Remove operationTuple. am: 39ac22e908
am: 097035e472
Change-Id: Ifb3a627712a121874c1be0b7ded375ccf13b299e
This commit is contained in:
commit
2c8a9b9397
3 changed files with 4 additions and 39 deletions
|
@ -1002,21 +1002,6 @@ enum DeviceStatus : int32_t {
|
|||
UNKNOWN,
|
||||
};
|
||||
|
||||
/**
|
||||
* A typed operation.
|
||||
*/
|
||||
struct OperationTuple {
|
||||
/**
|
||||
* The type of operation.
|
||||
*/
|
||||
OperationType operationType;
|
||||
|
||||
/**
|
||||
* The input data type of operation.
|
||||
*/
|
||||
OperandType operandType;
|
||||
};
|
||||
|
||||
/**
|
||||
* Performance information for the reference workload.
|
||||
*
|
||||
|
@ -1038,20 +1023,6 @@ struct PerformanceInfo {
|
|||
* The capabilities of a driver.
|
||||
*/
|
||||
struct Capabilities {
|
||||
/**
|
||||
* A collection of typed operations supported by the driver.
|
||||
*/
|
||||
vec<OperationTuple> supportedOperationTuples;
|
||||
|
||||
/**
|
||||
* Indicates whether a driver caches its prepared model for reuse the next
|
||||
* time the application begins. This is useful because the model may have
|
||||
* been prepared in a previous run.
|
||||
*
|
||||
* True if caching is supported, false otherwise.
|
||||
*/
|
||||
bool cachesCompilation;
|
||||
|
||||
/**
|
||||
* Driver performance when operating on float32 data.
|
||||
*/
|
||||
|
@ -1144,9 +1115,9 @@ struct Operand {
|
|||
*/
|
||||
struct Operation {
|
||||
/**
|
||||
* The tuple describing the operation type and input type.
|
||||
* The operation type.
|
||||
*/
|
||||
OperationTuple opTuple;
|
||||
OperationType type;
|
||||
|
||||
/**
|
||||
* Describes the table that contains the indexes of the inputs of the
|
||||
|
|
|
@ -78,9 +78,7 @@ Model createValidTestModel() {
|
|||
};
|
||||
|
||||
const std::vector<Operation> operations = {{
|
||||
.opTuple = {OperationType::ADD, OperandType::TENSOR_FLOAT32},
|
||||
.inputs = {operand1, operand2, operand3},
|
||||
.outputs = {operand4},
|
||||
.type = OperationType::ADD, .inputs = {operand1, operand2, operand3}, .outputs = {operand4},
|
||||
}};
|
||||
|
||||
const std::vector<uint32_t> inputIndexes = {operand1};
|
||||
|
@ -107,8 +105,7 @@ Model createValidTestModel() {
|
|||
// create first invalid model
|
||||
Model createInvalidTestModel1() {
|
||||
Model model = createValidTestModel();
|
||||
model.operations[0].opTuple = {static_cast<OperationType>(0xDEADBEEF) /* INVALID */,
|
||||
OperandType::TENSOR_FLOAT32};
|
||||
model.operations[0].type = static_cast<OperationType>(0xDEADBEEF); /* INVALID */
|
||||
return model;
|
||||
}
|
||||
|
||||
|
|
|
@ -107,9 +107,6 @@ TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
|
|||
Return<void> ret =
|
||||
device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
|
||||
EXPECT_EQ(ErrorStatus::NONE, status);
|
||||
EXPECT_NE(nullptr, capabilities.supportedOperationTuples.data());
|
||||
EXPECT_NE(0ull, capabilities.supportedOperationTuples.size());
|
||||
EXPECT_EQ(0u, static_cast<uint32_t>(capabilities.cachesCompilation) & ~0x1);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
|
||||
|
|
Loading…
Reference in a new issue