Add tests to make sure executeFenced validate unspecified output shapes am: 406890769a am: 7274c0d40b

Change-Id: I5f5ddc1ec3ed87ce0d1cb42412d916cbc4a2aa25
This commit is contained in:
Automerger Merge Worker 2020-03-17 12:55:10 +00:00
commit 717fdba917

View file

@ -640,7 +640,7 @@ void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>&
if (result != ErrorStatus::NONE) {
ASSERT_EQ(syncFenceHandle.getNativeHandle(), nullptr);
ASSERT_EQ(fencedCallback, nullptr);
executionStatus = ErrorStatus::GENERAL_FAILURE;
executionStatus = result;
} else if (syncFenceHandle.getNativeHandle()) {
// If a sync fence is returned, try start another run waiting for the sync fence.
ret = preparedModel->executeFenced(request, {syncFenceHandle},
@ -663,9 +663,7 @@ void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>&
}
}
// The driver is allowed to reject executeFenced, and if they do, we should skip.
if ((testConfig.outputType != OutputType::FULLY_SPECIFIED ||
testConfig.executor == Executor::FENCED) &&
if (testConfig.outputType != OutputType::FULLY_SPECIFIED &&
executionStatus == ErrorStatus::GENERAL_FAILURE) {
if (skipped != nullptr) {
*skipped = true;
@ -698,12 +696,22 @@ void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>&
outputShapes.size() == testModel.main.outputIndexes.size());
break;
case OutputType::UNSPECIFIED:
if (testConfig.executor == Executor::FENCED) {
// For Executor::FENCED, the output shape must be fully specified.
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
return;
}
// If the model output operands are not fully specified, outputShapes must have
// the same number of elements as the number of outputs.
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
break;
case OutputType::INSUFFICIENT:
if (testConfig.executor == Executor::FENCED) {
// For Executor::FENCED, the output shape must be fully specified.
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
return;
}
ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
ASSERT_FALSE(outputShapes[0].isSufficient);
@ -746,7 +754,7 @@ void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>&
case TestKind::DYNAMIC_SHAPE: {
outputTypesList = {OutputType::UNSPECIFIED, OutputType::INSUFFICIENT};
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST, Executor::FENCED};
} break;
case TestKind::MEMORY_DOMAIN: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
@ -928,8 +936,13 @@ INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest, [](const TestModel& testModel
INSTANTIATE_GENERATED_TEST(MemoryDomainTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(FencedComputeTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(FencedComputeTest, [](const TestModel& testModel) {
return !testModel.expectFailure &&
std::all_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(),
[&testModel](uint32_t index) {
return testModel.main.operands[index].data.size() > 0;
});
});
INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) {
return testModel.hasQuant8CoupledOperands() && testModel.main.operations.size() == 1;