Relocate ExecutionBurst* classes to NN util code
The only changes when copying these files were .clang-format differences and correcting a typo in a comment. Bug: 177267324 Test: mma Change-Id: I96cc2402642e1e3076ac7e78e06163c1d3d41701
This commit is contained in:
parent
44f324fb0d
commit
87e8306878
5 changed files with 1966 additions and 0 deletions
|
@ -18,6 +18,7 @@ cc_library_static {
|
|||
name: "neuralnetworks_utils_hal_1_2",
|
||||
defaults: ["neuralnetworks_utils_defaults"],
|
||||
srcs: ["src/*"],
|
||||
exclude_srcs: ["src/ExecutionBurst*"],
|
||||
local_include_dirs: ["include/nnapi/hal/1.2/"],
|
||||
export_include_dirs: ["include"],
|
||||
cflags: ["-Wthread-safety"],
|
||||
|
|
|
@ -0,0 +1,345 @@
|
|||
/*
|
||||
* Copyright (C) 2019 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
|
||||
#define ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
|
||||
|
||||
#include <android-base/macros.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/types.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/types.h>
|
||||
#include <android/hardware/neuralnetworks/1.2/IBurstCallback.h>
|
||||
#include <android/hardware/neuralnetworks/1.2/IBurstContext.h>
|
||||
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
|
||||
#include <android/hardware/neuralnetworks/1.2/types.h>
|
||||
#include <fmq/MessageQueue.h>
|
||||
#include <hidl/MQDescriptor.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
#include <stack>
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace android::nn {
|
||||
|
||||
/**
|
||||
* Number of elements in the FMQ.
|
||||
*/
|
||||
constexpr const size_t kExecutionBurstChannelLength = 1024;
|
||||
|
||||
/**
|
||||
* Function to serialize a request.
|
||||
*
|
||||
* Prefer calling RequestChannelSender::send.
|
||||
*
|
||||
* @param request Request object without the pool information.
|
||||
* @param measure Whether to collect timing information for the execution.
|
||||
* @param memoryIds Slot identifiers corresponding to memory resources for the
|
||||
* request.
|
||||
* @return Serialized FMQ request data.
|
||||
*/
|
||||
std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum> serialize(
|
||||
const hardware::neuralnetworks::V1_0::Request& request,
|
||||
hardware::neuralnetworks::V1_2::MeasureTiming measure, const std::vector<int32_t>& slots);
|
||||
|
||||
/**
|
||||
* Deserialize the FMQ result data.
|
||||
*
|
||||
* The three resulting fields are the status of the execution, the dynamic
|
||||
* shapes of the output tensors, and the timing information of the execution.
|
||||
*
|
||||
* @param data Serialized FMQ result data.
|
||||
* @return Result object if successfully deserialized, std::nullopt otherwise.
|
||||
*/
|
||||
std::optional<std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
|
||||
std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
|
||||
hardware::neuralnetworks::V1_2::Timing>>
|
||||
deserialize(const std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>& data);
|
||||
|
||||
/**
|
||||
* Convert result code to error status.
|
||||
*
|
||||
* @param resultCode Result code to be converted.
|
||||
* @return ErrorStatus Resultant error status.
|
||||
*/
|
||||
hardware::neuralnetworks::V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode);
|
||||
|
||||
/**
|
||||
* ResultChannelReceiver is responsible for waiting on the channel until the
|
||||
* packet is available, extracting the packet from the channel, and
|
||||
* deserializing the packet.
|
||||
*
|
||||
* Because the receiver can wait on a packet that may never come (e.g., because
|
||||
* the sending side of the packet has been closed), this object can be
|
||||
* invalidated, unblocking the receiver.
|
||||
*/
|
||||
class ResultChannelReceiver {
|
||||
using FmqResultDescriptor =
|
||||
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqResultDatum>;
|
||||
using FmqResultChannel = hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqResultDatum,
|
||||
hardware::kSynchronizedReadWrite>;
|
||||
|
||||
public:
|
||||
/**
|
||||
* Create the receiving end of a result channel.
|
||||
*
|
||||
* Prefer this call over the constructor.
|
||||
*
|
||||
* @param channelLength Number of elements in the FMQ.
|
||||
* @param pollingTimeWindow How much time (in microseconds) the
|
||||
* ResultChannelReceiver is allowed to poll the FMQ before waiting on
|
||||
* the blocking futex. Polling may result in lower latencies at the
|
||||
* potential cost of more power usage.
|
||||
* @return A pair of ResultChannelReceiver and the FMQ descriptor on
|
||||
* successful creation, both nullptr otherwise.
|
||||
*/
|
||||
static std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*> create(
|
||||
size_t channelLength, std::chrono::microseconds pollingTimeWindow);
|
||||
|
||||
/**
|
||||
* Get the result from the channel.
|
||||
*
|
||||
* This method will block until either:
|
||||
* 1) The packet has been retrieved, or
|
||||
* 2) The receiver has been invalidated
|
||||
*
|
||||
* @return Result object if successfully received, std::nullopt if error or
|
||||
* if the receiver object was invalidated.
|
||||
*/
|
||||
std::optional<std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
|
||||
std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
|
||||
hardware::neuralnetworks::V1_2::Timing>>
|
||||
getBlocking();
|
||||
|
||||
/**
|
||||
* Method to mark the channel as invalid, unblocking any current or future
|
||||
* calls to ResultChannelReceiver::getBlocking.
|
||||
*/
|
||||
void invalidate();
|
||||
|
||||
// prefer calling ResultChannelReceiver::getBlocking
|
||||
std::optional<std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>> getPacketBlocking();
|
||||
|
||||
ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
|
||||
std::chrono::microseconds pollingTimeWindow);
|
||||
|
||||
private:
|
||||
const std::unique_ptr<FmqResultChannel> mFmqResultChannel;
|
||||
std::atomic<bool> mValid{true};
|
||||
const std::chrono::microseconds kPollingTimeWindow;
|
||||
};
|
||||
|
||||
/**
|
||||
* RequestChannelSender is responsible for serializing the result packet of
|
||||
* information, sending it on the result channel, and signaling that the data is
|
||||
* available.
|
||||
*/
|
||||
class RequestChannelSender {
|
||||
using FmqRequestDescriptor =
|
||||
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqRequestDatum>;
|
||||
using FmqRequestChannel =
|
||||
hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqRequestDatum,
|
||||
hardware::kSynchronizedReadWrite>;
|
||||
|
||||
public:
|
||||
/**
|
||||
* Create the sending end of a request channel.
|
||||
*
|
||||
* Prefer this call over the constructor.
|
||||
*
|
||||
* @param channelLength Number of elements in the FMQ.
|
||||
* @return A pair of ResultChannelReceiver and the FMQ descriptor on
|
||||
* successful creation, both nullptr otherwise.
|
||||
*/
|
||||
static std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*> create(
|
||||
size_t channelLength);
|
||||
|
||||
/**
|
||||
* Send the request to the channel.
|
||||
*
|
||||
* @param request Request object without the pool information.
|
||||
* @param measure Whether to collect timing information for the execution.
|
||||
* @param memoryIds Slot identifiers corresponding to memory resources for
|
||||
* the request.
|
||||
* @return 'true' on successful send, 'false' otherwise.
|
||||
*/
|
||||
bool send(const hardware::neuralnetworks::V1_0::Request& request,
|
||||
hardware::neuralnetworks::V1_2::MeasureTiming measure,
|
||||
const std::vector<int32_t>& slots);
|
||||
|
||||
/**
|
||||
* Method to mark the channel as invalid, causing all future calls to
|
||||
* RequestChannelSender::send to immediately return false without attempting
|
||||
* to send a message across the FMQ.
|
||||
*/
|
||||
void invalidate();
|
||||
|
||||
// prefer calling RequestChannelSender::send
|
||||
bool sendPacket(const std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>& packet);
|
||||
|
||||
RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel);
|
||||
|
||||
private:
|
||||
const std::unique_ptr<FmqRequestChannel> mFmqRequestChannel;
|
||||
std::atomic<bool> mValid{true};
|
||||
};
|
||||
|
||||
/**
|
||||
* The ExecutionBurstController class manages both the serialization and
|
||||
* deserialization of data across FMQ, making it appear to the runtime as a
|
||||
* regular synchronous inference. Additionally, this class manages the burst's
|
||||
* memory cache.
|
||||
*/
|
||||
class ExecutionBurstController {
|
||||
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutionBurstController);
|
||||
|
||||
public:
|
||||
/**
|
||||
* NN runtime burst callback object and memory cache.
|
||||
*
|
||||
* ExecutionBurstCallback associates a hidl_memory object with a slot number
|
||||
* to be passed across FMQ. The ExecutionBurstServer can use this callback
|
||||
* to retrieve this hidl_memory corresponding to the slot via HIDL.
|
||||
*
|
||||
* Whenever a hidl_memory object is copied, it will duplicate the underlying
|
||||
* file descriptor. Because the NN runtime currently copies the hidl_memory
|
||||
* on each execution, it is difficult to associate hidl_memory objects with
|
||||
* previously cached hidl_memory objects. For this reason, callers of this
|
||||
* class must pair each hidl_memory object with an associated key. For
|
||||
* efficiency, if two hidl_memory objects represent the same underlying
|
||||
* buffer, they must use the same key.
|
||||
*/
|
||||
class ExecutionBurstCallback : public hardware::neuralnetworks::V1_2::IBurstCallback {
|
||||
DISALLOW_COPY_AND_ASSIGN(ExecutionBurstCallback);
|
||||
|
||||
public:
|
||||
ExecutionBurstCallback() = default;
|
||||
|
||||
hardware::Return<void> getMemories(const hardware::hidl_vec<int32_t>& slots,
|
||||
getMemories_cb cb) override;
|
||||
|
||||
/**
|
||||
* This function performs one of two different actions:
|
||||
* 1) If a key corresponding to a memory resource is unrecognized by the
|
||||
* ExecutionBurstCallback object, the ExecutionBurstCallback object
|
||||
* will allocate a slot, bind the memory to the slot, and return the
|
||||
* slot identifier.
|
||||
* 2) If a key corresponding to a memory resource is recognized by the
|
||||
* ExecutionBurstCallback object, the ExecutionBurstCallback object
|
||||
* will return the existing slot identifier.
|
||||
*
|
||||
* @param memories Memory resources used in an inference.
|
||||
* @param keys Unique identifiers where each element corresponds to a
|
||||
* memory resource element in "memories".
|
||||
* @return Unique slot identifiers where each returned slot element
|
||||
* corresponds to a memory resource element in "memories".
|
||||
*/
|
||||
std::vector<int32_t> getSlots(const hardware::hidl_vec<hardware::hidl_memory>& memories,
|
||||
const std::vector<intptr_t>& keys);
|
||||
|
||||
/*
|
||||
* This function performs two different actions:
|
||||
* 1) Removes an entry from the cache (if present), including the local
|
||||
* storage of the hidl_memory object. Note that this call does not
|
||||
* free any corresponding hidl_memory object in ExecutionBurstServer,
|
||||
* which is separately freed via IBurstContext::freeMemory.
|
||||
* 2) Return whether a cache entry was removed and which slot was removed if
|
||||
* found. If the key did not to correspond to any entry in the cache, a
|
||||
* slot number of 0 is returned. The slot number and whether the entry
|
||||
* existed is useful so the same slot can be freed in the
|
||||
* ExecutionBurstServer's cache via IBurstContext::freeMemory.
|
||||
*/
|
||||
std::pair<bool, int32_t> freeMemory(intptr_t key);
|
||||
|
||||
private:
|
||||
int32_t getSlotLocked(const hardware::hidl_memory& memory, intptr_t key);
|
||||
int32_t allocateSlotLocked();
|
||||
|
||||
std::mutex mMutex;
|
||||
std::stack<int32_t, std::vector<int32_t>> mFreeSlots;
|
||||
std::map<intptr_t, int32_t> mMemoryIdToSlot;
|
||||
std::vector<hardware::hidl_memory> mMemoryCache;
|
||||
};
|
||||
|
||||
/**
|
||||
* Creates a burst controller on a prepared model.
|
||||
*
|
||||
* Prefer this over ExecutionBurstController's constructor.
|
||||
*
|
||||
* @param preparedModel Model prepared for execution to execute on.
|
||||
* @param pollingTimeWindow How much time (in microseconds) the
|
||||
* ExecutionBurstController is allowed to poll the FMQ before waiting on
|
||||
* the blocking futex. Polling may result in lower latencies at the
|
||||
* potential cost of more power usage.
|
||||
* @return ExecutionBurstController Execution burst controller object.
|
||||
*/
|
||||
static std::unique_ptr<ExecutionBurstController> create(
|
||||
const sp<hardware::neuralnetworks::V1_2::IPreparedModel>& preparedModel,
|
||||
std::chrono::microseconds pollingTimeWindow);
|
||||
|
||||
// prefer calling ExecutionBurstController::create
|
||||
ExecutionBurstController(const std::shared_ptr<RequestChannelSender>& requestChannelSender,
|
||||
const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
|
||||
const sp<hardware::neuralnetworks::V1_2::IBurstContext>& burstContext,
|
||||
const sp<ExecutionBurstCallback>& callback,
|
||||
const sp<hardware::hidl_death_recipient>& deathHandler = nullptr);
|
||||
|
||||
// explicit destructor to unregister the death recipient
|
||||
~ExecutionBurstController();
|
||||
|
||||
/**
|
||||
* Execute a request on a model.
|
||||
*
|
||||
* @param request Arguments to be executed on a model.
|
||||
* @param measure Whether to collect timing measurements, either YES or NO
|
||||
* @param memoryIds Identifiers corresponding to each memory object in the
|
||||
* request's pools.
|
||||
* @return A tuple of:
|
||||
* - result code of the execution
|
||||
* - dynamic output shapes from the execution
|
||||
* - any execution time measurements of the execution
|
||||
* - whether or not a failed burst execution should be re-run using a
|
||||
* different path (e.g., IPreparedModel::executeSynchronously)
|
||||
*/
|
||||
std::tuple<int, std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
|
||||
hardware::neuralnetworks::V1_2::Timing, bool>
|
||||
compute(const hardware::neuralnetworks::V1_0::Request& request,
|
||||
hardware::neuralnetworks::V1_2::MeasureTiming measure,
|
||||
const std::vector<intptr_t>& memoryIds);
|
||||
|
||||
/**
|
||||
* Propagate a user's freeing of memory to the service.
|
||||
*
|
||||
* @param key Key corresponding to the memory object.
|
||||
*/
|
||||
void freeMemory(intptr_t key);
|
||||
|
||||
private:
|
||||
std::mutex mMutex;
|
||||
const std::shared_ptr<RequestChannelSender> mRequestChannelSender;
|
||||
const std::shared_ptr<ResultChannelReceiver> mResultChannelReceiver;
|
||||
const sp<hardware::neuralnetworks::V1_2::IBurstContext> mBurstContext;
|
||||
const sp<ExecutionBurstCallback> mMemoryCache;
|
||||
const sp<hardware::hidl_death_recipient> mDeathHandler;
|
||||
};
|
||||
|
||||
} // namespace android::nn
|
||||
|
||||
#endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
|
|
@ -0,0 +1,343 @@
|
|||
/*
|
||||
* Copyright (C) 2019 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
|
||||
#define ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
|
||||
|
||||
#include <android-base/macros.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/types.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/types.h>
|
||||
#include <android/hardware/neuralnetworks/1.2/IBurstCallback.h>
|
||||
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
|
||||
#include <android/hardware/neuralnetworks/1.2/types.h>
|
||||
#include <fmq/MessageQueue.h>
|
||||
#include <hidl/MQDescriptor.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <thread>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
namespace android::nn {
|
||||
|
||||
using FmqRequestDescriptor =
|
||||
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqRequestDatum>;
|
||||
using FmqResultDescriptor =
|
||||
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqResultDatum>;
|
||||
|
||||
/**
|
||||
* Function to serialize results.
|
||||
*
|
||||
* Prefer calling ResultChannelSender::send.
|
||||
*
|
||||
* @param errorStatus Status of the execution.
|
||||
* @param outputShapes Dynamic shapes of the output tensors.
|
||||
* @param timing Timing information of the execution.
|
||||
* @return Serialized FMQ result data.
|
||||
*/
|
||||
std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum> serialize(
|
||||
hardware::neuralnetworks::V1_0::ErrorStatus errorStatus,
|
||||
const std::vector<hardware::neuralnetworks::V1_2::OutputShape>& outputShapes,
|
||||
hardware::neuralnetworks::V1_2::Timing timing);
|
||||
|
||||
/**
|
||||
* Deserialize the FMQ request data.
|
||||
*
|
||||
* The three resulting fields are the Request object (where Request::pools is
|
||||
* empty), slot identifiers (which are stand-ins for Request::pools), and
|
||||
* whether timing information must be collected for the run.
|
||||
*
|
||||
* @param data Serialized FMQ request data.
|
||||
* @return Request object if successfully deserialized, std::nullopt otherwise.
|
||||
*/
|
||||
std::optional<std::tuple<hardware::neuralnetworks::V1_0::Request, std::vector<int32_t>,
|
||||
hardware::neuralnetworks::V1_2::MeasureTiming>>
|
||||
deserialize(const std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>& data);
|
||||
|
||||
/**
|
||||
* RequestChannelReceiver is responsible for waiting on the channel until the
|
||||
* packet is available, extracting the packet from the channel, and
|
||||
* deserializing the packet.
|
||||
*
|
||||
* Because the receiver can wait on a packet that may never come (e.g., because
|
||||
* the sending side of the packet has been closed), this object can be
|
||||
* invalidated, unblocking the receiver.
|
||||
*/
|
||||
class RequestChannelReceiver {
|
||||
using FmqRequestChannel =
|
||||
hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqRequestDatum,
|
||||
hardware::kSynchronizedReadWrite>;
|
||||
|
||||
public:
|
||||
/**
|
||||
* Create the receiving end of a request channel.
|
||||
*
|
||||
* Prefer this call over the constructor.
|
||||
*
|
||||
* @param requestChannel Descriptor for the request channel.
|
||||
* @param pollingTimeWindow How much time (in microseconds) the
|
||||
* RequestChannelReceiver is allowed to poll the FMQ before waiting on
|
||||
* the blocking futex. Polling may result in lower latencies at the
|
||||
* potential cost of more power usage.
|
||||
* @return RequestChannelReceiver on successful creation, nullptr otherwise.
|
||||
*/
|
||||
static std::unique_ptr<RequestChannelReceiver> create(
|
||||
const FmqRequestDescriptor& requestChannel,
|
||||
std::chrono::microseconds pollingTimeWindow);
|
||||
|
||||
/**
|
||||
* Get the request from the channel.
|
||||
*
|
||||
* This method will block until either:
|
||||
* 1) The packet has been retrieved, or
|
||||
* 2) The receiver has been invalidated
|
||||
*
|
||||
* @return Request object if successfully received, std::nullopt if error or
|
||||
* if the receiver object was invalidated.
|
||||
*/
|
||||
std::optional<std::tuple<hardware::neuralnetworks::V1_0::Request, std::vector<int32_t>,
|
||||
hardware::neuralnetworks::V1_2::MeasureTiming>>
|
||||
getBlocking();
|
||||
|
||||
/**
|
||||
* Method to mark the channel as invalid, unblocking any current or future
|
||||
* calls to RequestChannelReceiver::getBlocking.
|
||||
*/
|
||||
void invalidate();
|
||||
|
||||
RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
|
||||
std::chrono::microseconds pollingTimeWindow);
|
||||
|
||||
private:
|
||||
std::optional<std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>> getPacketBlocking();
|
||||
|
||||
const std::unique_ptr<FmqRequestChannel> mFmqRequestChannel;
|
||||
std::atomic<bool> mTeardown{false};
|
||||
const std::chrono::microseconds kPollingTimeWindow;
|
||||
};
|
||||
|
||||
/**
|
||||
* ResultChannelSender is responsible for serializing the result packet of
|
||||
* information, sending it on the result channel, and signaling that the data is
|
||||
* available.
|
||||
*/
|
||||
class ResultChannelSender {
|
||||
using FmqResultChannel = hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqResultDatum,
|
||||
hardware::kSynchronizedReadWrite>;
|
||||
|
||||
public:
|
||||
/**
|
||||
* Create the sending end of a result channel.
|
||||
*
|
||||
* Prefer this call over the constructor.
|
||||
*
|
||||
* @param resultChannel Descriptor for the result channel.
|
||||
* @return ResultChannelSender on successful creation, nullptr otherwise.
|
||||
*/
|
||||
static std::unique_ptr<ResultChannelSender> create(const FmqResultDescriptor& resultChannel);
|
||||
|
||||
/**
|
||||
* Send the result to the channel.
|
||||
*
|
||||
* @param errorStatus Status of the execution.
|
||||
* @param outputShapes Dynamic shapes of the output tensors.
|
||||
* @param timing Timing information of the execution.
|
||||
* @return 'true' on successful send, 'false' otherwise.
|
||||
*/
|
||||
bool send(hardware::neuralnetworks::V1_0::ErrorStatus errorStatus,
|
||||
const std::vector<hardware::neuralnetworks::V1_2::OutputShape>& outputShapes,
|
||||
hardware::neuralnetworks::V1_2::Timing timing);
|
||||
|
||||
// prefer calling ResultChannelSender::send
|
||||
bool sendPacket(const std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>& packet);
|
||||
|
||||
ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel);
|
||||
|
||||
private:
|
||||
const std::unique_ptr<FmqResultChannel> mFmqResultChannel;
|
||||
};
|
||||
|
||||
/**
|
||||
* The ExecutionBurstServer class is responsible for waiting for and
|
||||
* deserializing a request object from a FMQ, performing the inference, and
|
||||
* serializing the result back across another FMQ.
|
||||
*/
|
||||
class ExecutionBurstServer : public hardware::neuralnetworks::V1_2::IBurstContext {
|
||||
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutionBurstServer);
|
||||
|
||||
public:
|
||||
/**
|
||||
* IBurstExecutorWithCache is a callback object passed to
|
||||
* ExecutionBurstServer's factory function that is used to perform an
|
||||
* execution. Because some memory resources are needed across multiple
|
||||
* executions, this object also contains a local cache that can directly be
|
||||
* used in the execution.
|
||||
*
|
||||
* ExecutionBurstServer will never access its IBurstExecutorWithCache object
|
||||
* with concurrent calls.
|
||||
*/
|
||||
class IBurstExecutorWithCache {
|
||||
DISALLOW_COPY_AND_ASSIGN(IBurstExecutorWithCache);
|
||||
|
||||
public:
|
||||
IBurstExecutorWithCache() = default;
|
||||
virtual ~IBurstExecutorWithCache() = default;
|
||||
|
||||
/**
|
||||
* Checks if a cache entry specified by a slot is present in the cache.
|
||||
*
|
||||
* @param slot Identifier of the cache entry.
|
||||
* @return 'true' if the cache entry is present in the cache, 'false'
|
||||
* otherwise.
|
||||
*/
|
||||
virtual bool isCacheEntryPresent(int32_t slot) const = 0;
|
||||
|
||||
/**
|
||||
* Adds an entry specified by a slot to the cache.
|
||||
*
|
||||
* The caller of this function must ensure that the cache entry that is
|
||||
* being added is not already present in the cache. This can be checked
|
||||
* via isCacheEntryPresent.
|
||||
*
|
||||
* @param memory Memory resource to be cached.
|
||||
* @param slot Slot identifier corresponding to the memory resource.
|
||||
*/
|
||||
virtual void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) = 0;
|
||||
|
||||
/**
|
||||
* Removes an entry specified by a slot from the cache.
|
||||
*
|
||||
* If the cache entry corresponding to the slot number does not exist,
|
||||
* the call does nothing.
|
||||
*
|
||||
* @param slot Slot identifier corresponding to the memory resource.
|
||||
*/
|
||||
virtual void removeCacheEntry(int32_t slot) = 0;
|
||||
|
||||
/**
|
||||
* Perform an execution.
|
||||
*
|
||||
* @param request Request object with inputs and outputs specified.
|
||||
* Request::pools is empty, and DataLocation::poolIndex instead
|
||||
* refers to the 'slots' argument as if it were Request::pools.
|
||||
* @param slots Slots corresponding to the cached memory entries to be
|
||||
* used.
|
||||
* @param measure Whether timing information is requested for the
|
||||
* execution.
|
||||
* @return Result of the execution, including the status of the
|
||||
* execution, dynamic output shapes, and any timing information.
|
||||
*/
|
||||
virtual std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
|
||||
hardware::hidl_vec<hardware::neuralnetworks::V1_2::OutputShape>,
|
||||
hardware::neuralnetworks::V1_2::Timing>
|
||||
execute(const hardware::neuralnetworks::V1_0::Request& request,
|
||||
const std::vector<int32_t>& slots,
|
||||
hardware::neuralnetworks::V1_2::MeasureTiming measure) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* Create automated context to manage FMQ-based executions.
|
||||
*
|
||||
* This function is intended to be used by a service to automatically:
|
||||
* 1) Receive data from a provided FMQ
|
||||
* 2) Execute a model with the given information
|
||||
* 3) Send the result to the created FMQ
|
||||
*
|
||||
* @param callback Callback used to retrieve memories corresponding to
|
||||
* unrecognized slots.
|
||||
* @param requestChannel Input FMQ channel through which the client passes the
|
||||
* request to the service.
|
||||
* @param resultChannel Output FMQ channel from which the client can retrieve
|
||||
* the result of the execution.
|
||||
* @param executorWithCache Object which maintains a local cache of the
|
||||
* memory pools and executes using the cached memory pools.
|
||||
* @param pollingTimeWindow How much time (in microseconds) the
|
||||
* ExecutionBurstServer is allowed to poll the FMQ before waiting on
|
||||
* the blocking futex. Polling may result in lower latencies at the
|
||||
* potential cost of more power usage.
|
||||
* @result IBurstContext Handle to the burst context.
|
||||
*/
|
||||
static sp<ExecutionBurstServer> create(
|
||||
const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
|
||||
const FmqRequestDescriptor& requestChannel, const FmqResultDescriptor& resultChannel,
|
||||
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
|
||||
std::chrono::microseconds pollingTimeWindow = std::chrono::microseconds{0});
|
||||
|
||||
/**
|
||||
* Create automated context to manage FMQ-based executions.
|
||||
*
|
||||
* This function is intended to be used by a service to automatically:
|
||||
* 1) Receive data from a provided FMQ
|
||||
* 2) Execute a model with the given information
|
||||
* 3) Send the result to the created FMQ
|
||||
*
|
||||
* @param callback Callback used to retrieve memories corresponding to
|
||||
* unrecognized slots.
|
||||
* @param requestChannel Input FMQ channel through which the client passes the
|
||||
* request to the service.
|
||||
* @param resultChannel Output FMQ channel from which the client can retrieve
|
||||
* the result of the execution.
|
||||
* @param preparedModel PreparedModel that the burst object was created from.
|
||||
* IPreparedModel::executeSynchronously will be used to perform the
|
||||
* execution.
|
||||
* @param pollingTimeWindow How much time (in microseconds) the
|
||||
* ExecutionBurstServer is allowed to poll the FMQ before waiting on
|
||||
* the blocking futex. Polling may result in lower latencies at the
|
||||
* potential cost of more power usage.
|
||||
* @result IBurstContext Handle to the burst context.
|
||||
*/
|
||||
static sp<ExecutionBurstServer> create(
|
||||
const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
|
||||
const FmqRequestDescriptor& requestChannel, const FmqResultDescriptor& resultChannel,
|
||||
hardware::neuralnetworks::V1_2::IPreparedModel* preparedModel,
|
||||
std::chrono::microseconds pollingTimeWindow = std::chrono::microseconds{0});
|
||||
|
||||
ExecutionBurstServer(const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
|
||||
std::unique_ptr<RequestChannelReceiver> requestChannel,
|
||||
std::unique_ptr<ResultChannelSender> resultChannel,
|
||||
std::shared_ptr<IBurstExecutorWithCache> cachedExecutor);
|
||||
~ExecutionBurstServer();
|
||||
|
||||
// Used by the NN runtime to preemptively remove any stored memory.
|
||||
hardware::Return<void> freeMemory(int32_t slot) override;
|
||||
|
||||
private:
|
||||
// Ensures all cache entries contained in mExecutorWithCache are present in
|
||||
// the cache. If they are not present, they are retrieved (via
|
||||
// IBurstCallback::getMemories) and added to mExecutorWithCache.
|
||||
//
|
||||
// This method is locked via mMutex when it is called.
|
||||
void ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots);
|
||||
|
||||
// Work loop that will continue processing execution requests until the
|
||||
// ExecutionBurstServer object is freed.
|
||||
void task();
|
||||
|
||||
std::thread mWorker;
|
||||
std::mutex mMutex;
|
||||
std::atomic<bool> mTeardown{false};
|
||||
const sp<hardware::neuralnetworks::V1_2::IBurstCallback> mCallback;
|
||||
const std::unique_ptr<RequestChannelReceiver> mRequestChannelReceiver;
|
||||
const std::unique_ptr<ResultChannelSender> mResultChannelSender;
|
||||
const std::shared_ptr<IBurstExecutorWithCache> mExecutorWithCache;
|
||||
};
|
||||
|
||||
} // namespace android::nn
|
||||
|
||||
#endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
|
631
neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp
Normal file
631
neuralnetworks/1.2/utils/src/ExecutionBurstController.cpp
Normal file
|
@ -0,0 +1,631 @@
|
|||
/*
|
||||
* Copyright (C) 2019 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "ExecutionBurstController"
|
||||
|
||||
#include "ExecutionBurstController.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "HalInterfaces.h"
|
||||
#include "Tracing.h"
|
||||
#include "Utils.h"
|
||||
|
||||
namespace android::nn {
|
||||
namespace {
|
||||
|
||||
using V1_2::FmqRequestDatum;
|
||||
using V1_2::FmqResultDatum;
|
||||
using V1_2::IBurstCallback;
|
||||
using V1_2::IBurstContext;
|
||||
using FmqRequestDescriptor = hardware::MQDescriptorSync<FmqRequestDatum>;
|
||||
using FmqResultDescriptor = hardware::MQDescriptorSync<FmqResultDatum>;
|
||||
|
||||
constexpr V1_2::Timing kNoTiming12 = {std::numeric_limits<uint64_t>::max(),
|
||||
std::numeric_limits<uint64_t>::max()};
|
||||
|
||||
class BurstContextDeathHandler : public hardware::hidl_death_recipient {
|
||||
public:
|
||||
using Callback = std::function<void()>;
|
||||
|
||||
BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) {
|
||||
CHECK(onDeathCallback != nullptr);
|
||||
}
|
||||
|
||||
void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override {
|
||||
LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!";
|
||||
mOnDeathCallback();
|
||||
}
|
||||
|
||||
private:
|
||||
const Callback mOnDeathCallback;
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
// serialize a request into a packet
|
||||
std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure,
|
||||
const std::vector<int32_t>& slots) {
|
||||
// count how many elements need to be sent for a request
|
||||
size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size();
|
||||
for (const auto& input : request.inputs) {
|
||||
count += input.dimensions.size();
|
||||
}
|
||||
for (const auto& output : request.outputs) {
|
||||
count += output.dimensions.size();
|
||||
}
|
||||
|
||||
// create buffer to temporarily store elements
|
||||
std::vector<FmqRequestDatum> data;
|
||||
data.reserve(count);
|
||||
|
||||
// package packetInfo
|
||||
{
|
||||
FmqRequestDatum datum;
|
||||
datum.packetInformation(
|
||||
{/*.packetSize=*/static_cast<uint32_t>(count),
|
||||
/*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()),
|
||||
/*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()),
|
||||
/*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())});
|
||||
data.push_back(datum);
|
||||
}
|
||||
|
||||
// package input data
|
||||
for (const auto& input : request.inputs) {
|
||||
// package operand information
|
||||
FmqRequestDatum datum;
|
||||
datum.inputOperandInformation(
|
||||
{/*.hasNoValue=*/input.hasNoValue,
|
||||
/*.location=*/input.location,
|
||||
/*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())});
|
||||
data.push_back(datum);
|
||||
|
||||
// package operand dimensions
|
||||
for (uint32_t dimension : input.dimensions) {
|
||||
FmqRequestDatum datum;
|
||||
datum.inputOperandDimensionValue(dimension);
|
||||
data.push_back(datum);
|
||||
}
|
||||
}
|
||||
|
||||
// package output data
|
||||
for (const auto& output : request.outputs) {
|
||||
// package operand information
|
||||
FmqRequestDatum datum;
|
||||
datum.outputOperandInformation(
|
||||
{/*.hasNoValue=*/output.hasNoValue,
|
||||
/*.location=*/output.location,
|
||||
/*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())});
|
||||
data.push_back(datum);
|
||||
|
||||
// package operand dimensions
|
||||
for (uint32_t dimension : output.dimensions) {
|
||||
FmqRequestDatum datum;
|
||||
datum.outputOperandDimensionValue(dimension);
|
||||
data.push_back(datum);
|
||||
}
|
||||
}
|
||||
|
||||
// package pool identifier
|
||||
for (int32_t slot : slots) {
|
||||
FmqRequestDatum datum;
|
||||
datum.poolIdentifier(slot);
|
||||
data.push_back(datum);
|
||||
}
|
||||
|
||||
// package measureTiming
|
||||
{
|
||||
FmqRequestDatum datum;
|
||||
datum.measureTiming(measure);
|
||||
data.push_back(datum);
|
||||
}
|
||||
|
||||
// return packet
|
||||
return data;
|
||||
}
|
||||
|
||||
// deserialize a packet into the result
|
||||
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
|
||||
deserialize(const std::vector<FmqResultDatum>& data) {
|
||||
using discriminator = FmqResultDatum::hidl_discriminator;
|
||||
|
||||
std::vector<V1_2::OutputShape> outputShapes;
|
||||
size_t index = 0;
|
||||
|
||||
// validate packet information
|
||||
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
|
||||
LOG(ERROR) << "FMQ Result packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage packet information
|
||||
const FmqResultDatum::PacketInformation& packetInfo = data[index].packetInformation();
|
||||
index++;
|
||||
const uint32_t packetSize = packetInfo.packetSize;
|
||||
const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus;
|
||||
const uint32_t numberOfOperands = packetInfo.numberOfOperands;
|
||||
|
||||
// verify packet size
|
||||
if (data.size() != packetSize) {
|
||||
LOG(ERROR) << "FMQ Result packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage operands
|
||||
for (size_t operand = 0; operand < numberOfOperands; ++operand) {
|
||||
// validate operand information
|
||||
if (data[index].getDiscriminator() != discriminator::operandInformation) {
|
||||
LOG(ERROR) << "FMQ Result packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage operand information
|
||||
const FmqResultDatum::OperandInformation& operandInfo = data[index].operandInformation();
|
||||
index++;
|
||||
const bool isSufficient = operandInfo.isSufficient;
|
||||
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
||||
|
||||
// unpackage operand dimensions
|
||||
std::vector<uint32_t> dimensions;
|
||||
dimensions.reserve(numberOfDimensions);
|
||||
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
||||
// validate dimension
|
||||
if (data[index].getDiscriminator() != discriminator::operandDimensionValue) {
|
||||
LOG(ERROR) << "FMQ Result packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage dimension
|
||||
const uint32_t dimension = data[index].operandDimensionValue();
|
||||
index++;
|
||||
|
||||
// store result
|
||||
dimensions.push_back(dimension);
|
||||
}
|
||||
|
||||
// store result
|
||||
outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient});
|
||||
}
|
||||
|
||||
// validate execution timing
|
||||
if (data[index].getDiscriminator() != discriminator::executionTiming) {
|
||||
LOG(ERROR) << "FMQ Result packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage execution timing
|
||||
const V1_2::Timing timing = data[index].executionTiming();
|
||||
index++;
|
||||
|
||||
// validate packet information
|
||||
if (index != packetSize) {
|
||||
LOG(ERROR) << "FMQ Result packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// return result
|
||||
return std::make_tuple(errorStatus, std::move(outputShapes), timing);
|
||||
}
|
||||
|
||||
V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) {
|
||||
return convertToV1_0(convertResultCodeToErrorStatus(resultCode));
|
||||
}
|
||||
|
||||
std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*>
|
||||
ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) {
|
||||
std::unique_ptr<FmqResultChannel> fmqResultChannel =
|
||||
std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true);
|
||||
if (!fmqResultChannel->isValid()) {
|
||||
LOG(ERROR) << "Unable to create ResultChannelReceiver";
|
||||
return {nullptr, nullptr};
|
||||
}
|
||||
|
||||
const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc();
|
||||
return std::make_pair(
|
||||
std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow),
|
||||
descriptor);
|
||||
}
|
||||
|
||||
ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
|
||||
std::chrono::microseconds pollingTimeWindow)
|
||||
: mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {}
|
||||
|
||||
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
|
||||
ResultChannelReceiver::getBlocking() {
|
||||
const auto packet = getPacketBlocking();
|
||||
if (!packet) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
return deserialize(*packet);
|
||||
}
|
||||
|
||||
void ResultChannelReceiver::invalidate() {
|
||||
mValid = false;
|
||||
|
||||
// force unblock
|
||||
// ExecutionBurstController waits on a result packet after sending a
|
||||
// request. If the driver containing ExecutionBurstServer crashes, the
|
||||
// controller may be waiting on the futex. This force unblock wakes up any
|
||||
// thread waiting on the futex.
|
||||
// TODO: look for a different/better way to signal/notify the futex to
|
||||
// wake up any thread waiting on it
|
||||
FmqResultDatum datum;
|
||||
datum.packetInformation({/*.packetSize=*/0,
|
||||
/*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE,
|
||||
/*.numberOfOperands=*/0});
|
||||
mFmqResultChannel->writeBlocking(&datum, 1);
|
||||
}
|
||||
|
||||
std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
|
||||
if (!mValid) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// First spend time polling if results are available in FMQ instead of
|
||||
// waiting on the futex. Polling is more responsive (yielding lower
|
||||
// latencies), but can take up more power, so only poll for a limited period
|
||||
// of time.
|
||||
|
||||
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
|
||||
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
|
||||
|
||||
while (getCurrentTime() < timeToStopPolling) {
|
||||
// if class is being torn down, immediately return
|
||||
if (!mValid.load(std::memory_order_relaxed)) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Check if data is available. If it is, immediately retrieve it and
|
||||
// return.
|
||||
const size_t available = mFmqResultChannel->availableToRead();
|
||||
if (available > 0) {
|
||||
std::vector<FmqResultDatum> packet(available);
|
||||
const bool success = mFmqResultChannel->read(packet.data(), available);
|
||||
if (!success) {
|
||||
LOG(ERROR) << "Error receiving packet";
|
||||
return std::nullopt;
|
||||
}
|
||||
return std::make_optional(std::move(packet));
|
||||
}
|
||||
}
|
||||
|
||||
// If we get to this point, we either stopped polling because it was taking
|
||||
// too long or polling was not allowed. Instead, perform a blocking call
|
||||
// which uses a futex to save power.
|
||||
|
||||
// wait for result packet and read first element of result packet
|
||||
FmqResultDatum datum;
|
||||
bool success = mFmqResultChannel->readBlocking(&datum, 1);
|
||||
|
||||
// retrieve remaining elements
|
||||
// NOTE: all of the data is already available at this point, so there's no
|
||||
// need to do a blocking wait to wait for more data. This is known because
|
||||
// in FMQ, all writes are published (made available) atomically. Currently,
|
||||
// the producer always publishes the entire packet in one function call, so
|
||||
// if the first element of the packet is available, the remaining elements
|
||||
// are also available.
|
||||
const size_t count = mFmqResultChannel->availableToRead();
|
||||
std::vector<FmqResultDatum> packet(count + 1);
|
||||
std::memcpy(&packet.front(), &datum, sizeof(datum));
|
||||
success &= mFmqResultChannel->read(packet.data() + 1, count);
|
||||
|
||||
if (!mValid) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// ensure packet was successfully received
|
||||
if (!success) {
|
||||
LOG(ERROR) << "Error receiving packet";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
return std::make_optional(std::move(packet));
|
||||
}
|
||||
|
||||
std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*>
|
||||
RequestChannelSender::create(size_t channelLength) {
|
||||
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
|
||||
std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true);
|
||||
if (!fmqRequestChannel->isValid()) {
|
||||
LOG(ERROR) << "Unable to create RequestChannelSender";
|
||||
return {nullptr, nullptr};
|
||||
}
|
||||
|
||||
const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc();
|
||||
return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)),
|
||||
descriptor);
|
||||
}
|
||||
|
||||
RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel)
|
||||
: mFmqRequestChannel(std::move(fmqRequestChannel)) {}
|
||||
|
||||
bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure,
|
||||
const std::vector<int32_t>& slots) {
|
||||
const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots);
|
||||
return sendPacket(serialized);
|
||||
}
|
||||
|
||||
bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
|
||||
if (!mValid) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (packet.size() > mFmqRequestChannel->availableToWrite()) {
|
||||
LOG(ERROR)
|
||||
<< "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
|
||||
return false;
|
||||
}
|
||||
|
||||
// Always send the packet with "blocking" because this signals the futex and
|
||||
// unblocks the consumer if it is waiting on the futex.
|
||||
return mFmqRequestChannel->writeBlocking(packet.data(), packet.size());
|
||||
}
|
||||
|
||||
void RequestChannelSender::invalidate() {
|
||||
mValid = false;
|
||||
}
|
||||
|
||||
hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
|
||||
const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) {
|
||||
std::lock_guard<std::mutex> guard(mMutex);
|
||||
|
||||
// get all memories
|
||||
hardware::hidl_vec<hardware::hidl_memory> memories(slots.size());
|
||||
std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) {
|
||||
return slot < mMemoryCache.size() ? mMemoryCache[slot] : hardware::hidl_memory{};
|
||||
});
|
||||
|
||||
// ensure all memories are valid
|
||||
if (!std::all_of(memories.begin(), memories.end(),
|
||||
[](const hardware::hidl_memory& memory) { return memory.valid(); })) {
|
||||
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
|
||||
return hardware::Void();
|
||||
}
|
||||
|
||||
// return successful
|
||||
cb(V1_0::ErrorStatus::NONE, std::move(memories));
|
||||
return hardware::Void();
|
||||
}
|
||||
|
||||
std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots(
|
||||
const hardware::hidl_vec<hardware::hidl_memory>& memories,
|
||||
const std::vector<intptr_t>& keys) {
|
||||
std::lock_guard<std::mutex> guard(mMutex);
|
||||
|
||||
// retrieve (or bind) all slots corresponding to memories
|
||||
std::vector<int32_t> slots;
|
||||
slots.reserve(memories.size());
|
||||
for (size_t i = 0; i < memories.size(); ++i) {
|
||||
slots.push_back(getSlotLocked(memories[i], keys[i]));
|
||||
}
|
||||
return slots;
|
||||
}
|
||||
|
||||
std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory(
|
||||
intptr_t key) {
|
||||
std::lock_guard<std::mutex> guard(mMutex);
|
||||
|
||||
auto iter = mMemoryIdToSlot.find(key);
|
||||
if (iter == mMemoryIdToSlot.end()) {
|
||||
return {false, 0};
|
||||
}
|
||||
const int32_t slot = iter->second;
|
||||
mMemoryIdToSlot.erase(key);
|
||||
mMemoryCache[slot] = {};
|
||||
mFreeSlots.push(slot);
|
||||
return {true, slot};
|
||||
}
|
||||
|
||||
int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked(
|
||||
const hardware::hidl_memory& memory, intptr_t key) {
|
||||
auto iter = mMemoryIdToSlot.find(key);
|
||||
if (iter == mMemoryIdToSlot.end()) {
|
||||
const int32_t slot = allocateSlotLocked();
|
||||
mMemoryIdToSlot[key] = slot;
|
||||
mMemoryCache[slot] = memory;
|
||||
return slot;
|
||||
} else {
|
||||
const int32_t slot = iter->second;
|
||||
return slot;
|
||||
}
|
||||
}
|
||||
|
||||
int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() {
|
||||
constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max();
|
||||
|
||||
// if there is a free slot, use it
|
||||
if (mFreeSlots.size() > 0) {
|
||||
const int32_t slot = mFreeSlots.top();
|
||||
mFreeSlots.pop();
|
||||
return slot;
|
||||
}
|
||||
|
||||
// otherwise use a slot for the first time
|
||||
CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
|
||||
const int32_t slot = static_cast<int32_t>(mMemoryCache.size());
|
||||
mMemoryCache.emplace_back();
|
||||
|
||||
return slot;
|
||||
}
|
||||
|
||||
std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create(
|
||||
const sp<V1_2::IPreparedModel>& preparedModel,
|
||||
std::chrono::microseconds pollingTimeWindow) {
|
||||
// check inputs
|
||||
if (preparedModel == nullptr) {
|
||||
LOG(ERROR) << "ExecutionBurstController::create passed a nullptr";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// create callback object
|
||||
sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
|
||||
|
||||
// create FMQ objects
|
||||
auto [requestChannelSenderTemp, requestChannelDescriptor] =
|
||||
RequestChannelSender::create(kExecutionBurstChannelLength);
|
||||
auto [resultChannelReceiverTemp, resultChannelDescriptor] =
|
||||
ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow);
|
||||
std::shared_ptr<RequestChannelSender> requestChannelSender =
|
||||
std::move(requestChannelSenderTemp);
|
||||
std::shared_ptr<ResultChannelReceiver> resultChannelReceiver =
|
||||
std::move(resultChannelReceiverTemp);
|
||||
|
||||
// check FMQ objects
|
||||
if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor ||
|
||||
!resultChannelDescriptor) {
|
||||
LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// configure burst
|
||||
V1_0::ErrorStatus errorStatus;
|
||||
sp<IBurstContext> burstContext;
|
||||
const hardware::Return<void> ret = preparedModel->configureExecutionBurst(
|
||||
callback, *requestChannelDescriptor, *resultChannelDescriptor,
|
||||
[&errorStatus, &burstContext](V1_0::ErrorStatus status,
|
||||
const sp<IBurstContext>& context) {
|
||||
errorStatus = status;
|
||||
burstContext = context;
|
||||
});
|
||||
|
||||
// check burst
|
||||
if (!ret.isOk()) {
|
||||
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description "
|
||||
<< ret.description();
|
||||
return nullptr;
|
||||
}
|
||||
if (errorStatus != V1_0::ErrorStatus::NONE) {
|
||||
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status "
|
||||
<< toString(errorStatus);
|
||||
return nullptr;
|
||||
}
|
||||
if (burstContext == nullptr) {
|
||||
LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// create death handler object
|
||||
BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender,
|
||||
resultChannelReceiver] {
|
||||
requestChannelSender->invalidate();
|
||||
resultChannelReceiver->invalidate();
|
||||
};
|
||||
const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback);
|
||||
|
||||
// linkToDeath registers a callback that will be invoked on service death to
|
||||
// proactively handle service crashes. If the linkToDeath call fails,
|
||||
// asynchronous calls are susceptible to hangs if the service crashes before
|
||||
// providing the response.
|
||||
const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0);
|
||||
if (!deathHandlerRet.isOk() || deathHandlerRet != true) {
|
||||
LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient "
|
||||
"for the IBurstContext object.";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// make and return controller
|
||||
return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver,
|
||||
burstContext, callback, deathHandler);
|
||||
}
|
||||
|
||||
ExecutionBurstController::ExecutionBurstController(
|
||||
const std::shared_ptr<RequestChannelSender>& requestChannelSender,
|
||||
const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
|
||||
const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback,
|
||||
const sp<hardware::hidl_death_recipient>& deathHandler)
|
||||
: mRequestChannelSender(requestChannelSender),
|
||||
mResultChannelReceiver(resultChannelReceiver),
|
||||
mBurstContext(burstContext),
|
||||
mMemoryCache(callback),
|
||||
mDeathHandler(deathHandler) {}
|
||||
|
||||
ExecutionBurstController::~ExecutionBurstController() {
|
||||
// It is safe to ignore any errors resulting from this unlinkToDeath call
|
||||
// because the ExecutionBurstController object is already being destroyed
|
||||
// and its underlying IBurstContext object is no longer being used by the NN
|
||||
// runtime.
|
||||
if (mDeathHandler) {
|
||||
mBurstContext->unlinkToDeath(mDeathHandler).isOk();
|
||||
}
|
||||
}
|
||||
|
||||
static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult(
|
||||
V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing,
|
||||
bool fallback) {
|
||||
auto [n, checkedOutputShapes, checkedTiming] =
|
||||
getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing);
|
||||
return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback};
|
||||
}
|
||||
|
||||
std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool>
|
||||
ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure,
|
||||
const std::vector<intptr_t>& memoryIds) {
|
||||
// This is the first point when we know an execution is occurring, so begin
|
||||
// to collect systraces. Note that the first point we can begin collecting
|
||||
// systraces in ExecutionBurstServer is when the RequestChannelReceiver
|
||||
// realizes there is data in the FMQ, so ExecutionBurstServer collects
|
||||
// systraces at different points in the code.
|
||||
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute");
|
||||
|
||||
std::lock_guard<std::mutex> guard(mMutex);
|
||||
|
||||
// send request packet
|
||||
const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds);
|
||||
const bool success = mRequestChannelSender->send(request, measure, slots);
|
||||
if (!success) {
|
||||
LOG(ERROR) << "Error sending FMQ packet";
|
||||
// only use fallback execution path if the packet could not be sent
|
||||
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
|
||||
/*fallback=*/true);
|
||||
}
|
||||
|
||||
// get result packet
|
||||
const auto result = mResultChannelReceiver->getBlocking();
|
||||
if (!result) {
|
||||
LOG(ERROR) << "Error retrieving FMQ packet";
|
||||
// only use fallback execution path if the packet could not be sent
|
||||
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
|
||||
/*fallback=*/false);
|
||||
}
|
||||
|
||||
// unpack results and return (only use fallback execution path if the
|
||||
// packet could not be sent)
|
||||
auto [status, outputShapes, timing] = std::move(*result);
|
||||
return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false);
|
||||
}
|
||||
|
||||
void ExecutionBurstController::freeMemory(intptr_t key) {
|
||||
std::lock_guard<std::mutex> guard(mMutex);
|
||||
|
||||
bool valid;
|
||||
int32_t slot;
|
||||
std::tie(valid, slot) = mMemoryCache->freeMemory(key);
|
||||
if (valid) {
|
||||
mBurstContext->freeMemory(slot).isOk();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace android::nn
|
646
neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp
Normal file
646
neuralnetworks/1.2/utils/src/ExecutionBurstServer.cpp
Normal file
|
@ -0,0 +1,646 @@
|
|||
/*
|
||||
* Copyright (C) 2019 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "ExecutionBurstServer"
|
||||
|
||||
#include "ExecutionBurstServer.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "HalInterfaces.h"
|
||||
#include "Tracing.h"
|
||||
|
||||
namespace android::nn {
|
||||
namespace {
|
||||
|
||||
using hardware::MQDescriptorSync;
|
||||
using V1_2::FmqRequestDatum;
|
||||
using V1_2::FmqResultDatum;
|
||||
using V1_2::IBurstCallback;
|
||||
using V1_2::IBurstContext;
|
||||
|
||||
constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
|
||||
std::numeric_limits<uint64_t>::max()};
|
||||
|
||||
// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
|
||||
// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
|
||||
// hidl_memory object, and the execution forwards calls to the provided
|
||||
// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
|
||||
// must be mapped and unmapped for each execution.
|
||||
class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
|
||||
public:
|
||||
DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
|
||||
: mpPreparedModel(preparedModel) {}
|
||||
|
||||
bool isCacheEntryPresent(int32_t slot) const override {
|
||||
const auto it = mMemoryCache.find(slot);
|
||||
return (it != mMemoryCache.end()) && it->second.valid();
|
||||
}
|
||||
|
||||
void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override {
|
||||
mMemoryCache[slot] = memory;
|
||||
}
|
||||
|
||||
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
|
||||
|
||||
std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute(
|
||||
const V1_0::Request& request, const std::vector<int32_t>& slots,
|
||||
V1_2::MeasureTiming measure) override {
|
||||
// convert slots to pools
|
||||
hardware::hidl_vec<hardware::hidl_memory> pools(slots.size());
|
||||
std::transform(slots.begin(), slots.end(), pools.begin(),
|
||||
[this](int32_t slot) { return mMemoryCache[slot]; });
|
||||
|
||||
// create full request
|
||||
V1_0::Request fullRequest = request;
|
||||
fullRequest.pools = std::move(pools);
|
||||
|
||||
// setup execution
|
||||
V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
|
||||
hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes;
|
||||
V1_2::Timing returnedTiming;
|
||||
auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
|
||||
V1_0::ErrorStatus status,
|
||||
const hardware::hidl_vec<V1_2::OutputShape>& outputShapes,
|
||||
const V1_2::Timing& timing) {
|
||||
returnedStatus = status;
|
||||
returnedOutputShapes = outputShapes;
|
||||
returnedTiming = timing;
|
||||
};
|
||||
|
||||
// execute
|
||||
const hardware::Return<void> ret =
|
||||
mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
|
||||
if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
|
||||
LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
|
||||
return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
|
||||
}
|
||||
|
||||
return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
|
||||
}
|
||||
|
||||
private:
|
||||
V1_2::IPreparedModel* const mpPreparedModel;
|
||||
std::map<int32_t, hardware::hidl_memory> mMemoryCache;
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
// serialize result
|
||||
std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
|
||||
const std::vector<V1_2::OutputShape>& outputShapes,
|
||||
V1_2::Timing timing) {
|
||||
// count how many elements need to be sent for a request
|
||||
size_t count = 2 + outputShapes.size();
|
||||
for (const auto& outputShape : outputShapes) {
|
||||
count += outputShape.dimensions.size();
|
||||
}
|
||||
|
||||
// create buffer to temporarily store elements
|
||||
std::vector<FmqResultDatum> data;
|
||||
data.reserve(count);
|
||||
|
||||
// package packetInfo
|
||||
{
|
||||
FmqResultDatum datum;
|
||||
datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
|
||||
/*.errorStatus=*/errorStatus,
|
||||
/*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
|
||||
data.push_back(datum);
|
||||
}
|
||||
|
||||
// package output shape data
|
||||
for (const auto& operand : outputShapes) {
|
||||
// package operand information
|
||||
FmqResultDatum::OperandInformation info{};
|
||||
info.isSufficient = operand.isSufficient;
|
||||
info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
|
||||
|
||||
FmqResultDatum datum;
|
||||
datum.operandInformation(info);
|
||||
data.push_back(datum);
|
||||
|
||||
// package operand dimensions
|
||||
for (uint32_t dimension : operand.dimensions) {
|
||||
FmqResultDatum datum;
|
||||
datum.operandDimensionValue(dimension);
|
||||
data.push_back(datum);
|
||||
}
|
||||
}
|
||||
|
||||
// package executionTiming
|
||||
{
|
||||
FmqResultDatum datum;
|
||||
datum.executionTiming(timing);
|
||||
data.push_back(datum);
|
||||
}
|
||||
|
||||
// return result
|
||||
return data;
|
||||
}
|
||||
|
||||
// deserialize request
|
||||
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
|
||||
const std::vector<FmqRequestDatum>& data) {
|
||||
using discriminator = FmqRequestDatum::hidl_discriminator;
|
||||
|
||||
size_t index = 0;
|
||||
|
||||
// validate packet information
|
||||
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage packet information
|
||||
const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
|
||||
index++;
|
||||
const uint32_t packetSize = packetInfo.packetSize;
|
||||
const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
|
||||
const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
|
||||
const uint32_t numberOfPools = packetInfo.numberOfPools;
|
||||
|
||||
// verify packet size
|
||||
if (data.size() != packetSize) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage input operands
|
||||
std::vector<V1_0::RequestArgument> inputs;
|
||||
inputs.reserve(numberOfInputOperands);
|
||||
for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
|
||||
// validate input operand information
|
||||
if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage operand information
|
||||
const FmqRequestDatum::OperandInformation& operandInfo =
|
||||
data[index].inputOperandInformation();
|
||||
index++;
|
||||
const bool hasNoValue = operandInfo.hasNoValue;
|
||||
const V1_0::DataLocation location = operandInfo.location;
|
||||
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
||||
|
||||
// unpackage operand dimensions
|
||||
std::vector<uint32_t> dimensions;
|
||||
dimensions.reserve(numberOfDimensions);
|
||||
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
||||
// validate dimension
|
||||
if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage dimension
|
||||
const uint32_t dimension = data[index].inputOperandDimensionValue();
|
||||
index++;
|
||||
|
||||
// store result
|
||||
dimensions.push_back(dimension);
|
||||
}
|
||||
|
||||
// store result
|
||||
inputs.push_back(
|
||||
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
|
||||
}
|
||||
|
||||
// unpackage output operands
|
||||
std::vector<V1_0::RequestArgument> outputs;
|
||||
outputs.reserve(numberOfOutputOperands);
|
||||
for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
|
||||
// validate output operand information
|
||||
if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage operand information
|
||||
const FmqRequestDatum::OperandInformation& operandInfo =
|
||||
data[index].outputOperandInformation();
|
||||
index++;
|
||||
const bool hasNoValue = operandInfo.hasNoValue;
|
||||
const V1_0::DataLocation location = operandInfo.location;
|
||||
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
||||
|
||||
// unpackage operand dimensions
|
||||
std::vector<uint32_t> dimensions;
|
||||
dimensions.reserve(numberOfDimensions);
|
||||
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
||||
// validate dimension
|
||||
if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage dimension
|
||||
const uint32_t dimension = data[index].outputOperandDimensionValue();
|
||||
index++;
|
||||
|
||||
// store result
|
||||
dimensions.push_back(dimension);
|
||||
}
|
||||
|
||||
// store result
|
||||
outputs.push_back(
|
||||
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
|
||||
}
|
||||
|
||||
// unpackage pools
|
||||
std::vector<int32_t> slots;
|
||||
slots.reserve(numberOfPools);
|
||||
for (size_t pool = 0; pool < numberOfPools; ++pool) {
|
||||
// validate input operand information
|
||||
if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage operand information
|
||||
const int32_t poolId = data[index].poolIdentifier();
|
||||
index++;
|
||||
|
||||
// store result
|
||||
slots.push_back(poolId);
|
||||
}
|
||||
|
||||
// validate measureTiming
|
||||
if (data[index].getDiscriminator() != discriminator::measureTiming) {
|
||||
LOG(ERROR) << "FMQ Request packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// unpackage measureTiming
|
||||
const V1_2::MeasureTiming measure = data[index].measureTiming();
|
||||
index++;
|
||||
|
||||
// validate packet information
|
||||
if (index != packetSize) {
|
||||
LOG(ERROR) << "FMQ Result packet ill-formed";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// return request
|
||||
V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
|
||||
return std::make_tuple(std::move(request), std::move(slots), measure);
|
||||
}
|
||||
|
||||
// RequestChannelReceiver methods
|
||||
|
||||
std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
|
||||
const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
|
||||
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
|
||||
std::make_unique<FmqRequestChannel>(requestChannel);
|
||||
|
||||
if (!fmqRequestChannel->isValid()) {
|
||||
LOG(ERROR) << "Unable to create RequestChannelReceiver";
|
||||
return nullptr;
|
||||
}
|
||||
if (fmqRequestChannel->getEventFlagWord() == nullptr) {
|
||||
LOG(ERROR)
|
||||
<< "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
|
||||
pollingTimeWindow);
|
||||
}
|
||||
|
||||
RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
|
||||
std::chrono::microseconds pollingTimeWindow)
|
||||
: mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
|
||||
|
||||
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
|
||||
RequestChannelReceiver::getBlocking() {
|
||||
const auto packet = getPacketBlocking();
|
||||
if (!packet) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
return deserialize(*packet);
|
||||
}
|
||||
|
||||
void RequestChannelReceiver::invalidate() {
|
||||
mTeardown = true;
|
||||
|
||||
// force unblock
|
||||
// ExecutionBurstServer is by default waiting on a request packet. If the
|
||||
// client process destroys its burst object, the server may still be waiting
|
||||
// on the futex. This force unblock wakes up any thread waiting on the
|
||||
// futex.
|
||||
// TODO: look for a different/better way to signal/notify the futex to wake
|
||||
// up any thread waiting on it
|
||||
FmqRequestDatum datum;
|
||||
datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
|
||||
/*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
|
||||
mFmqRequestChannel->writeBlocking(&datum, 1);
|
||||
}
|
||||
|
||||
std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
|
||||
if (mTeardown) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// First spend time polling if results are available in FMQ instead of
|
||||
// waiting on the futex. Polling is more responsive (yielding lower
|
||||
// latencies), but can take up more power, so only poll for a limited period
|
||||
// of time.
|
||||
|
||||
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
|
||||
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
|
||||
|
||||
while (getCurrentTime() < timeToStopPolling) {
|
||||
// if class is being torn down, immediately return
|
||||
if (mTeardown.load(std::memory_order_relaxed)) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Check if data is available. If it is, immediately retrieve it and
|
||||
// return.
|
||||
const size_t available = mFmqRequestChannel->availableToRead();
|
||||
if (available > 0) {
|
||||
// This is the first point when we know an execution is occurring,
|
||||
// so begin to collect systraces. Note that a similar systrace does
|
||||
// not exist at the corresponding point in
|
||||
// ResultChannelReceiver::getPacketBlocking because the execution is
|
||||
// already in flight.
|
||||
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
|
||||
"ExecutionBurstServer getting packet");
|
||||
std::vector<FmqRequestDatum> packet(available);
|
||||
const bool success = mFmqRequestChannel->read(packet.data(), available);
|
||||
if (!success) {
|
||||
LOG(ERROR) << "Error receiving packet";
|
||||
return std::nullopt;
|
||||
}
|
||||
return std::make_optional(std::move(packet));
|
||||
}
|
||||
}
|
||||
|
||||
// If we get to this point, we either stopped polling because it was taking
|
||||
// too long or polling was not allowed. Instead, perform a blocking call
|
||||
// which uses a futex to save power.
|
||||
|
||||
// wait for request packet and read first element of request packet
|
||||
FmqRequestDatum datum;
|
||||
bool success = mFmqRequestChannel->readBlocking(&datum, 1);
|
||||
|
||||
// This is the first point when we know an execution is occurring, so begin
|
||||
// to collect systraces. Note that a similar systrace does not exist at the
|
||||
// corresponding point in ResultChannelReceiver::getPacketBlocking because
|
||||
// the execution is already in flight.
|
||||
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
|
||||
|
||||
// retrieve remaining elements
|
||||
// NOTE: all of the data is already available at this point, so there's no
|
||||
// need to do a blocking wait to wait for more data. This is known because
|
||||
// in FMQ, all writes are published (made available) atomically. Currently,
|
||||
// the producer always publishes the entire packet in one function call, so
|
||||
// if the first element of the packet is available, the remaining elements
|
||||
// are also available.
|
||||
const size_t count = mFmqRequestChannel->availableToRead();
|
||||
std::vector<FmqRequestDatum> packet(count + 1);
|
||||
std::memcpy(&packet.front(), &datum, sizeof(datum));
|
||||
success &= mFmqRequestChannel->read(packet.data() + 1, count);
|
||||
|
||||
// terminate loop
|
||||
if (mTeardown) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// ensure packet was successfully received
|
||||
if (!success) {
|
||||
LOG(ERROR) << "Error receiving packet";
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
return std::make_optional(std::move(packet));
|
||||
}
|
||||
|
||||
// ResultChannelSender methods
|
||||
|
||||
std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
|
||||
const FmqResultDescriptor& resultChannel) {
|
||||
std::unique_ptr<FmqResultChannel> fmqResultChannel =
|
||||
std::make_unique<FmqResultChannel>(resultChannel);
|
||||
|
||||
if (!fmqResultChannel->isValid()) {
|
||||
LOG(ERROR) << "Unable to create RequestChannelSender";
|
||||
return nullptr;
|
||||
}
|
||||
if (fmqResultChannel->getEventFlagWord() == nullptr) {
|
||||
LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
|
||||
}
|
||||
|
||||
ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
|
||||
: mFmqResultChannel(std::move(fmqResultChannel)) {}
|
||||
|
||||
bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
|
||||
const std::vector<V1_2::OutputShape>& outputShapes,
|
||||
V1_2::Timing timing) {
|
||||
const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
|
||||
return sendPacket(serialized);
|
||||
}
|
||||
|
||||
bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
|
||||
if (packet.size() > mFmqResultChannel->availableToWrite()) {
|
||||
LOG(ERROR)
|
||||
<< "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
|
||||
const std::vector<FmqResultDatum> errorPacket =
|
||||
serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
|
||||
|
||||
// Always send the packet with "blocking" because this signals the futex
|
||||
// and unblocks the consumer if it is waiting on the futex.
|
||||
return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
|
||||
}
|
||||
|
||||
// Always send the packet with "blocking" because this signals the futex and
|
||||
// unblocks the consumer if it is waiting on the futex.
|
||||
return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
|
||||
}
|
||||
|
||||
// ExecutionBurstServer methods
|
||||
|
||||
sp<ExecutionBurstServer> ExecutionBurstServer::create(
|
||||
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
|
||||
const MQDescriptorSync<FmqResultDatum>& resultChannel,
|
||||
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
|
||||
std::chrono::microseconds pollingTimeWindow) {
|
||||
// check inputs
|
||||
if (callback == nullptr || executorWithCache == nullptr) {
|
||||
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// create FMQ objects
|
||||
std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
|
||||
RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
|
||||
std::unique_ptr<ResultChannelSender> resultChannelSender =
|
||||
ResultChannelSender::create(resultChannel);
|
||||
|
||||
// check FMQ objects
|
||||
if (!requestChannelReceiver || !resultChannelSender) {
|
||||
LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// make and return context
|
||||
return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
|
||||
std::move(resultChannelSender), std::move(executorWithCache));
|
||||
}
|
||||
|
||||
sp<ExecutionBurstServer> ExecutionBurstServer::create(
|
||||
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
|
||||
const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
|
||||
std::chrono::microseconds pollingTimeWindow) {
|
||||
// check relevant input
|
||||
if (preparedModel == nullptr) {
|
||||
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// adapt IPreparedModel to have caching
|
||||
const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
|
||||
std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
|
||||
|
||||
// make and return context
|
||||
return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
|
||||
preparedModelAdapter, pollingTimeWindow);
|
||||
}
|
||||
|
||||
ExecutionBurstServer::ExecutionBurstServer(
|
||||
const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
|
||||
std::unique_ptr<ResultChannelSender> resultChannel,
|
||||
std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
|
||||
: mCallback(callback),
|
||||
mRequestChannelReceiver(std::move(requestChannel)),
|
||||
mResultChannelSender(std::move(resultChannel)),
|
||||
mExecutorWithCache(std::move(executorWithCache)) {
|
||||
// TODO: highly document the threading behavior of this class
|
||||
mWorker = std::thread([this] { task(); });
|
||||
}
|
||||
|
||||
ExecutionBurstServer::~ExecutionBurstServer() {
|
||||
// set teardown flag
|
||||
mTeardown = true;
|
||||
mRequestChannelReceiver->invalidate();
|
||||
|
||||
// wait for task thread to end
|
||||
mWorker.join();
|
||||
}
|
||||
|
||||
hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
|
||||
std::lock_guard<std::mutex> hold(mMutex);
|
||||
mExecutorWithCache->removeCacheEntry(slot);
|
||||
return hardware::Void();
|
||||
}
|
||||
|
||||
void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
|
||||
const auto slotIsKnown = [this](int32_t slot) {
|
||||
return mExecutorWithCache->isCacheEntryPresent(slot);
|
||||
};
|
||||
|
||||
// find unique unknown slots
|
||||
std::vector<int32_t> unknownSlots = slots;
|
||||
auto unknownSlotsEnd = unknownSlots.end();
|
||||
std::sort(unknownSlots.begin(), unknownSlotsEnd);
|
||||
unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
|
||||
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
|
||||
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
|
||||
|
||||
// quick-exit if all slots are known
|
||||
if (unknownSlots.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
|
||||
std::vector<hardware::hidl_memory> returnedMemories;
|
||||
auto cb = [&errorStatus, &returnedMemories](
|
||||
V1_0::ErrorStatus status,
|
||||
const hardware::hidl_vec<hardware::hidl_memory>& memories) {
|
||||
errorStatus = status;
|
||||
returnedMemories = memories;
|
||||
};
|
||||
|
||||
const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb);
|
||||
|
||||
if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
|
||||
returnedMemories.size() != unknownSlots.size()) {
|
||||
LOG(ERROR) << "Error retrieving memories";
|
||||
return;
|
||||
}
|
||||
|
||||
// add memories to unknown slots
|
||||
for (size_t i = 0; i < unknownSlots.size(); ++i) {
|
||||
mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void ExecutionBurstServer::task() {
|
||||
// loop until the burst object is being destroyed
|
||||
while (!mTeardown) {
|
||||
// receive request
|
||||
auto arguments = mRequestChannelReceiver->getBlocking();
|
||||
|
||||
// if the request packet was not properly received, return a generic
|
||||
// error and skip the execution
|
||||
//
|
||||
// if the burst is being torn down, skip the execution so the "task"
|
||||
// function can end
|
||||
if (!arguments) {
|
||||
if (!mTeardown) {
|
||||
mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// otherwise begin tracing execution
|
||||
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
|
||||
"ExecutionBurstServer getting memory, executing, and returning results");
|
||||
|
||||
// unpack the arguments; types are Request, std::vector<int32_t>, and
|
||||
// MeasureTiming, respectively
|
||||
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
|
||||
|
||||
// ensure executor with cache has required memory
|
||||
std::lock_guard<std::mutex> hold(mMutex);
|
||||
ensureCacheEntriesArePresentLocked(slotsOfPools);
|
||||
|
||||
// perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
|
||||
// and Timing, respectively
|
||||
const auto [errorStatus, outputShapes, returnedTiming] =
|
||||
mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
|
||||
|
||||
// return result
|
||||
mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace android::nn
|
Loading…
Reference in a new issue