Add @1.2::IPreparedModel::executeSynchronously() and corresponding VTS tests.

Bug: 119274127

Test: all of the following, with the appropriate android.hardware.neuralnetworks@1.${X}::IDevice/sample-all
    VtsHalNeuralnetworksV1_0TargetTest
    VtsHalNeuralnetworksV1_0TargetTest
    VtsHalNeuralnetworksV1_1CompatV1_0TargetTest
    VtsHalNeuralnetworksV1_1CompatV1_0TargetTest
    VtsHalNeuralnetworksV1_1TargetTest
    VtsHalNeuralnetworksV1_1TargetTest
    VtsHalNeuralnetworksV1_2CompatV1_0TargetTest
    VtsHalNeuralnetworksV1_2CompatV1_0TargetTest
    VtsHalNeuralnetworksV1_2CompatV1_1TargetTest
    VtsHalNeuralnetworksV1_2CompatV1_1TargetTest
    VtsHalNeuralnetworksV1_2TargetTest
    VtsHalNeuralnetworksV1_2TargetTest

Change-Id: Iedfa485b4008d9cec3b81ff4c0ce3ebc0b83c823
(cherry picked from commit 49e41678f5)
This commit is contained in:
David Gross 2018-12-21 11:20:26 -08:00
parent ed2eb3de0a
commit 4592ed15cd
3 changed files with 106 additions and 27 deletions

View file

@ -88,11 +88,22 @@ static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& prepar
sp<ExecutionCallback>& callback) {
return preparedModel->execute_1_2(request, callback);
}
static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>&, const Request&) {
ADD_FAILURE() << "asking for synchronous execution at V1_0";
return ErrorStatus::GENERAL_FAILURE;
}
static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
const Request& request) {
return preparedModel->executeSynchronously(request);
}
enum class Synchronously { NO, YES };
const float kDefaultAtol = 1e-5f;
const float kDefaultRtol = 1e-5f;
template <typename T_IPreparedModel>
void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExample>& examples,
bool hasRelaxedFloat32Model = false, float fpAtol = 1e-5f,
float fpRtol = 1e-5f) {
bool hasRelaxedFloat32Model = false, float fpAtol = kDefaultAtol,
float fpRtol = kDefaultRtol, Synchronously sync = Synchronously::NO) {
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
@ -185,19 +196,31 @@ void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bo
inputMemory->commit();
outputMemory->commit();
// launch execution
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
executionCallback);
ASSERT_TRUE(executionLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
if (sync == Synchronously::NO) {
SCOPED_TRACE("asynchronous");
// retrieve execution status
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
// launch execution
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
executionCallback);
ASSERT_TRUE(executionLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
// retrieve execution status
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
} else {
SCOPED_TRACE("synchronous");
// execute
Return<ErrorStatus> executionStatus = ExecutePreparedModel(
preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
ASSERT_TRUE(executionStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionStatus));
}
// validate results
outputMemory->read();
@ -215,6 +238,13 @@ void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bo
}
}
}
template <typename T_IPreparedModel>
void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExample>& examples,
bool hasRelaxedFloat32Model, Synchronously sync) {
EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol,
kDefaultRtol, sync);
}
static void getPreparedModel(sp<PreparedModelCallback> callback,
sp<V1_0::IPreparedModel>* preparedModel) {
@ -362,7 +392,9 @@ void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> c
ASSERT_NE(nullptr, preparedModel.get());
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16);
model.relaxComputationFloat32toFloat16, Synchronously::NO);
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16, Synchronously::YES);
}
} // namespace generated_tests

View file

@ -51,8 +51,9 @@ interface IPreparedModel extends @1.0::IPreparedModel {
* and complete successfully (ErrorStatus::NONE). There must be
* no failure unless the device itself is in a bad state.
*
* Multiple threads can call the execute_1_2 function on the same IPreparedModel
* object concurrently with different requests.
* Any number of calls to the execute, execute_1_2, and executeSynchronously
* functions, in any combination, may be made concurrently, even on the same
* IPreparedModel object.
*
* @param request The input and output information on which the prepared
* model is to be executed.
@ -71,4 +72,39 @@ interface IPreparedModel extends @1.0::IPreparedModel {
*/
execute_1_2(Request request, IExecutionCallback callback)
generates (ErrorStatus status);
/**
* Performs a synchronous execution on a prepared model.
*
* The execution is performed synchronously with respect to the caller.
* executeSynchronously must verify the inputs to the function are
* correct. If there is an error, executeSynchronously must immediately
* return with the appropriate ErrorStatus value. If the inputs to the
* function are valid and there is no error, executeSynchronously must
* perform the execution, and must not return until the execution is
* complete.
*
* If the prepared model was prepared from a model wherein all tensor
* operands have fully specified dimensions, and the inputs to the function
* are valid, then the execution should complete successfully
* (ErrorStatus::NONE). There must be no failure unless the device itself is
* in a bad state.
*
* Any number of calls to the execute, execute_1_2, and executeSynchronously
* functions, in any combination, may be made concurrently, even on the same
* IPreparedModel object.
*
* @param request The input and output information on which the prepared
* model is to be executed.
* @return status Error status of the execution, must be:
* - NONE if execution is performed successfully
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if there is an unspecified error
* - OUTPUT_INSUFFICIENT_SIZE if provided output buffer is
* not large enough to store the resultant values
* - INVALID_ARGUMENT if one of the input arguments is
* invalid
*/
executeSynchronously(Request request)
generates (ErrorStatus status);
};

View file

@ -97,18 +97,29 @@ static void createPreparedModel(const sp<IDevice>& device, const Model& model,
static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
Request request, const std::function<void(Request*)>& mutation) {
mutation(&request);
SCOPED_TRACE(message + " [execute]");
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus =
preparedModel->execute_1_2(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
{
SCOPED_TRACE(message + " [execute_1_2]");
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus =
preparedModel->execute_1_2(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
{
SCOPED_TRACE(message + " [executeSynchronously]");
Return<ErrorStatus> executeStatus = preparedModel->executeSynchronously(request);
ASSERT_TRUE(executeStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeStatus));
}
}
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,