Merge "Add template for 1.3 types.hal and regenerate it"

This commit is contained in:
TreeHugger Robot 2019-10-09 22:46:39 +00:00 committed by Android (Google) Code Review
commit 3e8ca9074e
4 changed files with 367 additions and 31 deletions

View file

@ -588,7 +588,7 @@ fd65298e1e09e0e3c781ab18305920d757dbe55a3b459ce17814ec5cf6dfee99 android.hardwar
07d0a252b2d8fa35887908a996ba395cf392968395fc30afab791f46e0c22a52 android.hardware.boot@1.1::IBootControl
74049a402be913963edfdd80828a53736570e9d8124a1bf18166b6ed46a6b0ab android.hardware.boot@1.1::types
34515afa2bb792d3c6d8495a5f5d907d179c8507ca5e55c10050d02ae1d516ef android.hardware.neuralnetworks@1.3::IDevice
e2d20d4eb24f40b44a3766d05f77052581cb3f4df35fb48c0cc5d9cdcf5c872e android.hardware.neuralnetworks@1.3::types
b74fe72cfe438f50e772e6a307657ff449d5bde83c15dd1f140ff2edbe73499c android.hardware.neuralnetworks@1.3::types
04395b26be33db17747c3d3b0e8066d323f891ff4f9f3b3ddb490b2f3f844a18 android.hardware.wifi@1.4::IWifi
270f0eb670dfd9bc5cd718e09711f2534fa8425f54d06c1a46523ca156b509e2 android.hardware.wifi.supplicant@1.3::ISupplicant
dd4b7cfbb6e1c6ff011c33920762ad89dd02240c63a4d3a3d5037f154eae3e3b android.hardware.wifi.supplicant@1.3::ISupplicantStaIface

View file

@ -41,27 +41,7 @@ enum Constant : uint32_t {
enum OperandType : @1.0::OperandType {
%insert Operand_1.2
/*
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* OEM specific scalar value.
* OEM = 10000,
*/
/*
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* A tensor of OEM specific values.
* TENSOR_OEM_BYTE = 10001,
*/
/* ADDING A NEW FUNDAMENTAL TYPE REQUIRES UPDATING THE VALUE OF
* OperandTypeRange::FUNDAMENTAL_MAX.
*/
/* ADDING A NEW OEM TYPE REQUIRES UPDATING THE VALUE OF
* OperandTypeRange::OEM_MAX.
*/
%insert OEMDeprecationAndOperandTypeRangeMaxComment
};
/**

View file

@ -25,13 +25,6 @@ import @1.2::SymmPerChannelQuantParams;
import android.hidl.safe_union@1.0::Monostate;
/**
* NOTE: Since NNAPI 1.2, OEM operation and data type are deprecated. Extensions
* are the preferred alternative.
*
* NOTE: Adding a new fundamental type requires updating the value of
* OperandTypeRange::FUNDAMENTAL_MAX.
*/
enum OperandType : @1.2::OperandType {
/**
* A tensor of 8 bit signed integers that represent real numbers.
@ -43,10 +36,29 @@ enum OperandType : @1.2::OperandType {
*
* The formula is:
* real_value = (integer_value - zeroPoint) * scale.
*
* Available since API level 30.
*/
TENSOR_QUANT8_ASYMM_SIGNED = 14,
/*
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* OEM specific scalar value.
* OEM = 10000,
*/
/*
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* A tensor of OEM specific values.
* TENSOR_OEM_BYTE = 10001,
*/
/* ADDING A NEW FUNDAMENTAL TYPE REQUIRES UPDATING THE VALUE OF
* OperandTypeRange::FUNDAMENTAL_MAX.
*/
/* ADDING A NEW OEM TYPE REQUIRES UPDATING THE VALUE OF
* OperandTypeRange::OEM_MAX.
*/
};
/**

344
neuralnetworks/1.3/types.t Normal file
View file

@ -0,0 +1,344 @@
%% template file for generating types.hal.
%% see frameworks/ml/nn/tools/api/README.md.
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.neuralnetworks@1.3;
import @1.0::DataLocation;
import @1.0::OperandLifeTime;
import @1.0::PerformanceInfo;
import @1.2::OperandType;
import @1.2::OperationType;
import @1.2::SymmPerChannelQuantParams;
import android.hidl.safe_union@1.0::Monostate;
enum OperandType : @1.2::OperandType {
%insert Operand_1.3
%insert OEMDeprecationAndOperandTypeRangeMaxComment
};
/**
* The range of operand values in the OperandType enum.
*/
enum OperandTypeRange : uint32_t {
BASE_MIN = 0,
FUNDAMENTAL_MIN = 0,
%insert Operand_1.3_MAX
OEM_MIN = 10000,
OEM_MAX = 10001,
BASE_MAX = 0xFFFF,
};
/**
* The capabilities of a driver.
*
* Performance of an operation comes from the type of its first operand.
* This represents performance for non extension operand types.
*/
struct Capabilities {
/**
* Driver performance when operating on float32 data but performing
* calculations with range and/or precision as low as that of the IEEE
* 754 16-bit floating-point format.
*/
PerformanceInfo relaxedFloat32toFloat16PerformanceScalar;
PerformanceInfo relaxedFloat32toFloat16PerformanceTensor;
/**
* Driver performance when operating on a particular data type.
* In the case of float32 data, this is used when the calculations
* are not relaxed.
*/
struct OperandPerformance {
OperandType type;
PerformanceInfo info;
};
/**
* Performance by operand type. Must be sorted by OperandType.
* If a particular OperandType is not present in operandPerformance,
* its performance is treated as
* { .execTime = FLT_MAX, .powerUsage = FLT_MAX }.
*/
vec<OperandPerformance> operandPerformance;
};
/**
* Describes one operand of the model's graph.
*/
struct Operand {
/**
* The data type.
*
* Besides the values listed in {@link OperandType}, any value above
* {@link OperandTypeRange::BASE_MAX} is possible and should be interpreted
* as an extension type according to {@link Model::extensionNameToPrefix}.
*/
OperandType type;
/**
* Dimensions of the operand.
*
* For a scalar operand, dimensions.size() must be 0.
*
* A tensor operand with all dimensions specified has "fully
* specified" dimensions. Whenever possible (i.e., whenever the
* dimensions are known at model construction time), a tensor
* operand should have (but is not required to have) fully
* specified dimensions, in order to enable the best possible
* performance.
*
* If a tensor operand's dimensions are not fully specified, the
* dimensions of the operand are deduced from the operand
* dimensions and values of the operation for which that operand
* is an output.
*
* In the following situations, a tensor operand's dimensions must
* be fully specified:
*
* . The operand has lifetime CONSTANT_COPY or
* CONSTANT_REFERENCE.
*
* . The operand has lifetime MODEL_INPUT. Fully
* specified dimensions must either be present in the
* Operand or they must be provided in the corresponding
* RequestArgument.
* EXCEPTION: If the input is optional and omitted
* (by setting the hasNoValue field of the corresponding
* RequestArgument to true) then it need not have fully
* specified dimensions.
*
* A tensor operand with some number of unspecified dimensions is
* represented by setting each unspecified dimension to 0.
*
* A tensor operand with unspecified rank is represented by providing
* an empty dimensions vector.
*/
vec<uint32_t> dimensions;
/**
* The number of times this operand appears as an operation input.
*
* (For example, if this operand appears once in one operation's
* input list, and three times in another operation's input list,
* then numberOfConsumers = 4.)
*/
uint32_t numberOfConsumers;
/**
* Quantized scale of the operand.
*
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM or
* TENSOR_INT32.
*/
float scale;
/**
* Quantized zero-point offset of the operand.
*
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM.
*/
int32_t zeroPoint;
/**
* How the operand is used.
*/
OperandLifeTime lifetime;
/**
* Where to find the data for this operand.
* If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or
* NO_VALUE:
* - All the fields must be 0.
* If the lifetime is CONSTANT_COPY:
* - location.poolIndex is 0.
* - location.offset is the offset in bytes into Model.operandValues.
* - location.length is set.
* If the lifetime is CONSTANT_REFERENCE:
* - location.poolIndex is set.
* - location.offset is the offset in bytes into the specified pool.
* - location.length is set.
*/
DataLocation location;
/**
* Additional parameters specific to a particular operand type.
*/
safe_union ExtraParams {
/**
* No additional parameters.
*/
Monostate none;
/**
* Symmetric per-channel quantization parameters.
*
* Only applicable to operands of type TENSOR_QUANT8_SYMM_PER_CHANNEL.
*/
SymmPerChannelQuantParams channelQuant;
/**
* Extension operand parameters.
*
* The framework treats this as an opaque data blob.
* The format is up to individual extensions.
*/
vec<uint8_t> extension;
} extraParams;
};
/**
* Describes one operation of the model's graph.
*/
struct Operation {
/**
* The operation type.
*/
OperationType type;
/**
* Describes the table that contains the indexes of the inputs of the
* operation. The offset is the index in the operandIndexes table.
*/
vec<uint32_t> inputs;
/**
* Describes the table that contains the indexes of the outputs of the
* operation. The offset is the index in the operandIndexes table.
*/
vec<uint32_t> outputs;
};
/**
* A Neural Network Model.
*
* This includes not only the execution graph, but also constant data such as
* weights or scalars added at construction time. The only information that
* may not be known is the shape of the input tensors.
*/
struct Model {
/**
* All operands included in the model.
*/
vec<Operand> operands;
/**
* All operations included in the model.
*
* The operations are sorted into execution order. Every operand
* with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
* written before it is read.
*/
vec<Operation> operations;
/**
* Input indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
vec<uint32_t> inputIndexes;
/**
* Output indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
vec<uint32_t> outputIndexes;
/**
* A byte buffer containing operand data that were copied into the model.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_COPY.
*/
vec<uint8_t> operandValues;
/**
* A collection of shared memory pools containing operand values.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_REFERENCE.
*/
vec<memory> pools;
/**
* 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
* precision as low as that of the IEEE 754 16-bit floating-point format.
* 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
* range and precision of the IEEE 754 32-bit floating-point format.
*/
bool relaxComputationFloat32toFloat16;
/**
* The mapping between extension names and prefixes of operand and
* operation type values.
*
* An operand or operation whose numeric type value is above
* {@link OperandTypeRange::BASE_MAX} or
* {@link OperationTypeRange::BASE_MAX} respectively should be interpreted
* as an extension operand. The low
* {@link Model::ExtensionTypeEncoding::LOW_BITS_TYPE} bits of the value
* correspond to the type ID within the extension and the high
* {@link Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX} bits encode
* the "prefix", which maps uniquely to the extension name.
*
* For example, if a model contains an operation whose value is
* 0xAAAABBBB and extensionNameToPrefix contains an entry with
* prefix=0xAAAA and name="vendor.test.test_extension", then
* the operation should be interpreted as the operation 0xBBBB
* of the extension named vendor.test.test_extension.
*
* This is a one-to-one correspondence. That is, there must be at most one
* prefix corresponding to each extension name and at most one extension
* name corresponding to each prefix.
*/
vec<ExtensionNameAndPrefix> extensionNameToPrefix;
/**
* A correspondence between an extension name and a prefix of operand and
* operation type values.
*/
struct ExtensionNameAndPrefix {
/**
* The extension name.
*
* See {@link Extension::name} for the format specification.
*/
string name;
/**
* The unique extension identifier within the model.
*
* See {@link Model::extensionNameToPrefix}.
*/
uint16_t prefix;
};
/**
* Numeric values of extension operand and operation types have the
* following structure:
* - 16 high bits represent the "prefix", which corresponds uniquely to the
* extension name.
* - 16 low bits represent the type ID within the extension.
*/
enum ExtensionTypeEncoding : uint8_t {
HIGH_BITS_PREFIX = 16,
LOW_BITS_TYPE = 16,
};
};