Update NNAPI 1.3 VTS tests with new types

Bug: 136739795
Bug: 142902514
Bug: 145300530
Test: mma
Test: atest VtsHalNeuralnetworksV1_3TargetTest
Change-Id: Ie76da9dc9d6993a56bf644cfe20c5f5b421672c9
Merged-In: Ie76da9dc9d6993a56bf644cfe20c5f5b421672c9
(cherry picked from commit 9449a28b2f)
This commit is contained in:
Michael Butler 2019-12-11 19:08:08 -08:00 committed by Xusong Wang
parent ed8e77bf12
commit 79a41d77c0
15 changed files with 411 additions and 55 deletions

View file

@ -272,7 +272,7 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
int n;
std::tie(n, outputShapes, timing, std::ignore) =
controller->compute(request, testConfig.measureTiming, keys);
executionStatus = nn::convertResultCodeToErrorStatus(n);
executionStatus = nn::convertToV1_0(nn::convertResultCodeToErrorStatus(n));
break;
}

View file

@ -296,7 +296,8 @@ static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
// collect serialized result by running regular burst
const auto [nRegular, outputShapesRegular, timingRegular, fallbackRegular] =
controllerRegular->compute(request, MeasureTiming::NO, keys);
const ErrorStatus statusRegular = nn::convertResultCodeToErrorStatus(nRegular);
const ErrorStatus statusRegular =
nn::convertToV1_0(nn::convertResultCodeToErrorStatus(nRegular));
EXPECT_FALSE(fallbackRegular);
// skip test if regular burst output isn't useful for testing a failure
@ -312,7 +313,7 @@ static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
// large enough to return the serialized result
const auto [nSmall, outputShapesSmall, timingSmall, fallbackSmall] =
controllerSmall->compute(request, MeasureTiming::NO, keys);
const ErrorStatus statusSmall = nn::convertResultCodeToErrorStatus(nSmall);
const ErrorStatus statusSmall = nn::convertToV1_0(nn::convertResultCodeToErrorStatus(nSmall));
EXPECT_NE(ErrorStatus::NONE, statusSmall);
EXPECT_EQ(0u, outputShapesSmall.size());
EXPECT_TRUE(badTiming(timingSmall));

View file

@ -107,7 +107,7 @@ static void validate(const sp<IPreparedModel>& preparedModel, const std::string&
// execute and verify
const auto [n, outputShapes, timing, fallback] = burst->compute(request, measure, keys);
const ErrorStatus status = nn::convertResultCodeToErrorStatus(n);
const ErrorStatus status = nn::convertToV1_0(nn::convertResultCodeToErrorStatus(n));
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
EXPECT_EQ(outputShapes.size(), 0);
EXPECT_TRUE(badTiming(timing));

View file

@ -15,11 +15,12 @@
//
cc_library_static {
name: "VtsHalNeuralNetworksV1_3Callbacks",
name: "VtsHalNeuralNetworksV1_3_utils",
defaults: ["VtsHalTargetTestDefaults"],
export_include_dirs: ["include"],
srcs: [
"Callbacks.cpp",
"Utils.cpp",
],
static_libs: [
"android.hardware.neuralnetworks@1.0",
@ -29,7 +30,7 @@ cc_library_static {
],
header_libs: [
"libbase_headers",
]
],
}
cc_test {
@ -50,6 +51,9 @@ cc_test {
"libnativewindow",
],
static_libs: [
"VtsHalNeuralNetworksV1_0_utils",
"VtsHalNeuralNetworksV1_2Callbacks",
"VtsHalNeuralNetworksV1_3_utils",
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
@ -60,9 +64,6 @@ cc_test {
"libhidlmemory",
"libneuralnetworks_generated_test_harness",
"libneuralnetworks_utils",
"VtsHalNeuralNetworksV1_0_utils",
"VtsHalNeuralNetworksV1_2Callbacks",
"VtsHalNeuralNetworksV1_3Callbacks",
],
whole_static_libs: [
"neuralnetworks_generated_V1_0_example",

View file

@ -21,7 +21,6 @@
namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using V1_0::DeviceStatus;
using V1_0::ErrorStatus;
using V1_0::PerformanceInfo;
using V1_2::Constant;
using V1_2::DeviceType;

View file

@ -24,12 +24,16 @@
namespace android::hardware::neuralnetworks::V1_3::implementation {
using V1_0::ErrorStatus;
using V1_2::OutputShape;
using V1_2::Timing;
constexpr Timing kNoTiming = {.timeOnDevice = std::numeric_limits<uint64_t>::max(),
.timeInDriver = std::numeric_limits<uint64_t>::max()};
// PreparedModelCallback methods begin here
Return<void> PreparedModelCallback::notify(ErrorStatus errorStatus,
const sp<V1_0::IPreparedModel>& preparedModel) {
Return<void> PreparedModelCallback::notifyInternal(ErrorStatus errorStatus,
const sp<V1_0::IPreparedModel>& preparedModel) {
{
std::lock_guard<std::mutex> hold(mMutex);
@ -48,14 +52,19 @@ Return<void> PreparedModelCallback::notify(ErrorStatus errorStatus,
return Void();
}
Return<void> PreparedModelCallback::notify_1_2(ErrorStatus errorStatus,
const sp<V1_2::IPreparedModel>& preparedModel) {
return notify(errorStatus, preparedModel);
Return<void> PreparedModelCallback::notify(V1_0::ErrorStatus errorStatus,
const sp<V1_0::IPreparedModel>& preparedModel) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), preparedModel);
}
Return<void> PreparedModelCallback::notify_1_3(ErrorStatus errorStatus,
Return<void> PreparedModelCallback::notify_1_2(V1_0::ErrorStatus errorStatus,
const sp<V1_2::IPreparedModel>& preparedModel) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), preparedModel);
}
Return<void> PreparedModelCallback::notify_1_3(V1_3::ErrorStatus errorStatus,
const sp<V1_3::IPreparedModel>& preparedModel) {
return notify(errorStatus, preparedModel);
return notifyInternal(errorStatus, preparedModel);
}
void PreparedModelCallback::wait() const {
@ -73,4 +82,82 @@ sp<V1_0::IPreparedModel> PreparedModelCallback::getPreparedModel() const {
return mPreparedModel;
}
// ExecutionCallback methods begin here
Return<void> ExecutionCallback::notify(V1_0::ErrorStatus errorStatus) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), {}, kNoTiming);
}
Return<void> ExecutionCallback::notify_1_2(V1_0::ErrorStatus errorStatus,
const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
return notifyInternal(static_cast<ErrorStatus>(errorStatus), outputShapes, timing);
}
Return<void> ExecutionCallback::notify_1_3(V1_3::ErrorStatus errorStatus,
const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
return notifyInternal(errorStatus, outputShapes, timing);
}
void ExecutionCallback::wait() const {
std::unique_lock<std::mutex> lock(mMutex);
mCondition.wait(lock, [this] { return mNotified; });
}
ErrorStatus ExecutionCallback::getStatus() const {
wait();
return mErrorStatus;
}
const std::vector<OutputShape>& ExecutionCallback::getOutputShapes() const {
wait();
return mOutputShapes;
}
Timing ExecutionCallback::getTiming() const {
wait();
return mTiming;
}
Return<void> ExecutionCallback::notifyInternal(ErrorStatus errorStatus,
hidl_vec<OutputShape> outputShapes, Timing timing) {
// check results
if (errorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
// outputShapes must not be empty if OUTPUT_INSUFFICIENT_SIZE.
if (outputShapes.size() == 0) {
LOG(ERROR) << "Notifid with empty output shape vector when OUTPUT_INSUFFICIENT_SIZE";
errorStatus = ErrorStatus::GENERAL_FAILURE;
outputShapes = {};
timing = kNoTiming;
}
} else if (errorStatus != ErrorStatus::NONE) {
// outputShapes must be empty if errorStatus is neither NONE nor OUTPUT_INSUFFICIENT_SIZE.
if (outputShapes.size() != 0) {
LOG(ERROR) << "Notified with non-empty output shape vector when error status is "
"neither NONE nor OUTPUT_INSUFFICIENT_SIZE";
errorStatus = ErrorStatus::GENERAL_FAILURE;
outputShapes = {};
timing = kNoTiming;
}
}
// store results
{
std::lock_guard<std::mutex> hold(mMutex);
// quick-return if object has already been notified
if (mNotified) {
return Void();
}
mErrorStatus = errorStatus;
mOutputShapes = std::move(outputShapes);
mTiming = timing;
mNotified = true;
}
mCondition.notify_all();
return Void();
}
} // namespace android::hardware::neuralnetworks::V1_3::implementation

View file

@ -29,6 +29,7 @@
#include <thread>
#include "1.3/Callbacks.h"
#include "1.3/Utils.h"
#include "GeneratedTestHarness.h"
#include "MemoryUtils.h"
#include "TestHarness.h"
@ -49,7 +50,6 @@ namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using namespace test_helper;
using implementation::PreparedModelCallback;
using V1_0::ErrorStatus;
using V1_1::ExecutionPreference;
using V1_2::Constant;
using V1_2::OperationType;
@ -238,8 +238,8 @@ class CompilationCachingTestBase : public testing::Test {
mCacheDir.push_back('/');
Return<void> ret = kDevice->getNumberOfCacheFilesNeeded(
[this](ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
EXPECT_EQ(ErrorStatus::NONE, status);
[this](V1_0::ErrorStatus status, uint32_t numModelCache, uint32_t numDataCache) {
EXPECT_EQ(V1_0::ErrorStatus::NONE, status);
mNumModelCache = numModelCache;
mNumDataCache = numDataCache;
});
@ -324,9 +324,9 @@ class CompilationCachingTestBase : public testing::Test {
// Launch prepare model.
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
Return<ErrorStatus> prepareLaunchStatus =
kDevice->prepareModel_1_3(model, ExecutionPreference::FAST_SINGLE_ANSWER,
modelCache, dataCache, cacheToken, preparedModelCallback);
Return<ErrorStatus> prepareLaunchStatus = kDevice->prepareModel_1_3(
model, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority, {}, modelCache,
dataCache, cacheToken, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(static_cast<ErrorStatus>(prepareLaunchStatus), ErrorStatus::NONE);
@ -370,7 +370,7 @@ class CompilationCachingTestBase : public testing::Test {
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
hidl_array<uint8_t, sizeof(mToken)> cacheToken(mToken);
Return<ErrorStatus> prepareLaunchStatus = kDevice->prepareModelFromCache_1_3(
modelCache, dataCache, cacheToken, preparedModelCallback);
kDefaultPriority, {}, modelCache, dataCache, cacheToken, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
if (static_cast<ErrorStatus>(prepareLaunchStatus) != ErrorStatus::NONE) {
*preparedModel = nullptr;

View file

@ -44,7 +44,6 @@
#include <vector>
#include "1.0/Utils.h"
#include "1.2/Callbacks.h"
#include "1.3/Callbacks.h"
#include "ExecutionBurstController.h"
#include "MemoryUtils.h"
@ -56,9 +55,9 @@ namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using namespace test_helper;
using hidl::memory::V1_0::IMemory;
using implementation::ExecutionCallback;
using implementation::PreparedModelCallback;
using V1_0::DataLocation;
using V1_0::ErrorStatus;
using V1_0::RequestArgument;
using V1_1::ExecutionPreference;
using V1_2::Constant;
@ -66,7 +65,6 @@ using V1_2::MeasureTiming;
using V1_2::OutputShape;
using V1_2::SymmPerChannelQuantParams;
using V1_2::Timing;
using V1_2::implementation::ExecutionCallback;
using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
namespace {
@ -453,7 +451,7 @@ static std::vector<TestBuffer> getOutputBuffers(const TestModel& testModel, cons
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
sp<ExecutionCallback>& callback) {
return preparedModel->execute_1_3(request, measure, callback);
return preparedModel->execute_1_3(request, measure, {}, callback);
}
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
@ -461,7 +459,7 @@ static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& prepar
Timing* timing) {
ErrorStatus result;
Return<void> ret = preparedModel->executeSynchronously_1_3(
request, measure,
request, measure, {},
[&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
const Timing& time) {
result = error;

View file

@ -0,0 +1,27 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "1.3/Utils.h"
#include <iostream>
namespace android::hardware::neuralnetworks::V1_3 {
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
} // namespace android::hardware::neuralnetworks::V1_3

View file

@ -34,7 +34,6 @@ namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using nn::ExecutionBurstController;
using nn::RequestChannelSender;
using nn::ResultChannelReceiver;
using V1_0::ErrorStatus;
using V1_0::Request;
using V1_2::FmqRequestDatum;
using V1_2::FmqResultDatum;
@ -80,16 +79,17 @@ static void createBurst(const sp<IPreparedModel>& preparedModel, const sp<IBurst
ASSERT_NE(nullptr, fmqResultDescriptor);
// configure burst
ErrorStatus errorStatus;
V1_0::ErrorStatus errorStatus;
sp<IBurstContext> burstContext;
const Return<void> ret = preparedModel->configureExecutionBurst(
callback, *fmqRequestDescriptor, *fmqResultDescriptor,
[&errorStatus, &burstContext](ErrorStatus status, const sp<IBurstContext>& context) {
[&errorStatus, &burstContext](V1_0::ErrorStatus status,
const sp<IBurstContext>& context) {
errorStatus = status;
burstContext = context;
});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(ErrorStatus::NONE, errorStatus);
ASSERT_EQ(V1_0::ErrorStatus::NONE, errorStatus);
ASSERT_NE(nullptr, burstContext.get());
// return values
@ -144,7 +144,7 @@ static void validate(RequestChannelSender* sender, ResultChannelReceiver* receiv
auto results = receiver->getBlocking();
ASSERT_TRUE(results.has_value());
const auto [status, outputShapes, timing] = std::move(*results);
EXPECT_NE(ErrorStatus::NONE, status);
EXPECT_NE(V1_0::ErrorStatus::NONE, status);
EXPECT_EQ(0u, outputShapes.size());
EXPECT_TRUE(badTiming(timing));
}
@ -302,14 +302,15 @@ static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
// collect serialized result by running regular burst
const auto [nRegular, outputShapesRegular, timingRegular, fallbackRegular] =
controllerRegular->compute(request, MeasureTiming::NO, keys);
const ErrorStatus statusRegular = nn::convertResultCodeToErrorStatus(nRegular);
const V1_0::ErrorStatus statusRegular =
nn::convertToV1_0(nn::convertResultCodeToErrorStatus(nRegular));
EXPECT_FALSE(fallbackRegular);
// skip test if regular burst output isn't useful for testing a failure
// caused by having too small of a length for the result FMQ
const std::vector<FmqResultDatum> serialized =
android::nn::serialize(statusRegular, outputShapesRegular, timingRegular);
if (statusRegular != ErrorStatus::NONE ||
if (statusRegular != V1_0::ErrorStatus::NONE ||
serialized.size() <= kExecutionBurstChannelSmallLength) {
return;
}
@ -318,8 +319,9 @@ static void validateBurstFmqLength(const sp<IPreparedModel>& preparedModel,
// large enough to return the serialized result
const auto [nSmall, outputShapesSmall, timingSmall, fallbackSmall] =
controllerSmall->compute(request, MeasureTiming::NO, keys);
const ErrorStatus statusSmall = nn::convertResultCodeToErrorStatus(nSmall);
EXPECT_NE(ErrorStatus::NONE, statusSmall);
const V1_0::ErrorStatus statusSmall =
nn::convertToV1_0(nn::convertResultCodeToErrorStatus(nSmall));
EXPECT_NE(V1_0::ErrorStatus::NONE, statusSmall);
EXPECT_EQ(0u, outputShapesSmall.size());
EXPECT_TRUE(badTiming(timingSmall));
EXPECT_FALSE(fallbackSmall);

View file

@ -18,13 +18,13 @@
#include "1.0/Utils.h"
#include "1.3/Callbacks.h"
#include "1.3/Utils.h"
#include "GeneratedTestHarness.h"
#include "VtsHalNeuralnetworks.h"
namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using implementation::PreparedModelCallback;
using V1_0::ErrorStatus;
using V1_1::ExecutionPreference;
using V1_2::SymmPerChannelQuantParams;
using HidlToken =
@ -48,9 +48,9 @@ static void validatePrepareModel(const sp<IDevice>& device, const std::string& m
SCOPED_TRACE(message + " [prepareModel_1_3]");
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_3(model, preference, hidl_vec<hidl_handle>(),
hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_3(
model, preference, kDefaultPriority, {}, hidl_vec<hidl_handle>(),
hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));

View file

@ -18,7 +18,7 @@
#include <chrono>
#include "1.0/Utils.h"
#include "1.2/Callbacks.h"
#include "1.3/Callbacks.h"
#include "ExecutionBurstController.h"
#include "GeneratedTestHarness.h"
#include "TestHarness.h"
@ -27,11 +27,10 @@
namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using V1_0::ErrorStatus;
using implementation::ExecutionCallback;
using V1_2::MeasureTiming;
using V1_2::OutputShape;
using V1_2::Timing;
using V1_2::implementation::ExecutionCallback;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
@ -63,7 +62,7 @@ static void validate(const sp<IPreparedModel>& preparedModel, const std::string&
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
Return<ErrorStatus> executeLaunchStatus =
preparedModel->execute_1_3(request, measure, executionCallback);
preparedModel->execute_1_3(request, measure, {}, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
@ -81,7 +80,7 @@ static void validate(const sp<IPreparedModel>& preparedModel, const std::string&
SCOPED_TRACE(message + " [executeSynchronously_1_3]");
Return<void> executeStatus = preparedModel->executeSynchronously_1_3(
request, measure,
request, measure, {},
[](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
@ -163,7 +162,7 @@ void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& req
void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request) {
SCOPED_TRACE("Expecting request to fail [executeSynchronously_1_3]");
Return<void> executeStatus = preparedModel->executeSynchronously_1_3(
request, MeasureTiming::NO,
request, MeasureTiming::NO, {},
[](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
ASSERT_NE(ErrorStatus::NONE, error);
EXPECT_EQ(outputShapes.size(), 0);

View file

@ -23,6 +23,7 @@
#include <utility>
#include "1.0/Utils.h"
#include "1.3/Callbacks.h"
#include "1.3/Utils.h"
#include "GeneratedTestHarness.h"
#include "TestHarness.h"
#include "Utils.h"
@ -32,7 +33,6 @@ namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using HidlToken =
hidl_array<uint8_t, static_cast<uint32_t>(V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
using implementation::PreparedModelCallback;
using V1_0::ErrorStatus;
using V1_1::ExecutionPreference;
// internal helper function
@ -55,8 +55,8 @@ void createPreparedModel(const sp<IDevice>& device, const Model& model,
// launch prepare model
const sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
const Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_3(
model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(),
hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
model, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority, {},
hidl_vec<hidl_handle>(), hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));

View file

@ -18,8 +18,11 @@
#define ANDROID_HARDWARE_NEURALNETWORKS_V1_3_CALLBACKS_H
#include <android-base/thread_annotations.h>
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.3/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.3/IPreparedModelCallback.h>
#include <hidl/Status.h>
#include <condition_variable>
@ -136,7 +139,7 @@ class PreparedModelCallback : public IPreparedModelCallback {
* @param preparedModel Returned model that has been prepared for execution,
* nullptr if the model was unable to be prepared.
*/
Return<void> notify_1_3(V1_0::ErrorStatus status,
Return<void> notify_1_3(V1_3::ErrorStatus status,
const sp<V1_3::IPreparedModel>& preparedModel) override;
/**
@ -158,7 +161,7 @@ class PreparedModelCallback : public IPreparedModelCallback {
* - GENERAL_FAILURE if there is an unspecified error
* - INVALID_ARGUMENT if the input model is invalid
*/
V1_0::ErrorStatus getStatus() const;
ErrorStatus getStatus() const;
/**
* Retrieves the model that has been prepared for execution from the
@ -173,13 +176,216 @@ class PreparedModelCallback : public IPreparedModelCallback {
sp<V1_0::IPreparedModel> getPreparedModel() const;
private:
Return<void> notifyInternal(ErrorStatus status, const sp<V1_0::IPreparedModel>& preparedModel);
mutable std::mutex mMutex;
mutable std::condition_variable mCondition;
bool mNotified GUARDED_BY(mMutex) = false;
V1_0::ErrorStatus mErrorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
ErrorStatus mErrorStatus = ErrorStatus::GENERAL_FAILURE;
sp<V1_0::IPreparedModel> mPreparedModel;
};
/**
* The ExecutionCallback class is used to receive the results of the execution
* from a task executing asynchronously with respect to the runtime. If a
* calling thread calls wait or get* on a ExecutionCallback object and the
* corresponding asynchronous task has not finished the execution, the calling
* thread will block until the asynchronous task has either called one of the
* notify* methods.
*
* If the callback object is notified more than once, only the results of the
* first call to notify* are used, and the results from subsequent calls are
* discarded.
*
* This callback object is passed as an argument to IPreparedModel::execute*.
*/
class ExecutionCallback : public IExecutionCallback {
public:
/**
* IExecutionCallback::notify marks the callback object with the return
* status of the asynchronous execution that held this callback and enables
* all prior and future wait calls on the ExecutionCallback object to
* proceed.
*
* One of the IExecutionCallback::notify* methods must be called on a given
* ExecutionCallback object.
*
* If the callback object is notified more than once, only the results of
* the first call to notify* are used, and the results from subsequent calls
* are discarded.
*
* @param status Error status returned from launching the asynchronous task
* (if the launch fails) or from the asynchronous task itself (if the
* launch succeeds). Must be:
* - NONE if the asynchronous execution was successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if there is an unspecified error
* - OUTPUT_INSUFFICIENT_SIZE if provided output buffer is not large
* enough to store the resultant values
* - INVALID_ARGUMENT if the input request is invalid
*/
Return<void> notify(V1_0::ErrorStatus status) override;
/**
* IExecutionCallback::notify_1_2 marks the callback object with the results
* (error status, dynamic output shapes, and timing information) of the
* asynchronous execution that held this callback and enables all prior and
* future wait calls on the ExecutionCallback object to proceed.
*
* One of the IExecutionCallback::notify* methods must be called on a given
* ExecutionCallback object.
*
* If the callback object is notified more than once, only the results of
* the first call to notify* are used, and the results from subsequent calls
* are discarded.
*
* @param status Error status returned from launching the asynchronous task
* (if the launch fails) or from the asynchronous task itself (if the
* launch succeeds). Must be:
* - NONE if the asynchronous execution was successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if the asynchronous task resulted in an unspecified
* error
* - OUTPUT_INSUFFICIENT_SIZE if at least one output operand buffer is
* not large enough to store the corresponding output
* - INVALID_ARGUMENT if one of the input arguments to prepareModel is
* invalid
* @param outputShapes A list of shape information of model output operands.
* The index into "outputShapes" corresponds to the index of the output
* operand in the Request outputs vector. outputShapes must be empty
* unless the status is either NONE or OUTPUT_INSUFFICIENT_SIZE.
* @param Timing Duration of execution. Unless MeasureTiming::YES was passed
* when launching the execution and status is NONE, all times must be
* reported as UINT64_MAX. A driver may choose to report any time as
* UINT64_MAX, indicating that particular measurement is not available.
*/
Return<void> notify_1_2(V1_0::ErrorStatus status,
const hidl_vec<V1_2::OutputShape>& outputShapes,
const V1_2::Timing& timing) override;
/**
* IExecutionCallback::notify_1_3 marks the callback object with the results
* (error status, dynamic output shapes, and timing information) of the
* asynchronous execution that held this callback and enables all prior and
* future wait calls on the ExecutionCallback object to proceed.
*
* One of the IExecutionCallback::notify* methods must be called on a given
* ExecutionCallback object.
*
* If the callback object is notified more than once, only the results of
* the first call to notify* are used, and the results from subsequent calls
* are discarded.
*
* @param status Error status returned from launching the asynchronous task
* (if the launch fails) or from the asynchronous task itself (if the
* launch succeeds). Must be:
* - NONE if the asynchronous execution was successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if the asynchronous task resulted in an unspecified
* error
* - OUTPUT_INSUFFICIENT_SIZE if at least one output operand buffer is
* not large enough to store the corresponding output
* - INVALID_ARGUMENT if one of the input arguments to prepareModel is
* invalid
* - MISSED_DEADLINE_* if the deadline was not met
* @param outputShapes A list of shape information of model output operands.
* The index into "outputShapes" corresponds to the index of the output
* operand in the Request outputs vector. outputShapes must be empty
* unless the status is either NONE or OUTPUT_INSUFFICIENT_SIZE.
* @param Timing Duration of execution. Unless MeasureTiming::YES was passed
* when launching the execution and status is NONE, all times must be
* reported as UINT64_MAX. A driver may choose to report any time as
* UINT64_MAX, indicating that particular measurement is not available.
*/
Return<void> notify_1_3(V1_3::ErrorStatus status,
const hidl_vec<V1_2::OutputShape>& outputShapes,
const V1_2::Timing& timing) override;
/**
* ExecutionCallback::wait blocks until notify* has been called on the
* callback object.
*/
void wait() const;
/**
* Retrieves the error status returned from the asynchronous task launched
* by one of the IPreparedModel::execute* methods. If
* IPreparedModel::execute* (but not IPreparedModel::executeSynchronously*)
* has not finished asynchronously executing, this call will block until the
* asynchronous task notifies the object.
*
* @return status Error status returned from launching the asynchronous task
* (if the launch fails) or from the asynchronous task itself (if the
* launch succeeds). Must be:
* - NONE if the asynchronous execution was successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if the asynchronous task resulted in an unspecified
* error
* - OUTPUT_INSUFFICIENT_SIZE if at least one output operand buffer is
* not large enough to store the corresponding output
* - INVALID_ARGUMENT if one of the input arguments to prepareModel is
* invalid
* - MISSED_DEADLINE_* if the deadline could not be met
*/
V1_3::ErrorStatus getStatus() const;
/**
* Retrieves the error status returned from the asynchronous task launched
* by one of the IPreparedModel::execute* methods. If
* IPreparedModel::execute* (but not IPreparedModel::executeSynchronously*)
* has not finished asynchronously executing, this call will block until the
* asynchronous task notifies the object.
*
* If the asynchronous task was launched by IPreparedModel::execute, an
* empty vector will be returned.
*
* @return outputShapes A list of shape information of model output
* operands. The index into "outputShapes" corresponds to the index of
* the output operand in the Request outputs vector. outputShapes must
* be empty unless the status is either NONE or
* OUTPUT_INSUFFICIENT_SIZE. outputShaps may be empty if the status is
* NONE and all model output operands are fully-specified at execution
* time. outputShapes must have the same number of elements as the
* number of model output operands if the status is
* OUTPUT_INSUFFICIENT_SIZE, or if the status is NONE and the model has
* at least one output operand that is not fully-specified.
*/
const std::vector<V1_2::OutputShape>& getOutputShapes() const;
/**
* Retrieves the error status returned from the asynchronous task launched
* by one of the IPreparedModel::execute* methods. If
* IPreparedModel::execute* (but not IPreparedModel::executeSynchronously*)
* has not finished asynchronously executing, this call will block until the
* asynchronous task notifies the object.
*
* If the asynchronous task was launched by IPreparedModel::execute, every
* time must be UINT64_MAX.
*
* @return timing Duration of the execution. Every time must be UINT64_MAX
* unless the status is NONE.
*/
V1_2::Timing getTiming() const;
private:
/*
* ExecutionCallback::notifyInternal stores the results of the execution
* (status, output shapes, and timing information) in the ExecutionCallback
* object before any call to wait or get* return. It then enables all prior
* and future wait calls on the ExecutionCallback object to proceed.
*/
Return<void> notifyInternal(V1_3::ErrorStatus errorStatus,
hidl_vec<V1_2::OutputShape> outputShapes, V1_2::Timing timing);
// members
mutable std::mutex mMutex;
mutable std::condition_variable mCondition;
bool mNotified GUARDED_BY(mMutex) = false;
V1_3::ErrorStatus mErrorStatus = V1_3::ErrorStatus::GENERAL_FAILURE;
std::vector<V1_2::OutputShape> mOutputShapes = {};
V1_2::Timing mTiming = {};
};
} // namespace android::hardware::neuralnetworks::V1_3::implementation
#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_3_CALLBACKS_H

View file

@ -0,0 +1,36 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_NEURALNETWORKS_V1_3_UTILS_H
#define ANDROID_HARDWARE_NEURALNETWORKS_V1_3_UTILS_H
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <iosfwd>
namespace android::hardware::neuralnetworks {
inline constexpr V1_3::Priority kDefaultPriority = V1_3::Priority::MEDIUM;
} // namespace android::hardware::neuralnetworks
namespace android::hardware::neuralnetworks::V1_3 {
// pretty-print values for error messages
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
} // namespace android::hardware::neuralnetworks::V1_3
#endif // ANDROID_HARDWARE_NEURALNETWORKS_V1_3_UTILS_H