Merge changes from topic "nnapisync_1.2"

* changes:
  Add VTS tests for NeuralNetworks v1.2
  Create NeuralNetworks HAL v1.2 for new OperationTypes
This commit is contained in:
Przemyslaw Szczepaniak 2018-09-24 12:25:55 +00:00 committed by Gerrit Code Review
commit 96e08aa749
16 changed files with 1874 additions and 1 deletions

View file

@ -25,6 +25,7 @@ cc_library_static {
static_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",
@ -49,8 +50,9 @@ cc_test {
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",

View file

@ -275,6 +275,58 @@ void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> c
EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
}
// TODO: Reduce code duplication.
void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
V1_2::Model model = create_model();
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedCall = device->getSupportedOperations_1_2(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
// early termination if vendor service cannot fully prepare model
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel.get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel.get());
// TODO: Adjust the error limit based on testing.
// If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
float fpAtol = !model.relaxComputationFloat32toFloat16 ? 1e-5f : 5.0f * 0.0009765625f;
// Set the relative tolerance to be 5ULP of the corresponding FP precision.
float fpRtol = !model.relaxComputationFloat32toFloat16 ? 5.0f * 1.1920928955078125e-7f
: 5.0f * 0.0009765625f;
EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
}
} // namespace generated_tests
} // namespace neuralnetworks

View file

@ -28,6 +28,7 @@ cc_test {
static_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",

View file

@ -0,0 +1,24 @@
// This file is autogenerated by hidl-gen -Landroidbp.
hidl_interface {
name: "android.hardware.neuralnetworks@1.2",
root: "android.hardware",
vndk: {
enabled: true,
},
srcs: [
"types.hal",
"IDevice.hal",
],
interfaces: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hidl.base@1.0",
],
types: [
"Model",
"Operation",
"OperationType",
],
gen_java: false,
}

View file

@ -0,0 +1,106 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.neuralnetworks@1.2;
import @1.0::ErrorStatus;
import @1.0::IPreparedModelCallback;
import @1.1::ExecutionPreference;
import @1.1::IDevice;
/**
* This interface represents a device driver.
*/
interface IDevice extends @1.1::IDevice {
/**
* Gets the supported operations in a model.
*
* getSupportedOperations indicates which operations of a model are fully
* supported by the vendor driver. If an operation may not be supported for
* any reason, getSupportedOperations must return false for that operation.
*
* @param model A model whose operations--and their corresponding operands--
* are to be verified by the driver.
* @return status Error status of the call, must be:
* - NONE if successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if there is an unspecified error
* - INVALID_ARGUMENT if provided model is invalid
* @return supportedOperations A list of supported operations, where true
* indicates the operation is supported and false indicates the
* operation is not supported. The index of "supported" corresponds with
* the index of the operation it is describing.
*/
getSupportedOperations_1_2(Model model)
generates (ErrorStatus status, vec<bool> supportedOperations);
/**
* Creates a prepared model for execution.
*
* prepareModel is used to make any necessary transformations or alternative
* representations to a model for execution, possibly including
* transformations on the constant data, optimization on the model's graph,
* or compilation into the device's native binary format. The model itself
* is not changed.
*
* The model is prepared asynchronously with respect to the caller. The
* prepareModel function must verify the inputs to the prepareModel function
* are correct. If there is an error, prepareModel must immediately invoke
* the callback with the appropriate ErrorStatus value and nullptr for the
* IPreparedModel, then return with the same ErrorStatus. If the inputs to
* the prepareModel function are valid and there is no error, prepareModel
* must launch an asynchronous task to prepare the model in the background,
* and immediately return from prepareModel with ErrorStatus::NONE. If the
* asynchronous task fails to launch, prepareModel must immediately invoke
* the callback with ErrorStatus::GENERAL_FAILURE and nullptr for the
* IPreparedModel, then return with ErrorStatus::GENERAL_FAILURE.
*
* When the asynchronous task has finished preparing the model, it must
* immediately invoke the callback function provided as an input to
* prepareModel. If the model was prepared successfully, the callback object
* must be invoked with an error status of ErrorStatus::NONE and the
* produced IPreparedModel object. If an error occurred preparing the model,
* the callback object must be invoked with the appropriate ErrorStatus
* value and nullptr for the IPreparedModel.
*
* The only information that may be unknown to the model at this stage is
* the shape of the tensors, which may only be known at execution time. As
* such, some driver services may return partially prepared models, where
* the prepared model may only be finished when it is paired with a set of
* inputs to the model. Note that the same prepared model object may be
* used with different shapes of inputs on different (possibly concurrent)
* executions.
*
* Multiple threads may call prepareModel on the same model concurrently.
*
* @param model The model to be prepared for execution.
* @param preference Indicates the intended execution behavior of a prepared
* model.
* @param callback A callback object used to return the error status of
* preparing the model for execution and the prepared model if
* successful, nullptr otherwise. The callback object's notify function
* must be called exactly once, even if the model could not be prepared.
* @return status Error status of launching a task which prepares the model
* in the background; must be:
* - NONE if preparation task is successfully launched
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if there is an unspecified error
* - INVALID_ARGUMENT if one of the input arguments is invalid
*/
prepareModel_1_2(Model model, ExecutionPreference preference,
IPreparedModelCallback callback)
generates (ErrorStatus status);
};

View file

@ -0,0 +1,112 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.neuralnetworks@1.2;
import @1.0::Operand;
import @1.0::PerformanceInfo;
import @1.1::OperationType;
/**
* Operation types.
*
* The type of an operation in a model.
*/
enum OperationType : @1.1::OperationType {
};
/**
* Describes one operation of the model's graph.
*/
struct Operation {
/**
* The operation type.
*/
OperationType type;
/**
* Describes the table that contains the indexes of the inputs of the
* operation. The offset is the index in the operandIndexes table.
*/
vec<uint32_t> inputs;
/**
* Describes the table that contains the indexes of the outputs of the
* operation. The offset is the index in the operandIndexes table.
*/
vec<uint32_t> outputs;
};
/**
* A Neural Network Model.
*
* This includes not only the execution graph, but also constant data such as
* weights or scalars added at construction time. The only information that
* may not be known is the shape of the input tensors.
*/
struct Model {
/**
* All operands included in the model.
*/
vec<Operand> operands;
/**
* All operations included in the model.
*
* The operations are sorted into execution order. Every operand
* with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
* written before it is read.
*/
vec<Operation> operations;
/**
* Input indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
vec<uint32_t> inputIndexes;
/**
* Output indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
vec<uint32_t> outputIndexes;
/**
* A byte buffer containing operand data that were copied into the model.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_COPY.
*/
vec<uint8_t> operandValues;
/**
* A collection of shared memory pools containing operand values.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_REFERENCE.
*/
vec<memory> pools;
/**
* 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
* precision as low as that of the IEEE 754 16-bit floating-point format.
* 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
* range and precision of the IEEE 754 32-bit floating-point format.
*/
bool relaxComputationFloat32toFloat16;
};

View file

@ -0,0 +1,14 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
jeanluc@google.com
levp@google.com
miaowang@google.com
mikie@google.com
mks@google.com
pszczepaniak@google.com
slavash@google.com
# VTS team
yim@google.com
yuexima@google.com

View file

@ -0,0 +1,52 @@
//
// Copyright (C) 2018 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_test {
name: "VtsHalNeuralnetworksV1_2TargetTest",
srcs: [
"BasicTests.cpp",
"GeneratedTests.cpp",
"ValidateModel.cpp",
"ValidateRequest.cpp",
"ValidationTests.cpp",
"VtsHalNeuralnetworks.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",
"libneuralnetworks_utils",
"VtsHalNeuralnetworksTest_utils",
],
header_libs: [
"libneuralnetworks_headers",
"libneuralnetworks_generated_test_harness_headers",
"libneuralnetworks_generated_tests",
],
// Bug: http://b/74200014 - Disable arm32 asan since it triggers internal
// error in ld.gold.
arch: {
arm: {
sanitize: {
never: true,
},
},
},
}

View file

@ -0,0 +1,45 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
namespace vts {
namespace functional {
using V1_1::Capabilities;
// create device test
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
// status test
TEST_F(NeuralnetworksHidlTest, StatusTest) {
Return<DeviceStatus> status = device->getStatus();
ASSERT_TRUE(status.isOk());
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
}
} // namespace functional
} // namespace vts
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View file

@ -0,0 +1,60 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace generated_tests {
using ::test_helper::MixedTypedExampleType;
extern void Execute(const sp<V1_2::IDevice>&, std::function<V1_2::Model(void)>,
std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
} // namespace generated_tests
namespace V1_2 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
using ::android::nn::allocateSharedMemory;
// Mixed-typed examples
typedef generated_tests::MixedTypedExampleType MixedTypedExample;
// in frameworks/ml/nn/runtime/tests/generated/
#include "all_generated_V1_0_vts_tests.cpp"
#include "all_generated_V1_1_vts_tests.cpp"
#include "all_generated_V1_2_vts_tests.cpp"
} // namespace functional
} // namespace vts
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View file

@ -0,0 +1,378 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
#define VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "TestHarness.h"
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
namespace vts {
namespace functional {
using MixedTypedExample = test_helper::MixedTypedExampleType;
#define FOR_EACH_TEST_MODEL(FN) \
FN(add) \
FN(add_broadcast_quant8) \
FN(add_quant8) \
FN(add_relaxed) \
FN(avg_pool_float_1) \
FN(avg_pool_float_1_relaxed) \
FN(avg_pool_float_2) \
FN(avg_pool_float_2_relaxed) \
FN(avg_pool_float_3) \
FN(avg_pool_float_3_relaxed) \
FN(avg_pool_float_4) \
FN(avg_pool_float_4_relaxed) \
FN(avg_pool_float_5) \
FN(avg_pool_float_5_relaxed) \
FN(avg_pool_quant8_1) \
FN(avg_pool_quant8_2) \
FN(avg_pool_quant8_3) \
FN(avg_pool_quant8_4) \
FN(avg_pool_quant8_5) \
FN(batch_to_space) \
FN(batch_to_space_float_1) \
FN(batch_to_space_float_1_relaxed) \
FN(batch_to_space_quant8_1) \
FN(batch_to_space_relaxed) \
FN(concat_float_1) \
FN(concat_float_1_relaxed) \
FN(concat_float_2) \
FN(concat_float_2_relaxed) \
FN(concat_float_3) \
FN(concat_float_3_relaxed) \
FN(concat_quant8_1) \
FN(concat_quant8_2) \
FN(concat_quant8_3) \
FN(conv_1_h3_w2_SAME) \
FN(conv_1_h3_w2_SAME_relaxed) \
FN(conv_1_h3_w2_VALID) \
FN(conv_1_h3_w2_VALID_relaxed) \
FN(conv_3_h3_w2_SAME) \
FN(conv_3_h3_w2_SAME_relaxed) \
FN(conv_3_h3_w2_VALID) \
FN(conv_3_h3_w2_VALID_relaxed) \
FN(conv_float) \
FN(conv_float_2) \
FN(conv_float_2_relaxed) \
FN(conv_float_channels) \
FN(conv_float_channels_relaxed) \
FN(conv_float_channels_weights_as_inputs) \
FN(conv_float_channels_weights_as_inputs_relaxed) \
FN(conv_float_large) \
FN(conv_float_large_relaxed) \
FN(conv_float_large_weights_as_inputs) \
FN(conv_float_large_weights_as_inputs_relaxed) \
FN(conv_float_relaxed) \
FN(conv_float_weights_as_inputs) \
FN(conv_float_weights_as_inputs_relaxed) \
FN(conv_quant8) \
FN(conv_quant8_2) \
FN(conv_quant8_channels) \
FN(conv_quant8_channels_weights_as_inputs) \
FN(conv_quant8_large) \
FN(conv_quant8_large_weights_as_inputs) \
FN(conv_quant8_overflow) \
FN(conv_quant8_overflow_weights_as_inputs) \
FN(conv_quant8_weights_as_inputs) \
FN(depth_to_space_float_1) \
FN(depth_to_space_float_1_relaxed) \
FN(depth_to_space_float_2) \
FN(depth_to_space_float_2_relaxed) \
FN(depth_to_space_float_3) \
FN(depth_to_space_float_3_relaxed) \
FN(depth_to_space_quant8_1) \
FN(depth_to_space_quant8_2) \
FN(depthwise_conv) \
FN(depthwise_conv2d_float) \
FN(depthwise_conv2d_float_2) \
FN(depthwise_conv2d_float_2_relaxed) \
FN(depthwise_conv2d_float_large) \
FN(depthwise_conv2d_float_large_2) \
FN(depthwise_conv2d_float_large_2_relaxed) \
FN(depthwise_conv2d_float_large_2_weights_as_inputs) \
FN(depthwise_conv2d_float_large_2_weights_as_inputs_relaxed) \
FN(depthwise_conv2d_float_large_relaxed) \
FN(depthwise_conv2d_float_large_weights_as_inputs) \
FN(depthwise_conv2d_float_large_weights_as_inputs_relaxed) \
FN(depthwise_conv2d_float_relaxed) \
FN(depthwise_conv2d_float_weights_as_inputs) \
FN(depthwise_conv2d_float_weights_as_inputs_relaxed) \
FN(depthwise_conv2d_quant8) \
FN(depthwise_conv2d_quant8_2) \
FN(depthwise_conv2d_quant8_large) \
FN(depthwise_conv2d_quant8_large_weights_as_inputs) \
FN(depthwise_conv2d_quant8_weights_as_inputs) \
FN(depthwise_conv_relaxed) \
FN(dequantize) \
FN(dequantize_relaxed) \
FN(div) \
FN(div_broadcast_float) \
FN(div_broadcast_float_relaxed) \
FN(div_relaxed) \
FN(embedding_lookup) \
FN(embedding_lookup_relaxed) \
FN(floor) \
FN(floor_relaxed) \
FN(fully_connected_float) \
FN(fully_connected_float_2) \
FN(fully_connected_float_2_relaxed) \
FN(fully_connected_float_4d_simple) \
FN(fully_connected_float_4d_simple_relaxed) \
FN(fully_connected_float_large) \
FN(fully_connected_float_large_relaxed) \
FN(fully_connected_float_large_weights_as_inputs) \
FN(fully_connected_float_large_weights_as_inputs_relaxed) \
FN(fully_connected_float_relaxed) \
FN(fully_connected_float_weights_as_inputs) \
FN(fully_connected_float_weights_as_inputs_relaxed) \
FN(fully_connected_quant8) \
FN(fully_connected_quant8_2) \
FN(fully_connected_quant8_large) \
FN(fully_connected_quant8_large_weights_as_inputs) \
FN(fully_connected_quant8_weights_as_inputs) \
FN(hashtable_lookup_float) \
FN(hashtable_lookup_float_relaxed) \
FN(hashtable_lookup_quant8) \
FN(l2_normalization) \
FN(l2_normalization_2) \
FN(l2_normalization_2_relaxed) \
FN(l2_normalization_large) \
FN(l2_normalization_large_relaxed) \
FN(l2_normalization_relaxed) \
FN(l2_pool_float) \
FN(l2_pool_float_2) \
FN(l2_pool_float_2_relaxed) \
FN(l2_pool_float_large) \
FN(l2_pool_float_large_relaxed) \
FN(l2_pool_float_relaxed) \
FN(local_response_norm_float_1) \
FN(local_response_norm_float_1_relaxed) \
FN(local_response_norm_float_2) \
FN(local_response_norm_float_2_relaxed) \
FN(local_response_norm_float_3) \
FN(local_response_norm_float_3_relaxed) \
FN(local_response_norm_float_4) \
FN(local_response_norm_float_4_relaxed) \
FN(logistic_float_1) \
FN(logistic_float_1_relaxed) \
FN(logistic_float_2) \
FN(logistic_float_2_relaxed) \
FN(logistic_quant8_1) \
FN(logistic_quant8_2) \
FN(lsh_projection) \
FN(lsh_projection_2) \
FN(lsh_projection_2_relaxed) \
FN(lsh_projection_relaxed) \
FN(lsh_projection_weights_as_inputs) \
FN(lsh_projection_weights_as_inputs_relaxed) \
FN(lstm) \
FN(lstm2) \
FN(lstm2_relaxed) \
FN(lstm2_state) \
FN(lstm2_state2) \
FN(lstm2_state2_relaxed) \
FN(lstm2_state_relaxed) \
FN(lstm3) \
FN(lstm3_relaxed) \
FN(lstm3_state) \
FN(lstm3_state2) \
FN(lstm3_state2_relaxed) \
FN(lstm3_state3) \
FN(lstm3_state3_relaxed) \
FN(lstm3_state_relaxed) \
FN(lstm_relaxed) \
FN(lstm_state) \
FN(lstm_state2) \
FN(lstm_state2_relaxed) \
FN(lstm_state_relaxed) \
FN(max_pool_float_1) \
FN(max_pool_float_1_relaxed) \
FN(max_pool_float_2) \
FN(max_pool_float_2_relaxed) \
FN(max_pool_float_3) \
FN(max_pool_float_3_relaxed) \
FN(max_pool_float_4) \
FN(max_pool_float_4_relaxed) \
FN(max_pool_quant8_1) \
FN(max_pool_quant8_2) \
FN(max_pool_quant8_3) \
FN(max_pool_quant8_4) \
FN(mean) \
FN(mean_float_1) \
FN(mean_float_1_relaxed) \
FN(mean_float_2) \
FN(mean_float_2_relaxed) \
FN(mean_quant8_1) \
FN(mean_quant8_2) \
FN(mean_relaxed) \
FN(mobilenet_224_gender_basic_fixed) \
FN(mobilenet_224_gender_basic_fixed_relaxed) \
FN(mobilenet_quantized) \
FN(mul) \
FN(mul_broadcast_quant8) \
FN(mul_quant8) \
FN(mul_relaxed) \
FN(mul_relu) \
FN(mul_relu_relaxed) \
FN(pad) \
FN(pad_float_1) \
FN(pad_float_1_relaxed) \
FN(pad_relaxed) \
FN(relu1_float_1) \
FN(relu1_float_1_relaxed) \
FN(relu1_float_2) \
FN(relu1_float_2_relaxed) \
FN(relu1_quant8_1) \
FN(relu1_quant8_2) \
FN(relu6_float_1) \
FN(relu6_float_1_relaxed) \
FN(relu6_float_2) \
FN(relu6_float_2_relaxed) \
FN(relu6_quant8_1) \
FN(relu6_quant8_2) \
FN(relu_float_1) \
FN(relu_float_1_relaxed) \
FN(relu_float_2) \
FN(relu_float_2_relaxed) \
FN(relu_quant8_1) \
FN(relu_quant8_2) \
FN(reshape) \
FN(reshape_quant8) \
FN(reshape_quant8_weights_as_inputs) \
FN(reshape_relaxed) \
FN(reshape_weights_as_inputs) \
FN(reshape_weights_as_inputs_relaxed) \
FN(resize_bilinear) \
FN(resize_bilinear_2) \
FN(resize_bilinear_2_relaxed) \
FN(resize_bilinear_relaxed) \
FN(rnn) \
FN(rnn_relaxed) \
FN(rnn_state) \
FN(rnn_state_relaxed) \
FN(softmax_float_1) \
FN(softmax_float_1_relaxed) \
FN(softmax_float_2) \
FN(softmax_float_2_relaxed) \
FN(softmax_quant8_1) \
FN(softmax_quant8_2) \
FN(space_to_batch) \
FN(space_to_batch_float_1) \
FN(space_to_batch_float_1_relaxed) \
FN(space_to_batch_float_2) \
FN(space_to_batch_float_2_relaxed) \
FN(space_to_batch_float_3) \
FN(space_to_batch_float_3_relaxed) \
FN(space_to_batch_quant8_1) \
FN(space_to_batch_quant8_2) \
FN(space_to_batch_quant8_3) \
FN(space_to_batch_relaxed) \
FN(space_to_depth_float_1) \
FN(space_to_depth_float_1_relaxed) \
FN(space_to_depth_float_2) \
FN(space_to_depth_float_2_relaxed) \
FN(space_to_depth_float_3) \
FN(space_to_depth_float_3_relaxed) \
FN(space_to_depth_quant8_1) \
FN(space_to_depth_quant8_2) \
FN(squeeze) \
FN(squeeze_float_1) \
FN(squeeze_float_1_relaxed) \
FN(squeeze_quant8_1) \
FN(squeeze_relaxed) \
FN(strided_slice) \
FN(strided_slice_float_1) \
FN(strided_slice_float_10) \
FN(strided_slice_float_10_relaxed) \
FN(strided_slice_float_11) \
FN(strided_slice_float_11_relaxed) \
FN(strided_slice_float_1_relaxed) \
FN(strided_slice_float_2) \
FN(strided_slice_float_2_relaxed) \
FN(strided_slice_float_3) \
FN(strided_slice_float_3_relaxed) \
FN(strided_slice_float_4) \
FN(strided_slice_float_4_relaxed) \
FN(strided_slice_float_5) \
FN(strided_slice_float_5_relaxed) \
FN(strided_slice_float_6) \
FN(strided_slice_float_6_relaxed) \
FN(strided_slice_float_7) \
FN(strided_slice_float_7_relaxed) \
FN(strided_slice_float_8) \
FN(strided_slice_float_8_relaxed) \
FN(strided_slice_float_9) \
FN(strided_slice_float_9_relaxed) \
FN(strided_slice_qaunt8_10) \
FN(strided_slice_qaunt8_11) \
FN(strided_slice_quant8_1) \
FN(strided_slice_quant8_2) \
FN(strided_slice_quant8_3) \
FN(strided_slice_quant8_4) \
FN(strided_slice_quant8_5) \
FN(strided_slice_quant8_6) \
FN(strided_slice_quant8_7) \
FN(strided_slice_quant8_8) \
FN(strided_slice_quant8_9) \
FN(strided_slice_relaxed) \
FN(sub) \
FN(sub_broadcast_float) \
FN(sub_broadcast_float_relaxed) \
FN(sub_relaxed) \
FN(svdf) \
FN(svdf2) \
FN(svdf2_relaxed) \
FN(svdf_relaxed) \
FN(svdf_state) \
FN(svdf_state_relaxed) \
FN(tanh) \
FN(tanh_relaxed) \
FN(transpose) \
FN(transpose_float_1) \
FN(transpose_float_1_relaxed) \
FN(transpose_quant8_1) \
FN(transpose_relaxed)
#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
namespace function { \
extern std::vector<MixedTypedExample> examples; \
Model createTestModel(); \
}
FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
#undef FORWARD_DECLARE_GENERATED_OBJECTS
} // namespace functional
} // namespace vts
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
#endif // VTS_HAL_NEURALNETWORKS_V1_2_VTS_FUNCTIONAL_MODELS_H

View file

@ -0,0 +1,538 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
using V1_0::IPreparedModel;
using V1_0::Operand;
using V1_0::OperandLifeTime;
using V1_0::OperandType;
using V1_1::ExecutionPreference;
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
const Model& model) {
SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
Return<void> ret =
device->getSupportedOperations_1_2(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
});
EXPECT_TRUE(ret.isOk());
}
static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
const Model& model, ExecutionPreference preference) {
SCOPED_TRACE(message + " [prepareModel_1_2]");
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_2(model, preference, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
ASSERT_EQ(nullptr, preparedModel.get());
}
static bool validExecutionPreference(ExecutionPreference preference) {
return preference == ExecutionPreference::LOW_POWER ||
preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
preference == ExecutionPreference::SUSTAINED_SPEED;
}
// Primary validation function. This function will take a valid model, apply a
// mutation to it to invalidate the model, then pass it to interface calls that
// use the model. Note that the model here is passed by value, and any mutation
// to the model does not leave this function.
static void validate(const sp<IDevice>& device, const std::string& message, Model model,
const std::function<void(Model*)>& mutation,
ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
mutation(&model);
if (validExecutionPreference(preference)) {
validateGetSupportedOperations(device, message, model);
}
validatePrepareModel(device, message, model, preference);
}
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
// so this is efficiently accomplished by moving the element to the end and
// resizing the hidl_vec to one less.
template <typename Type>
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
if (vec) {
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
vec->resize(vec->size() - 1);
}
}
template <typename Type>
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
// assume vec is valid
const uint32_t index = vec->size();
vec->resize(index + 1);
(*vec)[index] = value;
return index;
}
static uint32_t addOperand(Model* model) {
return hidl_vec_push_back(&model->operands,
{
.type = OperandType::INT32,
.dimensions = {},
.numberOfConsumers = 0,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::MODEL_INPUT,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
});
}
static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
uint32_t index = addOperand(model);
model->operands[index].numberOfConsumers = 1;
model->operands[index].lifetime = lifetime;
return index;
}
///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
static const int32_t invalidOperandTypes[] = {
static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
};
static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
for (int32_t invalidOperandType : invalidOperandTypes) {
const std::string message = "mutateOperandTypeTest: operand " +
std::to_string(operand) + " set to value " +
std::to_string(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE OPERAND RANK /////////////////////////
static uint32_t getInvalidRank(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
return 1;
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
case OperandType::TENSOR_QUANT8_ASYMM:
return 0;
default:
return 0;
}
}
static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
" has rank of " + std::to_string(invalidRank);
validate(device, message, model, [operand, invalidRank](Model* model) {
model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
});
}
}
///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
static float getInvalidScale(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
return 1.0f;
case OperandType::TENSOR_INT32:
return -1.0f;
case OperandType::TENSOR_QUANT8_ASYMM:
return 0.0f;
default:
return 0.0f;
}
}
static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const float invalidScale = getInvalidScale(model.operands[operand].type);
const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
" has scale of " + std::to_string(invalidScale);
validate(device, message, model, [operand, invalidScale](Model* model) {
model->operands[operand].scale = invalidScale;
});
}
}
///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
return {1};
case OperandType::TENSOR_QUANT8_ASYMM:
return {-1, 256};
default:
return {};
}
}
static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::vector<int32_t> invalidZeroPoints =
getInvalidZeroPoints(model.operands[operand].type);
for (int32_t invalidZeroPoint : invalidZeroPoints) {
const std::string message = "mutateOperandZeroPointTest: operand " +
std::to_string(operand) + " has zero point of " +
std::to_string(invalidZeroPoint);
validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
model->operands[operand].zeroPoint = invalidZeroPoint;
});
}
}
}
///////////////////////// VALIDATE EXTRA ??? /////////////////////////
// TODO: Operand::lifetime
// TODO: Operand::location
///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
static void mutateOperand(Operand* operand, OperandType type) {
Operand newOperand = *operand;
newOperand.type = type;
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
newOperand.dimensions = hidl_vec<uint32_t>();
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_FLOAT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_INT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_QUANT8_ASYMM:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
break;
case OperandType::OEM:
case OperandType::TENSOR_OEM_BYTE:
default:
break;
}
*operand = newOperand;
}
static bool mutateOperationOperandTypeSkip(size_t operand, const Model& model) {
// LSH_PROJECTION's second argument is allowed to have any type. This is the
// only operation that currently has a type that can be anything independent
// from any other type. Changing the operand type to any other type will
// result in a valid model for LSH_PROJECTION. If this is the case, skip the
// test.
for (const Operation& operation : model.operations) {
if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
return true;
}
}
return false;
}
static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
if (mutateOperationOperandTypeSkip(operand, model)) {
continue;
}
for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
// Do not test OEM types
if (invalidOperandType == model.operands[operand].type ||
invalidOperandType == OperandType::OEM ||
invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
continue;
}
const std::string message = "mutateOperationOperandTypeTest: operand " +
std::to_string(operand) + " set to type " +
toString(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
mutateOperand(&model->operands[operand], invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
static const int32_t invalidOperationTypes[] = {
static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
static_cast<int32_t>(OperationType::TRANSPOSE) + 1, // upper bound fundamental
static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
};
static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (int32_t invalidOperationType : invalidOperationTypes) {
const std::string message = "mutateOperationTypeTest: operation " +
std::to_string(operation) + " set to value " +
std::to_string(invalidOperationType);
validate(device, message, model, [operation, invalidOperationType](Model* model) {
model->operations[operation].type =
static_cast<OperationType>(invalidOperationType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const std::string message = "mutateOperationInputOperandIndexTest: operation " +
std::to_string(operation) + " input " +
std::to_string(input);
validate(device, message, model, [operation, input, invalidOperand](Model* model) {
model->operations[operation].inputs[input] = invalidOperand;
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
std::to_string(operation) + " output " +
std::to_string(output);
validate(device, message, model, [operation, output, invalidOperand](Model* model) {
model->operations[operation].outputs[output] = invalidOperand;
});
}
}
}
///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
if (vec) {
// remove elements matching "value"
auto last = std::remove(vec->begin(), vec->end(), value);
vec->resize(std::distance(vec->begin(), last));
// decrement elements exceeding "value"
std::transform(vec->begin(), vec->end(), vec->begin(),
[value](uint32_t v) { return v > value ? v-- : v; });
}
}
static void removeOperand(Model* model, uint32_t index) {
hidl_vec_removeAt(&model->operands, index);
for (Operation& operation : model->operations) {
removeValueAndDecrementGreaterValues(&operation.inputs, index);
removeValueAndDecrementGreaterValues(&operation.outputs, index);
}
removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
}
static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::string message = "removeOperandTest: operand " + std::to_string(operand);
validate(device, message, model,
[operand](Model* model) { removeOperand(model, operand); });
}
}
///////////////////////// REMOVE OPERATION /////////////////////////
static void removeOperation(Model* model, uint32_t index) {
for (uint32_t operand : model->operations[index].inputs) {
model->operands[operand].numberOfConsumers--;
}
hidl_vec_removeAt(&model->operations, index);
}
static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "removeOperationTest: operation " + std::to_string(operation);
validate(device, message, model,
[operation](Model* model) { removeOperation(model, operation); });
}
}
///////////////////////// REMOVE OPERATION INPUT /////////////////////////
static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const Operation& op = model.operations[operation];
// CONCATENATION has at least 2 inputs, with the last element being
// INT32. Skip this test if removing one of CONCATENATION's
// inputs still produces a valid model.
if (op.type == OperationType::CONCATENATION && op.inputs.size() > 2 &&
input != op.inputs.size() - 1) {
continue;
}
const std::string message = "removeOperationInputTest: operation " +
std::to_string(operation) + ", input " +
std::to_string(input);
validate(device, message, model, [operation, input](Model* model) {
uint32_t operand = model->operations[operation].inputs[input];
model->operands[operand].numberOfConsumers--;
hidl_vec_removeAt(&model->operations[operation].inputs, input);
});
}
}
}
///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "removeOperationOutputTest: operation " +
std::to_string(operation) + ", output " +
std::to_string(output);
validate(device, message, model, [operation, output](Model* model) {
hidl_vec_removeAt(&model->operations[operation].outputs, output);
});
}
}
}
///////////////////////// MODEL VALIDATION /////////////////////////
// TODO: remove model input
// TODO: remove model output
// TODO: add unused operation
///////////////////////// ADD OPERATION INPUT /////////////////////////
static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
hidl_vec_push_back(&model->operations[operation].inputs, index);
hidl_vec_push_back(&model->inputIndexes, index);
});
}
}
///////////////////////// ADD OPERATION OUTPUT /////////////////////////
static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message =
"addOperationOutputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
hidl_vec_push_back(&model->operations[operation].outputs, index);
hidl_vec_push_back(&model->outputIndexes, index);
});
}
}
///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
static const int32_t invalidExecutionPreferences[] = {
static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
};
static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
for (int32_t preference : invalidExecutionPreferences) {
const std::string message =
"mutateExecutionPreferenceTest: preference " + std::to_string(preference);
validate(device, message, model, [](Model*) {},
static_cast<ExecutionPreference>(preference));
}
}
////////////////////////// ENTRY POINT //////////////////////////////
void ValidationTest::validateModel(const Model& model) {
mutateOperandTypeTest(device, model);
mutateOperandRankTest(device, model);
mutateOperandScaleTest(device, model);
mutateOperandZeroPointTest(device, model);
mutateOperationOperandTypeTest(device, model);
mutateOperationTypeTest(device, model);
mutateOperationInputOperandIndexTest(device, model);
mutateOperationOutputOperandIndexTest(device, model);
removeOperandTest(device, model);
removeOperationTest(device, model);
removeOperationInputTest(device, model);
removeOperationOutputTest(device, model);
addOperationInputTest(device, model);
addOperationOutputTest(device, model);
mutateExecutionPreferenceTest(device, model);
}
} // namespace functional
} // namespace vts
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View file

@ -0,0 +1,261 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
using ::android::hidl::memory::V1_0::IMemory;
using test_helper::for_all;
using test_helper::MixedTyped;
using test_helper::MixedTypedExampleType;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static void createPreparedModel(const sp<IDevice>& device, const Model& model,
sp<IPreparedModel>* preparedModel) {
ASSERT_NE(nullptr, preparedModel);
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_2(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
*preparedModel = preparedModelCallback->getPreparedModel();
// The getSupportedOperations_1_2 call returns a list of operations that are
// guaranteed not to fail if prepareModel_1_2 is called, and
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
// If a driver has any doubt that it can prepare an operation, it must
// return false. So here, if a driver isn't sure if it can support an
// operation, but reports that it successfully prepared the model, the test
// can continue.
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel->get());
LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Unable to test Request validation because vendor service "
"cannot prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel->get());
}
// Primary validation function. This function will take a valid request, apply a
// mutation to it to invalidate the request, then pass it to interface calls
// that use the request. Note that the request here is passed by value, and any
// mutation to the request does not leave this function.
static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
Request request, const std::function<void(Request*)>& mutation) {
mutation(&request);
SCOPED_TRACE(message + " [execute]");
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
// so this is efficiently accomplished by moving the element to the end and
// resizing the hidl_vec to one less.
template <typename Type>
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
if (vec) {
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
vec->resize(vec->size() - 1);
}
}
template <typename Type>
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
// assume vec is valid
const uint32_t index = vec->size();
vec->resize(index + 1);
(*vec)[index] = value;
return index;
}
///////////////////////// REMOVE INPUT ////////////////////////////////////
static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t input = 0; input < request.inputs.size(); ++input) {
const std::string message = "removeInput: removed input " + std::to_string(input);
validate(preparedModel, message, request,
[input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
}
}
///////////////////////// REMOVE OUTPUT ////////////////////////////////////
static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t output = 0; output < request.outputs.size(); ++output) {
const std::string message = "removeOutput: removed Output " + std::to_string(output);
validate(preparedModel, message, request,
[output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
}
}
///////////////////////////// ENTRY POINT //////////////////////////////////
std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
std::vector<Request> requests;
for (auto& example : examples) {
const MixedTyped& inputs = example.first;
const MixedTyped& outputs = example.second;
std::vector<RequestArgument> inputs_info, outputs_info;
uint32_t inputSize = 0, outputSize = 0;
// This function only partially specifies the metadata (vector of RequestArguments).
// The contents are copied over below.
for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
RequestArgument arg_empty = {
.hasNoValue = true,
};
inputs_info[index] = s ? arg : arg_empty;
inputSize += s;
});
// Compute offset for inputs 1 and so on
{
size_t offset = 0;
for (auto& i : inputs_info) {
if (!i.hasNoValue) i.location.offset = offset;
offset += i.location.length;
}
}
// Go through all outputs, initialize RequestArgument descriptors
for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
outputs_info[index] = arg;
outputSize += s;
});
// Compute offset for outputs 1 and so on
{
size_t offset = 0;
for (auto& i : outputs_info) {
i.location.offset = offset;
offset += i.location.length;
}
}
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
nn::allocateSharedMemory(outputSize)};
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
return {};
}
// map pool
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
if (inputMemory == nullptr) {
return {};
}
char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
if (inputPtr == nullptr) {
return {};
}
// initialize pool
inputMemory->update();
for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
char* begin = (char*)p;
char* end = begin + s;
// TODO: handle more than one input
std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
});
inputMemory->commit();
requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
}
return requests;
}
void ValidationTest::validateRequests(const Model& model, const std::vector<Request>& requests) {
// create IPreparedModel
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
if (preparedModel == nullptr) {
return;
}
// validate each request
for (const Request& request : requests) {
removeInputTest(preparedModel, request);
removeOutputTest(preparedModel, request);
}
}
} // namespace functional
} // namespace vts
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View file

@ -0,0 +1,50 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "Models.h"
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
namespace vts {
namespace functional {
// forward declarations
std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
// generate validation tests
#define VTS_CURRENT_TEST_CASE(TestName) \
TEST_F(ValidationTest, TestName) { \
const Model model = TestName::createTestModel(); \
const std::vector<Request> requests = createRequests(TestName::examples); \
validateModel(model); \
validateRequests(model, requests); \
}
FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
#undef VTS_CURRENT_TEST_CASE
} // namespace functional
} // namespace vts
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View file

@ -0,0 +1,86 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
namespace vts {
namespace functional {
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment::~NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
// This has to return a "new" object because it is freed inside
// ::testing::AddGlobalTestEnvironment when the gtest is being torn down
static NeuralnetworksHidlEnvironment* instance = new NeuralnetworksHidlEnvironment();
return instance;
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
registerTestService<IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
::testing::VtsHalHidlTargetTestBase::SetUp();
device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
void NeuralnetworksHidlTest::TearDown() {
device = nullptr;
::testing::VtsHalHidlTargetTestBase::TearDown();
}
} // namespace functional
} // namespace vts
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
using android::hardware::neuralnetworks::V1_2::vts::functional::NeuralnetworksHidlEnvironment;
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
::testing::InitGoogleTest(&argc, argv);
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
return status;
}

View file

@ -0,0 +1,92 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef VTS_HAL_NEURALNETWORKS_V1_2_H
#define VTS_HAL_NEURALNETWORKS_V1_2_H
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/IDevice.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
#include <android-base/macros.h>
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
using V1_0::DeviceStatus;
using V1_0::ErrorStatus;
using V1_0::Request;
namespace vts {
namespace functional {
// A class for test environment setup
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
NeuralnetworksHidlEnvironment();
~NeuralnetworksHidlEnvironment() override;
public:
static NeuralnetworksHidlEnvironment* getInstance();
void registerTestServices() override;
};
// The main test class for NEURALNETWORKS HIDL HAL.
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
public:
NeuralnetworksHidlTest();
~NeuralnetworksHidlTest() override;
void SetUp() override;
void TearDown() override;
protected:
sp<IDevice> device;
};
// Tag for the validation tests
class ValidationTest : public NeuralnetworksHidlTest {
protected:
void validateModel(const Model& model);
void validateRequests(const Model& model, const std::vector<Request>& request);
};
// Tag for the generated tests
class GeneratedTest : public NeuralnetworksHidlTest {};
} // namespace functional
} // namespace vts
// pretty-print values for error messages
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
#endif // VTS_HAL_NEURALNETWORKS_V1_2_H