct reserve_info *last;
|
|
|
|
|
|
|
|
new->next = NULL;
|
|
|
|
|
|
|
|
if (! list)
|
|
|
|
return new;
|
|
|
|
|
|
|
|
for (last = list; last->next; last = last->next)
|
|
|
|
;
|
|
|
|
|
|
|
|
last->next = new;
|
|
|
|
|
|
|
|
return list;
|
|
|
|
}
|
2005-06-08 09:18:34 +02:00
|
|
|
|
2007-10-18 09:22:30 +02:00
|
|
|
struct boot_info *build_boot_info(struct reserve_info *reservelist,
|
2008-06-25 05:53:07 +02:00
|
|
|
struct node *tree, uint32_t boot_cpuid_phys)
|
2007-10-18 09:22:30 +02:00
|
|
|
{
|
|
|
|
struct boot_info *bi;
|
|
|
|
|
|
|
|
bi = xmalloc(sizeof(*bi));
|
|
|
|
bi->reservelist = reservelist;
|
|
|
|
bi->dt = tree;
|
2008-05-16 05:22:57 +02:00
|
|
|
bi->boot_cpuid_phys = boot_cpuid_phys;
|
2007-10-18 09:22:30 +02:00
|
|
|
|
|
|
|
return bi;
|
|
|
|
}
|
|
|
|
|
2005-06-08 09:18:34 +02:00
|
|
|
/*
|
|
|
|
* Tree accessor functions
|
|
|
|
*/
|
|
|
|
|
2007-12-04 04:26:15 +01:00
|
|
|
const char *get_unitname(struct node *node)
|
2005-06-08 09:18:34 +02:00
|
|
|
{
|
|
|
|
if (node->name[node->basenamelen] == '\0')
|
|
|
|
return "";
|
|
|
|
else
|
|
|
|
return node->name + node->basenamelen + 1;
|
|
|
|
}
|
|
|
|
|
2007-12-04 04:26:15 +01:00
|
|
|
struct property *get_property(struct node *node, const char *propname)
|
2005-06-08 09:18:34 +02:00
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
|
|
|
|
for_each_property(node, prop)
|
|
|
|
if (streq(prop->name, propname))
|
|
|
|
return prop;
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2007-11-01 06:49:26 +01:00
|
|
|
cell_t propval_cell(struct property *prop)
|
2005-06-08 09:18:34 +02:00
|
|
|
{
|
|
|
|
assert(prop->val.len == sizeof(cell_t));
|
2008-06-25 06:27:53 +02:00
|
|
|
return fdt32_to_cpu(*((cell_t *)prop->val.val));
|
2005-06-08 09:18:34 +02:00
|
|
|
}
|
|
|
|
|
2010-02-23 09:56:41 +01:00
|
|
|
struct property *get_property_by_label(struct node *tree, const char *label,
|
|
|
|
struct node **node)
|
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
struct node *c;
|
|
|
|
|
|
|
|
*node = tree;
|
|
|
|
|
|
|
|
for_each_property(tree, prop) {
|
2010-02-24 08:22:17 +01:00
|
|
|
struct label *l;
|
|
|
|
|
|
|
|
for_each_label(prop->labels, l)
|
|
|
|
if (streq(l->label, label))
|
|
|
|
return prop;
|
2010-02-23 09:56:41 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
for_each_child(tree, c) {
|
|
|
|
prop = get_property_by_label(c, label, node);
|
|
|
|
if (prop)
|
|
|
|
return prop;
|
|
|
|
}
|
|
|
|
|
|
|
|
*node = NULL;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct marker *get_marker_label(struct node *tree, const char *label,
|
|
|
|
struct node **node, struct property **prop)
|
|
|
|
{
|
|
|
|
struct marker *m;
|
|
|
|
struct property *p;
|
|
|
|
struct node *c;
|
|
|
|
|
|
|
|
*node = tree;
|
|
|
|
|
|
|
|
for_each_property(tree, p) {
|
|
|
|
*prop = p;
|
|
|
|
m = p->val.markers;
|
|
|
|
for_each_marker_of_type(m, LABEL)
|
|
|
|
if (streq(m->ref, label))
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
|
|
|
|
for_each_child(tree, c) {
|
|
|
|
m = get_marker_label(c, label, node, prop);
|
|
|
|
if (m)
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
|
|
|
|
*prop = NULL;
|
|
|
|
*node = NULL;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2007-12-04 04:26:15 +01:00
|
|
|
struct node *get_subnode(struct node *node, const char *nodename)
|
2005-06-08 09:18:34 +02:00
|
|
|
{
|
|
|
|
struct node *child;
|
|
|
|
|
2005-06-16 09:04:00 +02:00
|
|
|
for_each_child(node, child)
|
|
|
|
if (streq(child->name, nodename))
|
|
|
|
return child;
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2007-12-04 04:26:15 +01:00
|
|
|
struct node *get_node_by_path(struct node *tree, const char *path)
|
2005-06-16 09:04:00 +02:00
|
|
|
{
|
2007-12-04 04:26:15 +01:00
|
|
|
const char *p;
|
2005-06-16 09:04:00 +02:00
|
|
|
struct node *child;
|
|
|
|
|
|
|
|
if (!path || ! (*path))
|
|
|
|
return tree;
|
|
|
|
|
|
|
|
while (path[0] == '/')
|
|
|
|
path++;
|
|
|
|
|
|
|
|
p = strchr(path, '/');
|
|
|
|
|
|
|
|
for_each_child(tree, child) {
|
|
|
|
if (p && strneq(path, child->name, p-path))
|
|
|
|
return get_node_by_path(child, p+1);
|
|
|
|
else if (!p && streq(path, child->name))
|
2005-06-08 09:18:34 +02:00
|
|
|
return child;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2007-11-22 04:38:07 +01:00
|
|
|
struct node *get_node_by_label(struct node *tree, const char *label)
|
2007-02-07 04:29:07 +01:00
|
|
|
{
|
|
|
|
struct node *child, *node;
|
2010-02-24 08:22:17 +01:00
|
|
|
struct label *l;
|
2007-02-07 04:29:07 +01:00
|
|
|
|
|
|
|
assert(label && (strlen(label) > 0));
|
|
|
|
|
2010-02-24 08:22:17 +01:00
|
|
|
for_each_label(tree->labels, l)
|
|
|
|
if (streq(l->label, label))
|
|
|
|
return tree;
|
2007-02-07 04:29:07 +01:00
|
|
|
|
|
|
|
for_each_child(tree, child) {
|
|
|
|
node = get_node_by_label(child, label);
|
|
|
|
if (node)
|
|
|
|
return node;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2007-11-01 06:49:26 +01:00
|
|
|
struct node *get_node_by_phandle(struct node *tree, cell_t phandle)
|
2005-06-08 09:18:34 +02:00
|
|
|
{
|
2007-09-18 03:44:04 +02:00
|
|
|
struct node *child, *node;
|
2005-06-08 09:18:34 +02:00
|
|
|
|
|
|
|
assert((phandle != 0) && (phandle != -1));
|
|
|
|
|
|
|
|
if (tree->phandle == phandle)
|
|
|
|
return tree;
|
|
|
|
|
|
|
|
for_each_child(tree, child) {
|
|
|
|
node = get_node_by_phandle(child, phandle);
|
|
|
|
if (node)
|
|
|
|
return node;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
2007-02-07 04:29:07 +01:00
|
|
|
|
2007-12-04 04:26:15 +01:00
|
|
|
struct node *get_node_by_ref(struct node *tree, const char *ref)
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2007-11-22 04:38:07 +01:00
|
|
|
{
|
|
|
|
if (ref[0] == '/')
|
|
|
|
return get_node_by_path(tree, ref);
|
|
|
|
else
|
|
|
|
return get_node_by_label(tree, ref);
|
|
|
|
}
|
|
|
|
|
|
|
|
cell_t get_node_phandle(struct node *root, struct node *node)
|
2007-10-18 09:22:30 +02:00
|
|
|
{
|
|
|
|
static cell_t phandle = 1; /* FIXME: ick, static local */
|
|
|
|
|
|
|
|
if ((node->phandle != 0) && (node->phandle != -1))
|
|
|
|
return node->phandle;
|
|
|
|
|
|
|
|
while (get_node_by_phandle(root, phandle))
|
|
|
|
phandle++;
|
|
|
|
|
|
|
|
node->phandle = phandle;
|
Support ePAPR compliant phandle properties
Currently, the Linux kernel, libfdt and dtc, when using flattened
device trees encode a node's phandle into a property named
"linux,phandle". The ePAPR specification, however - aiming as it is
to not be a Linux specific spec - requires that phandles be encoded in
a property named simply "phandle".
This patch adds support for this newer approach to dtc and libfdt.
Specifically:
- fdt_get_phandle() will now return the correct phandle if it
is supplied in either of these properties
- fdt_node_offset_by_phandle() will correctly find a node with
the given phandle encoded in either property.
- By default, when auto-generating phandles, dtc will encode
it into both properties for maximum compatibility. A new -H
option allows either only old-style or only new-style
properties to be generated.
- If phandle properties are explicitly supplied in the dts
file, dtc will not auto-generate ones in the alternate format.
- If both properties are supplied, dtc will check that they
have the same value.
- Some existing testcases are updated to use a mix of old and
new-style phandles, partially testing the changes.
- A new phandle_format test further tests the libfdt support,
and the -H option.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2009-11-26 05:37:13 +01:00
|
|
|
|
|
|
|
if (!get_property(node, "linux,phandle")
|
|
|
|
&& (phandle_format & PHANDLE_LEGACY))
|
dtc: Handle linux,phandle properties which self-reference
Currently, dtc will generate phandles for nodes which are referenced
elsewhere in the tree. phandles can also be explicitly assigned by
defining the linux,phandle property. However, there is no way,
currently to tell dtc to generate a phandle for a node if it is not
referenced elsewhere. This is inconvenient when it's expected that
later processing on the flat tree might add nodes which _will_
the node in question.
One way one might attempt to do this is with the construct:
mynode: mynode {
linux,phandle = <&mynode>;
/* ... */
};
Though it's a trifle odd, there's really only one sensible meaning
which can be assigned to this construct: allocate a unique phandle to
"mynode" and put that in its linux,phandle property (as always).
Currently, however, dtc will choke on this self-reference. This patch
corrects this, making the construct above give the expected results.
It also ensures a more meaningful error message is given if you
attempt to process the nonsensical construct:
mynode: mynode {
linux,phandle = <&someothernode>;
/* ... */
};
The 'references' testcase is extended to cover this case, as well.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2008-11-07 02:49:44 +01:00
|
|
|
add_property(node,
|
|
|
|
build_property("linux,phandle",
|
2010-02-24 08:22:17 +01:00
|
|
|
data_append_cell(empty_data, phandle)));
|
Support ePAPR compliant phandle properties
Currently, the Linux kernel, libfdt and dtc, when using flattened
device trees encode a node's phandle into a property named
"linux,phandle". The ePAPR specification, however - aiming as it is
to not be a Linux specific spec - requires that phandles be encoded in
a property named simply "phandle".
This patch adds support for this newer approach to dtc and libfdt.
Specifically:
- fdt_get_phandle() will now return the correct phandle if it
is supplied in either of these properties
- fdt_node_offset_by_phandle() will correctly find a node with
the given phandle encoded in either property.
- By default, when auto-generating phandles, dtc will encode
it into both properties for maximum compatibility. A new -H
option allows either only old-style or only new-style
properties to be generated.
- If phandle properties are explicitly supplied in the dts
file, dtc will not auto-generate ones in the alternate format.
- If both properties are supplied, dtc will check that they
have the same value.
- Some existing testcases are updated to use a mix of old and
new-style phandles, partially testing the changes.
- A new phandle_format test further tests the libfdt support,
and the -H option.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2009-11-26 05:37:13 +01:00
|
|
|
|
|
|
|
if (!get_property(node, "phandle")
|
|
|
|
&& (phandle_format & PHANDLE_EPAPR))
|
|
|
|
add_property(node,
|
|
|
|
build_property("phandle",
|
2010-02-24 08:22:17 +01:00
|
|
|
data_append_cell(empty_data, phandle)));
|
Support ePAPR compliant phandle properties
Currently, the Linux kernel, libfdt and dtc, when using flattened
device trees encode a node's phandle into a property named
"linux,phandle". The ePAPR specification, however - aiming as it is
to not be a Linux specific spec - requires that phandles be encoded in
a property named simply "phandle".
This patch adds support for this newer approach to dtc and libfdt.
Specifically:
- fdt_get_phandle() will now return the correct phandle if it
is supplied in either of these properties
- fdt_node_offset_by_phandle() will correctly find a node with
the given phandle encoded in either property.
- By default, when auto-generating phandles, dtc will encode
it into both properties for maximum compatibility. A new -H
option allows either only old-style or only new-style
properties to be generated.
- If phandle properties are explicitly supplied in the dts
file, dtc will not auto-generate ones in the alternate format.
- If both properties are supplied, dtc will check that they
have the same value.
- Some existing testcases are updated to use a mix of old and
new-style phandles, partially testing the changes.
- A new phandle_format test further tests the libfdt support,
and the -H option.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2009-11-26 05:37:13 +01:00
|
|
|
|
|
|
|
/* If the node *does* have a phandle property, we must
|
dtc: Handle linux,phandle properties which self-reference
Currently, dtc will generate phandles for nodes which are referenced
elsewhere in the tree. phandles can also be explicitly assigned by
defining the linux,phandle property. However, there is no way,
currently to tell dtc to generate a phandle for a node if it is not
referenced elsewhere. This is inconvenient when it's expected that
later processing on the flat tree might add nodes which _will_
the node in question.
One way one might attempt to do this is with the construct:
mynode: mynode {
linux,phandle = <&mynode>;
/* ... */
};
Though it's a trifle odd, there's really only one sensible meaning
which can be assigned to this construct: allocate a unique phandle to
"mynode" and put that in its linux,phandle property (as always).
Currently, however, dtc will choke on this self-reference. This patch
corrects this, making the construct above give the expected results.
It also ensures a more meaningful error message is given if you
attempt to process the nonsensical construct:
mynode: mynode {
linux,phandle = <&someothernode>;
/* ... */
};
The 'references' testcase is extended to cover this case, as well.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2008-11-07 02:49:44 +01:00
|
|
|
* be dealing with a self-referencing phandle, which will be
|
|
|
|
* fixed up momentarily in the caller */
|
2007-10-18 09:22:30 +02:00
|
|
|
|
|
|
|
return node->phandle;
|
|
|
|
}
|
2010-02-19 05:50:50 +01:00
|
|
|
|
|
|
|
uint32_t guess_boot_cpuid(struct node *tree)
|
|
|
|
{
|
|
|
|
struct node *cpus, *bootcpu;
|
|
|
|
struct property *reg;
|
|
|
|
|
|
|
|
cpus = get_node_by_path(tree, "/cpus");
|
|
|
|
if (!cpus)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
|
|
bootcpu = cpus->children;
|
|
|
|
if (!bootcpu)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
reg = get_property(bootcpu, "reg");
|
|
|
|
if (!reg || (reg->val.len != sizeof(uint32_t)))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* FIXME: Sanity check node? */
|
|
|
|
|
|
|
|
return propval_cell(reg);
|
|
|
|
}
|