Create conversions to/from NNAPI canonical types

This CL creates the following primary sets of functions:
* V1_X::utils::convert(<canonical_type>) -- Converts a canonical type
  to the corresponding HAL version type.
* nn::convert(<V1_X_HAL_type>) -- Converts a HAL version type to the
  corresponding canonical type.
* neuralnetworks::utils::hasNoPointerData -- Indicates if the object
  contains no pointer-based data that could be relocated to shared
  memory.
* neuralnetworks::utils::flushDataFromPointerToShared -- Relocate
  pointer-based data to shared memory.
* neuralnetworks::utils::unflushDataFromSharedToPointer -- Undoes
  `flushDataFromPointerToShared` on a Request object. More
  specifically, `unflushDataFromSharedToPointer` copies the output
  shared memory data from the transformed Request object back to the
  output pointer-based memory in the original Request object.

It also introduces some other minor utility code, including
makeQuantized8PerformanceConsistentWithP, countNumberOfConsumers,
validate, valid, and validatedConvertToCanonical.

Bug: 160667419
Test: mma
Change-Id: I0732e658c1f4ed40cd122f1ca8581fb40b056757
Merged-In: I0732e658c1f4ed40cd122f1ca8581fb40b056757
(cherry picked from commit a685c3dbf4)
This commit is contained in:
Michael Butler 2020-02-22 22:37:59 -08:00
parent 4433d35af9
commit b98aa6d6bf
28 changed files with 3304 additions and 0 deletions

View file

@ -0,0 +1,33 @@
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_library_static {
name: "neuralnetworks_utils_hal_1_0",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
local_include_dirs: ["include/nnapi/hal/1.0/"],
export_include_dirs: ["include"],
static_libs: [
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
],
shared_libs: [
"android.hardware.neuralnetworks@1.0",
],
export_static_lib_headers: [
"neuralnetworks_utils_hal_common",
],
}

View file

@ -0,0 +1,11 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
galarragas@google.com
jeanluc@google.com
levp@google.com
miaowang@google.com
pszczepaniak@google.com
slavash@google.com
vddang@google.com
xusongw@google.com

View file

@ -0,0 +1,66 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_CONVERSIONS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_CONVERSIONS_H
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/CommonUtils.h>
namespace android::nn {
Result<OperandType> convert(const hal::V1_0::OperandType& operandType);
Result<OperationType> convert(const hal::V1_0::OperationType& operationType);
Result<Operand::LifeTime> convert(const hal::V1_0::OperandLifeTime& lifetime);
Result<DeviceStatus> convert(const hal::V1_0::DeviceStatus& deviceStatus);
Result<Capabilities::PerformanceInfo> convert(const hal::V1_0::PerformanceInfo& performanceInfo);
Result<Capabilities> convert(const hal::V1_0::Capabilities& capabilities);
Result<DataLocation> convert(const hal::V1_0::DataLocation& location);
Result<Operand> convert(const hal::V1_0::Operand& operand);
Result<Operation> convert(const hal::V1_0::Operation& operation);
Result<Model::OperandValues> convert(const hardware::hidl_vec<uint8_t>& operandValues);
Result<Memory> convert(const hardware::hidl_memory& memory);
Result<Model> convert(const hal::V1_0::Model& model);
Result<Request::Argument> convert(const hal::V1_0::RequestArgument& requestArgument);
Result<Request> convert(const hal::V1_0::Request& request);
Result<ErrorStatus> convert(const hal::V1_0::ErrorStatus& status);
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_0::utils {
nn::Result<OperandType> convert(const nn::OperandType& operandType);
nn::Result<OperationType> convert(const nn::OperationType& operationType);
nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& lifetime);
nn::Result<DeviceStatus> convert(const nn::DeviceStatus& deviceStatus);
nn::Result<PerformanceInfo> convert(const nn::Capabilities::PerformanceInfo& performanceInfo);
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
nn::Result<DataLocation> convert(const nn::DataLocation& location);
nn::Result<Operand> convert(const nn::Operand& operand);
nn::Result<Operation> convert(const nn::Operation& operation);
nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues);
nn::Result<hidl_memory> convert(const nn::Memory& memory);
nn::Result<Model> convert(const nn::Model& model);
nn::Result<RequestArgument> convert(const nn::Request::Argument& requestArgument);
nn::Result<hidl_memory> convert(const nn::Request::MemoryPool& memoryPool);
nn::Result<Request> convert(const nn::Request& request);
nn::Result<ErrorStatus> convert(const nn::ErrorStatus& status);
} // namespace android::hardware::neuralnetworks::V1_0::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_CONVERSIONS_H

View file

@ -0,0 +1,63 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_H
#include "nnapi/hal/1.0/Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
namespace android::hardware::neuralnetworks::V1_0::utils {
constexpr auto kVersion = nn::Version::ANDROID_OC_MR1;
template <typename Type>
nn::Result<void> validate(const Type& halObject) {
const auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return {};
}
template <typename Type>
bool valid(const Type& halObject) {
const auto result = utils::validate(halObject);
if (!result.has_value()) {
LOG(ERROR) << result.error();
}
return result.has_value();
}
template <typename Type>
decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return canonical;
}
} // namespace android::hardware::neuralnetworks::V1_0::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_H

View file

@ -0,0 +1,122 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Types.h>
#include <type_traits>
namespace {
#define COMPARE_ENUMS_TYPES(lhsType, rhsType) \
static_assert( \
std::is_same_v< \
std::underlying_type_t<::android::hardware::neuralnetworks::V1_0::lhsType>, \
std::underlying_type_t<::android::nn::rhsType>>, \
"::android::hardware::neuralnetworks::V1_0::" #lhsType \
" does not have the same underlying type as ::android::nn::" #rhsType)
COMPARE_ENUMS_TYPES(OperandType, OperandType);
COMPARE_ENUMS_TYPES(OperationType, OperationType);
COMPARE_ENUMS_TYPES(ErrorStatus, ErrorStatus);
COMPARE_ENUMS_TYPES(OperandLifeTime, Operand::LifeTime);
#undef COMPARE_ENUMS_TYPES
#define COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, lhsType, rhsType) \
static_assert( \
static_cast< \
std::underlying_type_t<::android::hardware::neuralnetworks::V1_0::lhsType>>( \
::android::hardware::neuralnetworks::V1_0::lhsType::lhsSymbol) == \
static_cast<std::underlying_type_t<::android::nn::rhsType>>( \
::android::nn::rhsType::rhsSymbol), \
"::android::hardware::neuralnetworks::V1_0::" #lhsType "::" #lhsSymbol \
" does not match ::android::nn::" #rhsType "::" #rhsSymbol)
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperandType, OperandType)
COMPARE_ENUMS(FLOAT32);
COMPARE_ENUMS(INT32);
COMPARE_ENUMS(UINT32);
COMPARE_ENUMS(TENSOR_FLOAT32);
COMPARE_ENUMS(TENSOR_INT32);
COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
COMPARE_ENUMS(OEM);
COMPARE_ENUMS(TENSOR_OEM_BYTE);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperationType, OperationType)
COMPARE_ENUMS(ADD);
COMPARE_ENUMS(AVERAGE_POOL_2D);
COMPARE_ENUMS(CONCATENATION);
COMPARE_ENUMS(CONV_2D);
COMPARE_ENUMS(DEPTHWISE_CONV_2D);
COMPARE_ENUMS(DEPTH_TO_SPACE);
COMPARE_ENUMS(DEQUANTIZE);
COMPARE_ENUMS(EMBEDDING_LOOKUP);
COMPARE_ENUMS(FLOOR);
COMPARE_ENUMS(FULLY_CONNECTED);
COMPARE_ENUMS(HASHTABLE_LOOKUP);
COMPARE_ENUMS(L2_NORMALIZATION);
COMPARE_ENUMS(L2_POOL_2D);
COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
COMPARE_ENUMS(LOGISTIC);
COMPARE_ENUMS(LSH_PROJECTION);
COMPARE_ENUMS(LSTM);
COMPARE_ENUMS(MAX_POOL_2D);
COMPARE_ENUMS(MUL);
COMPARE_ENUMS(RELU);
COMPARE_ENUMS(RELU1);
COMPARE_ENUMS(RELU6);
COMPARE_ENUMS(RESHAPE);
COMPARE_ENUMS(RESIZE_BILINEAR);
COMPARE_ENUMS(RNN);
COMPARE_ENUMS(SOFTMAX);
COMPARE_ENUMS(SPACE_TO_DEPTH);
COMPARE_ENUMS(SVDF);
COMPARE_ENUMS(TANH);
COMPARE_ENUMS(OEM_OPERATION);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, ErrorStatus, ErrorStatus)
COMPARE_ENUMS(NONE);
COMPARE_ENUMS(DEVICE_UNAVAILABLE);
COMPARE_ENUMS(GENERAL_FAILURE);
COMPARE_ENUMS(OUTPUT_INSUFFICIENT_SIZE);
COMPARE_ENUMS(INVALID_ARGUMENT);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(lhsSymbol, rhsSymbol) \
COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, OperandLifeTime, Operand::LifeTime)
COMPARE_ENUMS(TEMPORARY_VARIABLE, TEMPORARY_VARIABLE);
COMPARE_ENUMS(MODEL_INPUT, SUBGRAPH_INPUT);
COMPARE_ENUMS(MODEL_OUTPUT, SUBGRAPH_OUTPUT);
COMPARE_ENUMS(CONSTANT_COPY, CONSTANT_COPY);
COMPARE_ENUMS(CONSTANT_REFERENCE, CONSTANT_REFERENCE);
COMPARE_ENUMS(NO_VALUE, NO_VALUE);
#undef COMPARE_ENUMS
#undef COMPARE_ENUMS_FULL
} // anonymous namespace

View file

@ -0,0 +1,361 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/Types.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <variant>
namespace {
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
} // namespace
namespace android::nn {
namespace {
using hardware::hidl_memory;
using hardware::hidl_vec;
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
std::vector<ConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::convert(argument)));
}
return canonical;
}
} // anonymous namespace
Result<OperandType> convert(const hal::V1_0::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
Result<OperationType> convert(const hal::V1_0::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
Result<Operand::LifeTime> convert(const hal::V1_0::OperandLifeTime& lifetime) {
return static_cast<Operand::LifeTime>(lifetime);
}
Result<DeviceStatus> convert(const hal::V1_0::DeviceStatus& deviceStatus) {
return static_cast<DeviceStatus>(deviceStatus);
}
Result<Capabilities::PerformanceInfo> convert(const hal::V1_0::PerformanceInfo& performanceInfo) {
return Capabilities::PerformanceInfo{
.execTime = performanceInfo.execTime,
.powerUsage = performanceInfo.powerUsage,
};
}
Result<Capabilities> convert(const hal::V1_0::Capabilities& capabilities) {
const auto quantized8Performance = NN_TRY(convert(capabilities.quantized8Performance));
const auto float32Performance = NN_TRY(convert(capabilities.float32Performance));
auto table = hal::utils::makeQuantized8PerformanceConsistentWithP(float32Performance,
quantized8Performance);
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = float32Performance,
.relaxedFloat32toFloat16PerformanceTensor = float32Performance,
.operandPerformance = std::move(table),
};
}
Result<DataLocation> convert(const hal::V1_0::DataLocation& location) {
return DataLocation{
.poolIndex = location.poolIndex,
.offset = location.offset,
.length = location.length,
};
}
Result<Operand> convert(const hal::V1_0::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
};
}
Result<Operation> convert(const hal::V1_0::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
Result<Model::OperandValues> convert(const hidl_vec<uint8_t>& operandValues) {
return Model::OperandValues(operandValues.data(), operandValues.size());
}
Result<Memory> convert(const hidl_memory& memory) {
return createSharedMemoryFromHidlMemory(memory);
}
Result<Model> convert(const hal::V1_0::Model& model) {
auto operations = NN_TRY(convert(model.operations));
// Verify number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(model.operands.size(), operations);
CHECK(model.operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < model.operands.size(); ++i) {
if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
<< numberOfConsumers[i] << " but found "
<< model.operands[i].numberOfConsumers;
}
}
auto main = Model::Subgraph{
.operands = NN_TRY(convert(model.operands)),
.operations = std::move(operations),
.inputIndexes = model.inputIndexes,
.outputIndexes = model.outputIndexes,
};
return Model{
.main = std::move(main),
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
};
}
Result<Request::Argument> convert(const hal::V1_0::RequestArgument& argument) {
const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE
: Request::Argument::LifeTime::POOL;
return Request::Argument{
.lifetime = lifetime,
.location = NN_TRY(convert(argument.location)),
.dimensions = argument.dimensions,
};
}
Result<Request> convert(const hal::V1_0::Request& request) {
auto memories = NN_TRY(convert(request.pools));
std::vector<Request::MemoryPool> pools;
pools.reserve(memories.size());
std::move(memories.begin(), memories.end(), std::back_inserter(pools));
return Request{
.inputs = NN_TRY(convert(request.inputs)),
.outputs = NN_TRY(convert(request.outputs)),
.pools = std::move(pools),
};
}
Result<ErrorStatus> convert(const hal::V1_0::ErrorStatus& status) {
switch (status) {
case hal::V1_0::ErrorStatus::NONE:
case hal::V1_0::ErrorStatus::DEVICE_UNAVAILABLE:
case hal::V1_0::ErrorStatus::GENERAL_FAILURE:
case hal::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case hal::V1_0::ErrorStatus::INVALID_ARGUMENT:
return static_cast<ErrorStatus>(status);
}
return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
}
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_0::utils {
namespace {
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(utils::convert(arguments[i]));
}
return halObject;
}
} // anonymous namespace
nn::Result<OperandType> convert(const nn::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
nn::Result<OperationType> convert(const nn::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& lifetime) {
if (lifetime == nn::Operand::LifeTime::POINTER) {
return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
}
return static_cast<OperandLifeTime>(lifetime);
}
nn::Result<DeviceStatus> convert(const nn::DeviceStatus& deviceStatus) {
return static_cast<DeviceStatus>(deviceStatus);
}
nn::Result<PerformanceInfo> convert(const nn::Capabilities::PerformanceInfo& performanceInfo) {
return PerformanceInfo{
.execTime = performanceInfo.execTime,
.powerUsage = performanceInfo.powerUsage,
};
}
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
return Capabilities{
.float32Performance = NN_TRY(convert(
capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_FLOAT32))),
.quantized8Performance = NN_TRY(convert(
capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_QUANT8_ASYMM))),
};
}
nn::Result<DataLocation> convert(const nn::DataLocation& location) {
return DataLocation{
.poolIndex = location.poolIndex,
.offset = location.offset,
.length = location.length,
};
}
nn::Result<Operand> convert(const nn::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.numberOfConsumers = 0,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
};
}
nn::Result<Operation> convert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
return hidl_vec<uint8_t>(operandValues.data(), operandValues.data() + operandValues.size());
}
nn::Result<hidl_memory> convert(const nn::Memory& memory) {
const auto hidlMemory = hidl_memory(memory.name, memory.handle->handle(), memory.size);
// Copy memory to force the native_handle_t to be copied.
auto copiedMemory = hidlMemory;
return copiedMemory;
}
nn::Result<Model> convert(const nn::Model& model) {
if (!hal::utils::hasNoPointerData(model)) {
return NN_ERROR() << "Mdoel cannot be converted because it contains pointer-based memory";
}
auto operands = NN_TRY(convert(model.main.operands));
// Update number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(operands.size(), model.main.operations);
CHECK(operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < operands.size(); ++i) {
operands[i].numberOfConsumers = numberOfConsumers[i];
}
return Model{
.operands = std::move(operands),
.operations = NN_TRY(convert(model.main.operations)),
.inputIndexes = model.main.inputIndexes,
.outputIndexes = model.main.outputIndexes,
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
};
}
nn::Result<RequestArgument> convert(const nn::Request::Argument& requestArgument) {
if (requestArgument.lifetime == nn::Request::Argument::LifeTime::POINTER) {
return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
}
const bool hasNoValue = requestArgument.lifetime == nn::Request::Argument::LifeTime::NO_VALUE;
return RequestArgument{
.hasNoValue = hasNoValue,
.location = NN_TRY(convert(requestArgument.location)),
.dimensions = requestArgument.dimensions,
};
}
nn::Result<hidl_memory> convert(const nn::Request::MemoryPool& memoryPool) {
return convert(std::get<nn::Memory>(memoryPool));
}
nn::Result<Request> convert(const nn::Request& request) {
if (!hal::utils::hasNoPointerData(request)) {
return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
}
return Request{
.inputs = NN_TRY(convert(request.inputs)),
.outputs = NN_TRY(convert(request.outputs)),
.pools = NN_TRY(convert(request.pools)),
};
}
nn::Result<ErrorStatus> convert(const nn::ErrorStatus& status) {
switch (status) {
case nn::ErrorStatus::NONE:
case nn::ErrorStatus::DEVICE_UNAVAILABLE:
case nn::ErrorStatus::GENERAL_FAILURE:
case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case nn::ErrorStatus::INVALID_ARGUMENT:
return static_cast<ErrorStatus>(status);
default:
return ErrorStatus::GENERAL_FAILURE;
}
}
} // namespace android::hardware::neuralnetworks::V1_0::utils

View file

@ -0,0 +1,35 @@
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_library_static {
name: "neuralnetworks_utils_hal_1_1",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
local_include_dirs: ["include/nnapi/hal/1.1/"],
export_include_dirs: ["include"],
static_libs: [
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
"neuralnetworks_utils_hal_1_0",
],
shared_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
],
export_static_lib_headers: [
"neuralnetworks_utils_hal_common",
],
}

View file

@ -0,0 +1,11 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
galarragas@google.com
jeanluc@google.com
levp@google.com
miaowang@google.com
pszczepaniak@google.com
slavash@google.com
vddang@google.com
xusongw@google.com

View file

@ -0,0 +1,45 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_CONVERSIONS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_CONVERSIONS_H
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/CommonUtils.h>
namespace android::nn {
Result<OperationType> convert(const hal::V1_1::OperationType& operationType);
Result<Capabilities> convert(const hal::V1_1::Capabilities& capabilities);
Result<Operation> convert(const hal::V1_1::Operation& operation);
Result<Model> convert(const hal::V1_1::Model& model);
Result<ExecutionPreference> convert(const hal::V1_1::ExecutionPreference& executionPreference);
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_1::utils {
nn::Result<OperationType> convert(const nn::OperationType& operationType);
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
nn::Result<Operation> convert(const nn::Operation& operation);
nn::Result<Model> convert(const nn::Model& model);
nn::Result<ExecutionPreference> convert(const nn::ExecutionPreference& executionPreference);
} // namespace android::hardware::neuralnetworks::V1_1::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_CONVERSIONS_H

View file

@ -0,0 +1,65 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_UTILS_H
#include "nnapi/hal/1.1/Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
namespace android::hardware::neuralnetworks::V1_1::utils {
constexpr auto kDefaultExecutionPreference = ExecutionPreference::FAST_SINGLE_ANSWER;
constexpr auto kVersion = nn::Version::ANDROID_P;
template <typename Type>
nn::Result<void> validate(const Type& halObject) {
const auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return {};
}
template <typename Type>
bool valid(const Type& halObject) {
const auto result = utils::validate(halObject);
if (!result.has_value()) {
LOG(ERROR) << result.error();
}
return result.has_value();
}
template <typename Type>
decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return canonical;
}
} // namespace android::hardware::neuralnetworks::V1_1::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_1_UTILS_H

View file

@ -0,0 +1,100 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Types.h>
#include <type_traits>
namespace {
#define COMPARE_ENUMS_TYPES(type) \
static_assert(std::is_same_v< \
std::underlying_type_t<::android::hardware::neuralnetworks::V1_1::type>, \
std::underlying_type_t<::android::nn::type>>, \
"::android::hardware::neuralnetworks::V1_1::" #type \
" does not have the same underlying type as ::android::nn::" #type)
COMPARE_ENUMS_TYPES(OperationType);
COMPARE_ENUMS_TYPES(ExecutionPreference);
#undef COMPARE_ENUMS_TYPES
#define COMPARE_ENUMS_FULL(symbol, type) \
static_assert( \
static_cast<std::underlying_type_t<::android::hardware::neuralnetworks::V1_1::type>>( \
::android::hardware::neuralnetworks::V1_1::type::symbol) == \
static_cast<std::underlying_type_t<::android::nn::type>>( \
::android::nn::type::symbol), \
"::android::hardware::neuralnetworks::V1_1::" #type "::" #symbol \
" does not match ::android::nn::" #type "::" #symbol)
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperationType)
COMPARE_ENUMS(ADD);
COMPARE_ENUMS(AVERAGE_POOL_2D);
COMPARE_ENUMS(CONCATENATION);
COMPARE_ENUMS(CONV_2D);
COMPARE_ENUMS(DEPTHWISE_CONV_2D);
COMPARE_ENUMS(DEPTH_TO_SPACE);
COMPARE_ENUMS(DEQUANTIZE);
COMPARE_ENUMS(EMBEDDING_LOOKUP);
COMPARE_ENUMS(FLOOR);
COMPARE_ENUMS(FULLY_CONNECTED);
COMPARE_ENUMS(HASHTABLE_LOOKUP);
COMPARE_ENUMS(L2_NORMALIZATION);
COMPARE_ENUMS(L2_POOL_2D);
COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
COMPARE_ENUMS(LOGISTIC);
COMPARE_ENUMS(LSH_PROJECTION);
COMPARE_ENUMS(LSTM);
COMPARE_ENUMS(MAX_POOL_2D);
COMPARE_ENUMS(MUL);
COMPARE_ENUMS(RELU);
COMPARE_ENUMS(RELU1);
COMPARE_ENUMS(RELU6);
COMPARE_ENUMS(RESHAPE);
COMPARE_ENUMS(RESIZE_BILINEAR);
COMPARE_ENUMS(RNN);
COMPARE_ENUMS(SOFTMAX);
COMPARE_ENUMS(SPACE_TO_DEPTH);
COMPARE_ENUMS(SVDF);
COMPARE_ENUMS(TANH);
COMPARE_ENUMS(BATCH_TO_SPACE_ND);
COMPARE_ENUMS(DIV);
COMPARE_ENUMS(MEAN);
COMPARE_ENUMS(PAD);
COMPARE_ENUMS(SPACE_TO_BATCH_ND);
COMPARE_ENUMS(SQUEEZE);
COMPARE_ENUMS(STRIDED_SLICE);
COMPARE_ENUMS(SUB);
COMPARE_ENUMS(TRANSPOSE);
COMPARE_ENUMS(OEM_OPERATION);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, ExecutionPreference)
COMPARE_ENUMS(LOW_POWER);
COMPARE_ENUMS(FAST_SINGLE_ANSWER);
COMPARE_ENUMS(SUSTAINED_SPEED);
#undef COMPARE_ENUMS
#undef COMPARE_ENUMS_FULL
} // anonymous namespace

View file

@ -0,0 +1,209 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <type_traits>
#include <utility>
namespace android::nn {
namespace {
using hardware::hidl_vec;
template <typename Input>
using convertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
Result<std::vector<convertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
std::vector<convertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::convert(argument)));
}
return canonical;
}
} // anonymous namespace
Result<OperationType> convert(const hal::V1_1::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
Result<Capabilities> convert(const hal::V1_1::Capabilities& capabilities) {
const auto quantized8Performance = NN_TRY(convert(capabilities.quantized8Performance));
const auto float32Performance = NN_TRY(convert(capabilities.float32Performance));
const auto relaxedFloat32toFloat16Performance =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16Performance));
auto table = hal::utils::makeQuantized8PerformanceConsistentWithP(float32Performance,
quantized8Performance);
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = relaxedFloat32toFloat16Performance,
.relaxedFloat32toFloat16PerformanceTensor = relaxedFloat32toFloat16Performance,
.operandPerformance = std::move(table),
};
}
Result<Operation> convert(const hal::V1_1::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
Result<Model> convert(const hal::V1_1::Model& model) {
auto operations = NN_TRY(convert(model.operations));
// Verify number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(model.operands.size(), operations);
CHECK(model.operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < model.operands.size(); ++i) {
if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
<< numberOfConsumers[i] << " but found "
<< model.operands[i].numberOfConsumers;
}
}
auto main = Model::Subgraph{
.operands = NN_TRY(convert(model.operands)),
.operations = std::move(operations),
.inputIndexes = model.inputIndexes,
.outputIndexes = model.outputIndexes,
};
return Model{
.main = std::move(main),
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
};
}
Result<ExecutionPreference> convert(const hal::V1_1::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_1::utils {
namespace {
using utils::convert;
nn::Result<V1_0::PerformanceInfo> convert(
const nn::Capabilities::PerformanceInfo& performanceInfo) {
return V1_0::utils::convert(performanceInfo);
}
nn::Result<V1_0::Operand> convert(const nn::Operand& operand) {
return V1_0::utils::convert(operand);
}
nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
return V1_0::utils::convert(operandValues);
}
nn::Result<hidl_memory> convert(const nn::Memory& memory) {
return V1_0::utils::convert(memory);
}
template <typename Input>
using convertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
nn::Result<hidl_vec<convertOutput<Type>>> convert(const std::vector<Type>& arguments) {
hidl_vec<convertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(convert(arguments[i]));
}
return halObject;
}
} // anonymous namespace
nn::Result<OperationType> convert(const nn::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
return Capabilities{
.float32Performance = NN_TRY(convert(
capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_FLOAT32))),
.quantized8Performance = NN_TRY(convert(
capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_QUANT8_ASYMM))),
.relaxedFloat32toFloat16Performance =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
};
}
nn::Result<Operation> convert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
nn::Result<Model> convert(const nn::Model& model) {
if (!hal::utils::hasNoPointerData(model)) {
return NN_ERROR() << "Mdoel cannot be converted because it contains pointer-based memory";
}
auto operands = NN_TRY(convert(model.main.operands));
// Update number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(operands.size(), model.main.operations);
CHECK(operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < operands.size(); ++i) {
operands[i].numberOfConsumers = numberOfConsumers[i];
}
return Model{
.operands = std::move(operands),
.operations = NN_TRY(convert(model.main.operations)),
.inputIndexes = model.main.inputIndexes,
.outputIndexes = model.main.outputIndexes,
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
};
}
nn::Result<ExecutionPreference> convert(const nn::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
} // namespace android::hardware::neuralnetworks::V1_1::utils

View file

@ -0,0 +1,37 @@
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_library_static {
name: "neuralnetworks_utils_hal_1_2",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
local_include_dirs: ["include/nnapi/hal/1.2/"],
export_include_dirs: ["include"],
static_libs: [
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
"neuralnetworks_utils_hal_1_0",
"neuralnetworks_utils_hal_1_1",
],
shared_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
],
export_static_lib_headers: [
"neuralnetworks_utils_hal_common",
],
}

View file

@ -0,0 +1,11 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
galarragas@google.com
jeanluc@google.com
levp@google.com
miaowang@google.com
pszczepaniak@google.com
slavash@google.com
vddang@google.com
xusongw@google.com

View file

@ -0,0 +1,86 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_CONVERSIONS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_CONVERSIONS_H
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/CommonUtils.h>
namespace android::nn {
Result<OperandType> convert(const hal::V1_2::OperandType& operandType);
Result<OperationType> convert(const hal::V1_2::OperationType& operationType);
Result<DeviceType> convert(const hal::V1_2::DeviceType& deviceType);
Result<Capabilities> convert(const hal::V1_2::Capabilities& capabilities);
Result<Capabilities::OperandPerformance> convert(
const hal::V1_2::Capabilities::OperandPerformance& operandPerformance);
Result<Operation> convert(const hal::V1_2::Operation& operation);
Result<Operand::SymmPerChannelQuantParams> convert(
const hal::V1_2::SymmPerChannelQuantParams& symmPerChannelQuantParams);
Result<Operand> convert(const hal::V1_2::Operand& operand);
Result<Operand::ExtraParams> convert(const hal::V1_2::Operand::ExtraParams& extraParams);
Result<Model> convert(const hal::V1_2::Model& model);
Result<Model::ExtensionNameAndPrefix> convert(
const hal::V1_2::Model::ExtensionNameAndPrefix& extensionNameAndPrefix);
Result<OutputShape> convert(const hal::V1_2::OutputShape& outputShape);
Result<MeasureTiming> convert(const hal::V1_2::MeasureTiming& measureTiming);
Result<Timing> convert(const hal::V1_2::Timing& timing);
Result<Extension> convert(const hal::V1_2::Extension& extension);
Result<Extension::OperandTypeInformation> convert(
const hal::V1_2::Extension::OperandTypeInformation& operandTypeInformation);
Result<NativeHandle> convert(const hardware::hidl_handle& handle);
Result<std::vector<Extension>> convert(const hardware::hidl_vec<hal::V1_2::Extension>& extensions);
Result<std::vector<NativeHandle>> convert(const hardware::hidl_vec<hardware::hidl_handle>& handles);
Result<std::vector<OutputShape>> convert(
const hardware::hidl_vec<hal::V1_2::OutputShape>& outputShapes);
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_2::utils {
nn::Result<OperandType> convert(const nn::OperandType& operandType);
nn::Result<OperationType> convert(const nn::OperationType& operationType);
nn::Result<DeviceType> convert(const nn::DeviceType& deviceType);
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
nn::Result<Capabilities::OperandPerformance> convert(
const nn::Capabilities::OperandPerformance& operandPerformance);
nn::Result<Operation> convert(const nn::Operation& operation);
nn::Result<SymmPerChannelQuantParams> convert(
const nn::Operand::SymmPerChannelQuantParams& symmPerChannelQuantParams);
nn::Result<Operand> convert(const nn::Operand& operand);
nn::Result<Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams);
nn::Result<Model> convert(const nn::Model& model);
nn::Result<Model::ExtensionNameAndPrefix> convert(
const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix);
nn::Result<OutputShape> convert(const nn::OutputShape& outputShape);
nn::Result<MeasureTiming> convert(const nn::MeasureTiming& measureTiming);
nn::Result<Timing> convert(const nn::Timing& timing);
nn::Result<Extension> convert(const nn::Extension& extension);
nn::Result<Extension::OperandTypeInformation> convert(
const nn::Extension::OperandTypeInformation& operandTypeInformation);
nn::Result<hidl_handle> convert(const nn::NativeHandle& handle);
nn::Result<hidl_vec<Extension>> convert(const std::vector<nn::Extension>& extensions);
nn::Result<hidl_vec<hidl_handle>> convert(const std::vector<nn::NativeHandle>& handles);
nn::Result<hidl_vec<OutputShape>> convert(const std::vector<nn::OutputShape>& outputShapes);
} // namespace android::hardware::neuralnetworks::V1_2::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_CONVERSIONS_H

View file

@ -0,0 +1,70 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_H
#include "nnapi/hal/1.2/Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/1.1/Conversions.h>
#include <limits>
namespace android::hardware::neuralnetworks::V1_2::utils {
constexpr auto kDefaultMesaureTiming = MeasureTiming::NO;
constexpr auto kNoTiming = Timing{.timeOnDevice = std::numeric_limits<uint64_t>::max(),
.timeInDriver = std::numeric_limits<uint64_t>::max()};
constexpr auto kVersion = nn::Version::ANDROID_Q;
template <typename Type>
nn::Result<void> validate(const Type& halObject) {
const auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return {};
}
template <typename Type>
bool valid(const Type& halObject) {
const auto result = utils::validate(halObject);
if (!result.has_value()) {
LOG(ERROR) << result.error();
}
return result.has_value();
}
template <typename Type>
decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return canonical;
}
} // namespace android::hardware::neuralnetworks::V1_2::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_H

View file

@ -0,0 +1,188 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Types.h>
#include <type_traits>
namespace {
#define COMPARE_ENUMS_TYPES(type) \
static_assert(std::is_same_v< \
std::underlying_type_t<::android::hardware::neuralnetworks::V1_2::type>, \
std::underlying_type_t<::android::nn::type>>, \
"::android::hardware::neuralnetworks::V1_2::" #type \
" does not have the same underlying type as ::android::nn::" #type)
COMPARE_ENUMS_TYPES(OperandType);
COMPARE_ENUMS_TYPES(OperationType);
COMPARE_ENUMS_TYPES(DeviceType);
COMPARE_ENUMS_TYPES(MeasureTiming);
#undef COMPARE_ENUMS_TYPES
#define COMPARE_ENUMS_FULL(symbol, type) \
static_assert( \
static_cast<std::underlying_type_t<::android::hardware::neuralnetworks::V1_2::type>>( \
::android::hardware::neuralnetworks::V1_2::type::symbol) == \
static_cast<std::underlying_type_t<::android::nn::type>>( \
::android::nn::type::symbol), \
"::android::hardware::neuralnetworks::V1_2::" #type "::" #symbol \
" does not match ::android::nn::" #type "::" #symbol)
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperandType)
COMPARE_ENUMS(FLOAT32);
COMPARE_ENUMS(INT32);
COMPARE_ENUMS(UINT32);
COMPARE_ENUMS(TENSOR_FLOAT32);
COMPARE_ENUMS(TENSOR_INT32);
COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
COMPARE_ENUMS(BOOL);
COMPARE_ENUMS(TENSOR_QUANT16_SYMM);
COMPARE_ENUMS(TENSOR_FLOAT16);
COMPARE_ENUMS(TENSOR_BOOL8);
COMPARE_ENUMS(FLOAT16);
COMPARE_ENUMS(TENSOR_QUANT8_SYMM_PER_CHANNEL);
COMPARE_ENUMS(TENSOR_QUANT16_ASYMM);
COMPARE_ENUMS(TENSOR_QUANT8_SYMM);
COMPARE_ENUMS(OEM);
COMPARE_ENUMS(TENSOR_OEM_BYTE);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperationType)
COMPARE_ENUMS(ADD);
COMPARE_ENUMS(AVERAGE_POOL_2D);
COMPARE_ENUMS(CONCATENATION);
COMPARE_ENUMS(CONV_2D);
COMPARE_ENUMS(DEPTHWISE_CONV_2D);
COMPARE_ENUMS(DEPTH_TO_SPACE);
COMPARE_ENUMS(DEQUANTIZE);
COMPARE_ENUMS(EMBEDDING_LOOKUP);
COMPARE_ENUMS(FLOOR);
COMPARE_ENUMS(FULLY_CONNECTED);
COMPARE_ENUMS(HASHTABLE_LOOKUP);
COMPARE_ENUMS(L2_NORMALIZATION);
COMPARE_ENUMS(L2_POOL_2D);
COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
COMPARE_ENUMS(LOGISTIC);
COMPARE_ENUMS(LSH_PROJECTION);
COMPARE_ENUMS(LSTM);
COMPARE_ENUMS(MAX_POOL_2D);
COMPARE_ENUMS(MUL);
COMPARE_ENUMS(RELU);
COMPARE_ENUMS(RELU1);
COMPARE_ENUMS(RELU6);
COMPARE_ENUMS(RESHAPE);
COMPARE_ENUMS(RESIZE_BILINEAR);
COMPARE_ENUMS(RNN);
COMPARE_ENUMS(SOFTMAX);
COMPARE_ENUMS(SPACE_TO_DEPTH);
COMPARE_ENUMS(SVDF);
COMPARE_ENUMS(TANH);
COMPARE_ENUMS(BATCH_TO_SPACE_ND);
COMPARE_ENUMS(DIV);
COMPARE_ENUMS(MEAN);
COMPARE_ENUMS(PAD);
COMPARE_ENUMS(SPACE_TO_BATCH_ND);
COMPARE_ENUMS(SQUEEZE);
COMPARE_ENUMS(STRIDED_SLICE);
COMPARE_ENUMS(SUB);
COMPARE_ENUMS(TRANSPOSE);
COMPARE_ENUMS(ABS);
COMPARE_ENUMS(ARGMAX);
COMPARE_ENUMS(ARGMIN);
COMPARE_ENUMS(AXIS_ALIGNED_BBOX_TRANSFORM);
COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_LSTM);
COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_RNN);
COMPARE_ENUMS(BOX_WITH_NMS_LIMIT);
COMPARE_ENUMS(CAST);
COMPARE_ENUMS(CHANNEL_SHUFFLE);
COMPARE_ENUMS(DETECTION_POSTPROCESSING);
COMPARE_ENUMS(EQUAL);
COMPARE_ENUMS(EXP);
COMPARE_ENUMS(EXPAND_DIMS);
COMPARE_ENUMS(GATHER);
COMPARE_ENUMS(GENERATE_PROPOSALS);
COMPARE_ENUMS(GREATER);
COMPARE_ENUMS(GREATER_EQUAL);
COMPARE_ENUMS(GROUPED_CONV_2D);
COMPARE_ENUMS(HEATMAP_MAX_KEYPOINT);
COMPARE_ENUMS(INSTANCE_NORMALIZATION);
COMPARE_ENUMS(LESS);
COMPARE_ENUMS(LESS_EQUAL);
COMPARE_ENUMS(LOG);
COMPARE_ENUMS(LOGICAL_AND);
COMPARE_ENUMS(LOGICAL_NOT);
COMPARE_ENUMS(LOGICAL_OR);
COMPARE_ENUMS(LOG_SOFTMAX);
COMPARE_ENUMS(MAXIMUM);
COMPARE_ENUMS(MINIMUM);
COMPARE_ENUMS(NEG);
COMPARE_ENUMS(NOT_EQUAL);
COMPARE_ENUMS(PAD_V2);
COMPARE_ENUMS(POW);
COMPARE_ENUMS(PRELU);
COMPARE_ENUMS(QUANTIZE);
COMPARE_ENUMS(QUANTIZED_16BIT_LSTM);
COMPARE_ENUMS(RANDOM_MULTINOMIAL);
COMPARE_ENUMS(REDUCE_ALL);
COMPARE_ENUMS(REDUCE_ANY);
COMPARE_ENUMS(REDUCE_MAX);
COMPARE_ENUMS(REDUCE_MIN);
COMPARE_ENUMS(REDUCE_PROD);
COMPARE_ENUMS(REDUCE_SUM);
COMPARE_ENUMS(ROI_ALIGN);
COMPARE_ENUMS(ROI_POOLING);
COMPARE_ENUMS(RSQRT);
COMPARE_ENUMS(SELECT);
COMPARE_ENUMS(SIN);
COMPARE_ENUMS(SLICE);
COMPARE_ENUMS(SPLIT);
COMPARE_ENUMS(SQRT);
COMPARE_ENUMS(TILE);
COMPARE_ENUMS(TOPK_V2);
COMPARE_ENUMS(TRANSPOSE_CONV_2D);
COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_LSTM);
COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_RNN);
COMPARE_ENUMS(RESIZE_NEAREST_NEIGHBOR);
COMPARE_ENUMS(OEM_OPERATION);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, DeviceType)
COMPARE_ENUMS(OTHER);
COMPARE_ENUMS(CPU);
COMPARE_ENUMS(GPU);
COMPARE_ENUMS(ACCELERATOR);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, MeasureTiming)
COMPARE_ENUMS(NO);
COMPARE_ENUMS(YES);
#undef COMPARE_ENUMS
#undef COMPARE_ENUMS_FULL
} // anonymous namespace

View file

@ -0,0 +1,502 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
namespace {
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
} // namespace
namespace android::nn {
namespace {
constexpr bool validOperandType(OperandType operandType) {
switch (operandType) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
case OperandType::TENSOR_QUANT8_ASYMM:
case OperandType::BOOL:
case OperandType::TENSOR_QUANT16_SYMM:
case OperandType::TENSOR_FLOAT16:
case OperandType::TENSOR_BOOL8:
case OperandType::FLOAT16:
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case OperandType::TENSOR_QUANT16_ASYMM:
case OperandType::TENSOR_QUANT8_SYMM:
case OperandType::OEM:
case OperandType::TENSOR_OEM_BYTE:
return true;
default:
break;
}
return isExtension(operandType);
}
using hardware::hidl_handle;
using hardware::hidl_vec;
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
Result<std::vector<ConvertOutput<Type>>> convertVec(const hidl_vec<Type>& arguments) {
std::vector<ConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::convert(argument)));
}
return canonical;
}
template <typename Type>
Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
return convertVec(arguments);
}
} // anonymous namespace
Result<OperandType> convert(const hal::V1_2::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
Result<OperationType> convert(const hal::V1_2::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
Result<DeviceType> convert(const hal::V1_2::DeviceType& deviceType) {
return static_cast<DeviceType>(deviceType);
}
Result<Capabilities> convert(const hal::V1_2::Capabilities& capabilities) {
const bool validOperandTypes = std::all_of(
capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
[](const hal::V1_2::Capabilities::OperandPerformance& operandPerformance) {
const auto maybeType = convert(operandPerformance.type);
return !maybeType.has_value() ? false : validOperandType(maybeType.value());
});
if (!validOperandTypes) {
return NN_ERROR()
<< "Invalid OperandType when converting OperandPerformance in Capabilities";
}
const auto relaxedFloat32toFloat16PerformanceScalar =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar));
const auto relaxedFloat32toFloat16PerformanceTensor =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor));
auto operandPerformance = NN_TRY(convert(capabilities.operandPerformance));
auto table =
NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = relaxedFloat32toFloat16PerformanceScalar,
.relaxedFloat32toFloat16PerformanceTensor = relaxedFloat32toFloat16PerformanceTensor,
.operandPerformance = std::move(table),
};
}
Result<Capabilities::OperandPerformance> convert(
const hal::V1_2::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(convert(operandPerformance.type)),
.info = NN_TRY(convert(operandPerformance.info)),
};
}
Result<Operation> convert(const hal::V1_2::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
Result<Operand::SymmPerChannelQuantParams> convert(
const hal::V1_2::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
return Operand::SymmPerChannelQuantParams{
.scales = symmPerChannelQuantParams.scales,
.channelDim = symmPerChannelQuantParams.channelDim,
};
}
Result<Operand> convert(const hal::V1_2::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
.extraParams = NN_TRY(convert(operand.extraParams)),
};
}
Result<Operand::ExtraParams> convert(const hal::V1_2::Operand::ExtraParams& extraParams) {
using Discriminator = hal::V1_2::Operand::ExtraParams::hidl_discriminator;
switch (extraParams.getDiscriminator()) {
case Discriminator::none:
return Operand::NoParams{};
case Discriminator::channelQuant:
return convert(extraParams.channelQuant());
case Discriminator::extension:
return extraParams.extension();
}
return NN_ERROR() << "Unrecognized Operand::ExtraParams discriminator: "
<< underlyingType(extraParams.getDiscriminator());
}
Result<Model> convert(const hal::V1_2::Model& model) {
auto operations = NN_TRY(convert(model.operations));
// Verify number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(model.operands.size(), operations);
CHECK(model.operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < model.operands.size(); ++i) {
if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) {
return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
<< numberOfConsumers[i] << " but found "
<< model.operands[i].numberOfConsumers;
}
}
auto main = Model::Subgraph{
.operands = NN_TRY(convert(model.operands)),
.operations = std::move(operations),
.inputIndexes = model.inputIndexes,
.outputIndexes = model.outputIndexes,
};
return Model{
.main = std::move(main),
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
};
}
Result<Model::ExtensionNameAndPrefix> convert(
const hal::V1_2::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return Model::ExtensionNameAndPrefix{
.name = extensionNameAndPrefix.name,
.prefix = extensionNameAndPrefix.prefix,
};
}
Result<OutputShape> convert(const hal::V1_2::OutputShape& outputShape) {
return OutputShape{
.dimensions = outputShape.dimensions,
.isSufficient = outputShape.isSufficient,
};
}
Result<MeasureTiming> convert(const hal::V1_2::MeasureTiming& measureTiming) {
return static_cast<MeasureTiming>(measureTiming);
}
Result<Timing> convert(const hal::V1_2::Timing& timing) {
return Timing{.timeOnDevice = timing.timeOnDevice, .timeInDriver = timing.timeInDriver};
}
Result<Extension> convert(const hal::V1_2::Extension& extension) {
return Extension{
.name = extension.name,
.operandTypes = NN_TRY(convert(extension.operandTypes)),
};
}
Result<Extension::OperandTypeInformation> convert(
const hal::V1_2::Extension::OperandTypeInformation& operandTypeInformation) {
return Extension::OperandTypeInformation{
.type = operandTypeInformation.type,
.isTensor = operandTypeInformation.isTensor,
.byteSize = operandTypeInformation.byteSize,
};
}
Result<NativeHandle> convert(const hidl_handle& handle) {
auto* cloned = native_handle_clone(handle.getNativeHandle());
return ::android::NativeHandle::create(cloned, /*ownsHandle=*/true);
}
Result<std::vector<Extension>> convert(const hidl_vec<hal::V1_2::Extension>& extensions) {
return convertVec(extensions);
}
Result<std::vector<NativeHandle>> convert(const hidl_vec<hidl_handle>& handles) {
return convertVec(handles);
}
Result<std::vector<OutputShape>> convert(const hidl_vec<hal::V1_2::OutputShape>& outputShapes) {
return convertVec(outputShapes);
}
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_2::utils {
namespace {
using utils::convert;
nn::Result<V1_0::OperandLifeTime> convert(const nn::Operand::LifeTime& lifetime) {
return V1_0::utils::convert(lifetime);
}
nn::Result<V1_0::PerformanceInfo> convert(
const nn::Capabilities::PerformanceInfo& performanceInfo) {
return V1_0::utils::convert(performanceInfo);
}
nn::Result<V1_0::DataLocation> convert(const nn::DataLocation& location) {
return V1_0::utils::convert(location);
}
nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
return V1_0::utils::convert(operandValues);
}
nn::Result<hidl_memory> convert(const nn::Memory& memory) {
return V1_0::utils::convert(memory);
}
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
nn::Result<hidl_vec<ConvertOutput<Type>>> convertVec(const std::vector<Type>& arguments) {
hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(convert(arguments[i]));
}
return halObject;
}
template <typename Type>
nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
return convertVec(arguments);
}
nn::Result<Operand::ExtraParams> makeExtraParams(nn::Operand::NoParams /*noParams*/) {
return Operand::ExtraParams{};
}
nn::Result<Operand::ExtraParams> makeExtraParams(
const nn::Operand::SymmPerChannelQuantParams& channelQuant) {
Operand::ExtraParams ret;
ret.channelQuant(NN_TRY(convert(channelQuant)));
return ret;
}
nn::Result<Operand::ExtraParams> makeExtraParams(const nn::Operand::ExtensionParams& extension) {
Operand::ExtraParams ret;
ret.extension(extension);
return ret;
}
} // anonymous namespace
nn::Result<OperandType> convert(const nn::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
nn::Result<OperationType> convert(const nn::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
nn::Result<DeviceType> convert(const nn::DeviceType& deviceType) {
switch (deviceType) {
case nn::DeviceType::UNKNOWN:
return NN_ERROR() << "Invalid DeviceType UNKNOWN";
case nn::DeviceType::OTHER:
case nn::DeviceType::CPU:
case nn::DeviceType::GPU:
case nn::DeviceType::ACCELERATOR:
return static_cast<DeviceType>(deviceType);
}
return NN_ERROR() << "Invalid DeviceType " << underlyingType(deviceType);
}
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
std::vector<nn::Capabilities::OperandPerformance> operandPerformance;
operandPerformance.reserve(capabilities.operandPerformance.asVector().size());
std::copy_if(capabilities.operandPerformance.asVector().begin(),
capabilities.operandPerformance.asVector().end(),
std::back_inserter(operandPerformance),
[](const nn::Capabilities::OperandPerformance& operandPerformance) {
return nn::validOperandType(operandPerformance.type);
});
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = NN_TRY(convert(operandPerformance)),
};
}
nn::Result<Capabilities::OperandPerformance> convert(
const nn::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(convert(operandPerformance.type)),
.info = NN_TRY(convert(operandPerformance.info)),
};
}
nn::Result<Operation> convert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
nn::Result<SymmPerChannelQuantParams> convert(
const nn::Operand::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
return SymmPerChannelQuantParams{
.scales = symmPerChannelQuantParams.scales,
.channelDim = symmPerChannelQuantParams.channelDim,
};
}
nn::Result<Operand> convert(const nn::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.numberOfConsumers = 0,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
.extraParams = NN_TRY(convert(operand.extraParams)),
};
}
nn::Result<Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams) {
return std::visit([](const auto& x) { return makeExtraParams(x); }, extraParams);
}
nn::Result<Model> convert(const nn::Model& model) {
if (!hal::utils::hasNoPointerData(model)) {
return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
}
auto operands = NN_TRY(convert(model.main.operands));
// Update number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(operands.size(), model.main.operations);
CHECK(operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < operands.size(); ++i) {
operands[i].numberOfConsumers = numberOfConsumers[i];
}
return Model{
.operands = std::move(operands),
.operations = NN_TRY(convert(model.main.operations)),
.inputIndexes = model.main.inputIndexes,
.outputIndexes = model.main.outputIndexes,
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
};
}
nn::Result<Model::ExtensionNameAndPrefix> convert(
const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return Model::ExtensionNameAndPrefix{
.name = extensionNameAndPrefix.name,
.prefix = extensionNameAndPrefix.prefix,
};
}
nn::Result<OutputShape> convert(const nn::OutputShape& outputShape) {
return OutputShape{.dimensions = outputShape.dimensions,
.isSufficient = outputShape.isSufficient};
}
nn::Result<MeasureTiming> convert(const nn::MeasureTiming& measureTiming) {
return static_cast<MeasureTiming>(measureTiming);
}
nn::Result<Timing> convert(const nn::Timing& timing) {
return Timing{.timeOnDevice = timing.timeOnDevice, .timeInDriver = timing.timeInDriver};
}
nn::Result<Extension> convert(const nn::Extension& extension) {
return Extension{
.name = extension.name,
.operandTypes = NN_TRY(convert(extension.operandTypes)),
};
}
nn::Result<Extension::OperandTypeInformation> convert(
const nn::Extension::OperandTypeInformation& operandTypeInformation) {
return Extension::OperandTypeInformation{
.type = operandTypeInformation.type,
.isTensor = operandTypeInformation.isTensor,
.byteSize = operandTypeInformation.byteSize,
};
}
nn::Result<hidl_handle> convert(const nn::NativeHandle& handle) {
const auto hidlHandle = hidl_handle(handle->handle());
// Copy memory to force the native_handle_t to be copied.
auto copiedHandle = hidlHandle;
return copiedHandle;
}
nn::Result<hidl_vec<Extension>> convert(const std::vector<nn::Extension>& extensions) {
return convertVec(extensions);
}
nn::Result<hidl_vec<hidl_handle>> convert(const std::vector<nn::NativeHandle>& handles) {
return convertVec(handles);
}
nn::Result<hidl_vec<OutputShape>> convert(const std::vector<nn::OutputShape>& outputShapes) {
return convertVec(outputShapes);
}
} // namespace android::hardware::neuralnetworks::V1_2::utils

View file

@ -0,0 +1,39 @@
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_library_static {
name: "neuralnetworks_utils_hal_1_3",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
local_include_dirs: ["include/nnapi/hal/1.3/"],
export_include_dirs: ["include"],
static_libs: [
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
"neuralnetworks_utils_hal_1_0",
"neuralnetworks_utils_hal_1_1",
"neuralnetworks_utils_hal_1_2",
],
shared_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"android.hardware.neuralnetworks@1.3",
],
export_static_lib_headers: [
"neuralnetworks_utils_hal_common",
],
}

View file

@ -0,0 +1,11 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
galarragas@google.com
jeanluc@google.com
levp@google.com
miaowang@google.com
pszczepaniak@google.com
slavash@google.com
vddang@google.com
xusongw@google.com

View file

@ -0,0 +1,79 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_CONVERSIONS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_CONVERSIONS_H
#include <android/hardware/neuralnetworks/1.3/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/CommonUtils.h>
namespace android::nn {
Result<OperandType> convert(const hal::V1_3::OperandType& operandType);
Result<OperationType> convert(const hal::V1_3::OperationType& operationType);
Result<Priority> convert(const hal::V1_3::Priority& priority);
Result<Capabilities> convert(const hal::V1_3::Capabilities& capabilities);
Result<Capabilities::OperandPerformance> convert(
const hal::V1_3::Capabilities::OperandPerformance& operandPerformance);
Result<Operation> convert(const hal::V1_3::Operation& operation);
Result<Operand::LifeTime> convert(const hal::V1_3::OperandLifeTime& operandLifeTime);
Result<Operand> convert(const hal::V1_3::Operand& operand);
Result<Model> convert(const hal::V1_3::Model& model);
Result<Model::Subgraph> convert(const hal::V1_3::Subgraph& subgraph);
Result<BufferDesc> convert(const hal::V1_3::BufferDesc& bufferDesc);
Result<BufferRole> convert(const hal::V1_3::BufferRole& bufferRole);
Result<Request> convert(const hal::V1_3::Request& request);
Result<Request::MemoryPool> convert(const hal::V1_3::Request::MemoryPool& memoryPool);
Result<OptionalTimePoint> convert(const hal::V1_3::OptionalTimePoint& optionalTimePoint);
Result<OptionalTimeoutDuration> convert(
const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration);
Result<ErrorStatus> convert(const hal::V1_3::ErrorStatus& errorStatus);
Result<std::vector<BufferRole>> convert(
const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles);
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_3::utils {
nn::Result<OperandType> convert(const nn::OperandType& operandType);
nn::Result<OperationType> convert(const nn::OperationType& operationType);
nn::Result<Priority> convert(const nn::Priority& priority);
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities);
nn::Result<Capabilities::OperandPerformance> convert(
const nn::Capabilities::OperandPerformance& operandPerformance);
nn::Result<Operation> convert(const nn::Operation& operation);
nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& operandLifeTime);
nn::Result<Operand> convert(const nn::Operand& operand);
nn::Result<Model> convert(const nn::Model& model);
nn::Result<Subgraph> convert(const nn::Model::Subgraph& subgraph);
nn::Result<BufferDesc> convert(const nn::BufferDesc& bufferDesc);
nn::Result<BufferRole> convert(const nn::BufferRole& bufferRole);
nn::Result<Request> convert(const nn::Request& request);
nn::Result<Request::MemoryPool> convert(const nn::Request::MemoryPool& memoryPool);
nn::Result<OptionalTimePoint> convert(const nn::OptionalTimePoint& optionalTimePoint);
nn::Result<OptionalTimeoutDuration> convert(
const nn::OptionalTimeoutDuration& optionalTimeoutDuration);
nn::Result<ErrorStatus> convert(const nn::ErrorStatus& errorStatus);
nn::Result<hidl_vec<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles);
} // namespace android::hardware::neuralnetworks::V1_3::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_CONVERSIONS_H

View file

@ -0,0 +1,67 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_UTILS_H
#include "nnapi/hal/1.3/Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/1.1/Conversions.h>
#include <nnapi/hal/1.2/Conversions.h>
namespace android::hardware::neuralnetworks::V1_3::utils {
constexpr auto kDefaultPriority = Priority::MEDIUM;
constexpr auto kVersion = nn::Version::ANDROID_R;
template <typename Type>
nn::Result<void> validate(const Type& halObject) {
const auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return {};
}
template <typename Type>
bool valid(const Type& halObject) {
const auto result = utils::validate(halObject);
if (!result.has_value()) {
LOG(ERROR) << result.error();
}
return result.has_value();
}
template <typename Type>
decltype(nn::convert(std::declval<Type>())) validatedConvertToCanonical(const Type& halObject) {
auto canonical = NN_TRY(nn::convert(halObject));
const auto version = NN_TRY(nn::validate(canonical));
if (version > utils::kVersion) {
return NN_ERROR() << "";
}
return canonical;
}
} // namespace android::hardware::neuralnetworks::V1_3::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_3_UTILS_H

View file

@ -0,0 +1,218 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Types.h>
#include <type_traits>
namespace {
#define COMPARE_ENUMS_TYPES(lhsType, rhsType) \
static_assert( \
std::is_same_v< \
std::underlying_type_t<::android::hardware::neuralnetworks::V1_3::lhsType>, \
std::underlying_type_t<::android::nn::rhsType>>, \
"::android::hardware::neuralnetworks::V1_3::" #lhsType \
" does not have the same underlying type as ::android::nn::" #rhsType)
COMPARE_ENUMS_TYPES(OperandType, OperandType);
COMPARE_ENUMS_TYPES(OperationType, OperationType);
COMPARE_ENUMS_TYPES(Priority, Priority);
COMPARE_ENUMS_TYPES(OperandLifeTime, Operand::LifeTime);
COMPARE_ENUMS_TYPES(ErrorStatus, ErrorStatus);
#undef COMPARE_ENUMS_TYPES
#define COMPARE_ENUMS_FULL(symbol, lhsType, rhsType) \
static_assert( \
static_cast< \
std::underlying_type_t<::android::hardware::neuralnetworks::V1_3::lhsType>>( \
::android::hardware::neuralnetworks::V1_3::lhsType::symbol) == \
static_cast<std::underlying_type_t<::android::nn::rhsType>>( \
::android::nn::rhsType::symbol), \
"::android::hardware::neuralnetworks::V1_3::" #lhsType "::" #symbol \
" does not match ::android::nn::" #rhsType "::" #symbol)
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperandType, OperandType)
COMPARE_ENUMS(FLOAT32);
COMPARE_ENUMS(INT32);
COMPARE_ENUMS(UINT32);
COMPARE_ENUMS(TENSOR_FLOAT32);
COMPARE_ENUMS(TENSOR_INT32);
COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
COMPARE_ENUMS(BOOL);
COMPARE_ENUMS(TENSOR_QUANT16_SYMM);
COMPARE_ENUMS(TENSOR_FLOAT16);
COMPARE_ENUMS(TENSOR_BOOL8);
COMPARE_ENUMS(FLOAT16);
COMPARE_ENUMS(TENSOR_QUANT8_SYMM_PER_CHANNEL);
COMPARE_ENUMS(TENSOR_QUANT16_ASYMM);
COMPARE_ENUMS(TENSOR_QUANT8_SYMM);
COMPARE_ENUMS(TENSOR_QUANT8_ASYMM_SIGNED);
COMPARE_ENUMS(SUBGRAPH);
COMPARE_ENUMS(OEM);
COMPARE_ENUMS(TENSOR_OEM_BYTE);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperationType, OperationType)
COMPARE_ENUMS(ADD);
COMPARE_ENUMS(AVERAGE_POOL_2D);
COMPARE_ENUMS(CONCATENATION);
COMPARE_ENUMS(CONV_2D);
COMPARE_ENUMS(DEPTHWISE_CONV_2D);
COMPARE_ENUMS(DEPTH_TO_SPACE);
COMPARE_ENUMS(DEQUANTIZE);
COMPARE_ENUMS(EMBEDDING_LOOKUP);
COMPARE_ENUMS(FLOOR);
COMPARE_ENUMS(FULLY_CONNECTED);
COMPARE_ENUMS(HASHTABLE_LOOKUP);
COMPARE_ENUMS(L2_NORMALIZATION);
COMPARE_ENUMS(L2_POOL_2D);
COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
COMPARE_ENUMS(LOGISTIC);
COMPARE_ENUMS(LSH_PROJECTION);
COMPARE_ENUMS(LSTM);
COMPARE_ENUMS(MAX_POOL_2D);
COMPARE_ENUMS(MUL);
COMPARE_ENUMS(RELU);
COMPARE_ENUMS(RELU1);
COMPARE_ENUMS(RELU6);
COMPARE_ENUMS(RESHAPE);
COMPARE_ENUMS(RESIZE_BILINEAR);
COMPARE_ENUMS(RNN);
COMPARE_ENUMS(SOFTMAX);
COMPARE_ENUMS(SPACE_TO_DEPTH);
COMPARE_ENUMS(SVDF);
COMPARE_ENUMS(TANH);
COMPARE_ENUMS(BATCH_TO_SPACE_ND);
COMPARE_ENUMS(DIV);
COMPARE_ENUMS(MEAN);
COMPARE_ENUMS(PAD);
COMPARE_ENUMS(SPACE_TO_BATCH_ND);
COMPARE_ENUMS(SQUEEZE);
COMPARE_ENUMS(STRIDED_SLICE);
COMPARE_ENUMS(SUB);
COMPARE_ENUMS(TRANSPOSE);
COMPARE_ENUMS(ABS);
COMPARE_ENUMS(ARGMAX);
COMPARE_ENUMS(ARGMIN);
COMPARE_ENUMS(AXIS_ALIGNED_BBOX_TRANSFORM);
COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_LSTM);
COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_RNN);
COMPARE_ENUMS(BOX_WITH_NMS_LIMIT);
COMPARE_ENUMS(CAST);
COMPARE_ENUMS(CHANNEL_SHUFFLE);
COMPARE_ENUMS(DETECTION_POSTPROCESSING);
COMPARE_ENUMS(EQUAL);
COMPARE_ENUMS(EXP);
COMPARE_ENUMS(EXPAND_DIMS);
COMPARE_ENUMS(GATHER);
COMPARE_ENUMS(GENERATE_PROPOSALS);
COMPARE_ENUMS(GREATER);
COMPARE_ENUMS(GREATER_EQUAL);
COMPARE_ENUMS(GROUPED_CONV_2D);
COMPARE_ENUMS(HEATMAP_MAX_KEYPOINT);
COMPARE_ENUMS(INSTANCE_NORMALIZATION);
COMPARE_ENUMS(LESS);
COMPARE_ENUMS(LESS_EQUAL);
COMPARE_ENUMS(LOG);
COMPARE_ENUMS(LOGICAL_AND);
COMPARE_ENUMS(LOGICAL_NOT);
COMPARE_ENUMS(LOGICAL_OR);
COMPARE_ENUMS(LOG_SOFTMAX);
COMPARE_ENUMS(MAXIMUM);
COMPARE_ENUMS(MINIMUM);
COMPARE_ENUMS(NEG);
COMPARE_ENUMS(NOT_EQUAL);
COMPARE_ENUMS(PAD_V2);
COMPARE_ENUMS(POW);
COMPARE_ENUMS(PRELU);
COMPARE_ENUMS(QUANTIZE);
COMPARE_ENUMS(QUANTIZED_16BIT_LSTM);
COMPARE_ENUMS(RANDOM_MULTINOMIAL);
COMPARE_ENUMS(REDUCE_ALL);
COMPARE_ENUMS(REDUCE_ANY);
COMPARE_ENUMS(REDUCE_MAX);
COMPARE_ENUMS(REDUCE_MIN);
COMPARE_ENUMS(REDUCE_PROD);
COMPARE_ENUMS(REDUCE_SUM);
COMPARE_ENUMS(ROI_ALIGN);
COMPARE_ENUMS(ROI_POOLING);
COMPARE_ENUMS(RSQRT);
COMPARE_ENUMS(SELECT);
COMPARE_ENUMS(SIN);
COMPARE_ENUMS(SLICE);
COMPARE_ENUMS(SPLIT);
COMPARE_ENUMS(SQRT);
COMPARE_ENUMS(TILE);
COMPARE_ENUMS(TOPK_V2);
COMPARE_ENUMS(TRANSPOSE_CONV_2D);
COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_LSTM);
COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_RNN);
COMPARE_ENUMS(RESIZE_NEAREST_NEIGHBOR);
COMPARE_ENUMS(QUANTIZED_LSTM);
COMPARE_ENUMS(IF);
COMPARE_ENUMS(WHILE);
COMPARE_ENUMS(ELU);
COMPARE_ENUMS(HARD_SWISH);
COMPARE_ENUMS(FILL);
COMPARE_ENUMS(RANK);
COMPARE_ENUMS(OEM_OPERATION);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, Priority, Priority)
COMPARE_ENUMS(LOW);
COMPARE_ENUMS(MEDIUM);
COMPARE_ENUMS(HIGH);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, OperandLifeTime, Operand::LifeTime)
COMPARE_ENUMS(TEMPORARY_VARIABLE);
COMPARE_ENUMS(SUBGRAPH_INPUT);
COMPARE_ENUMS(SUBGRAPH_OUTPUT);
COMPARE_ENUMS(CONSTANT_COPY);
COMPARE_ENUMS(CONSTANT_REFERENCE);
COMPARE_ENUMS(NO_VALUE);
COMPARE_ENUMS(SUBGRAPH);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, ErrorStatus, ErrorStatus)
COMPARE_ENUMS(NONE);
COMPARE_ENUMS(DEVICE_UNAVAILABLE);
COMPARE_ENUMS(GENERAL_FAILURE);
COMPARE_ENUMS(OUTPUT_INSUFFICIENT_SIZE);
COMPARE_ENUMS(INVALID_ARGUMENT);
COMPARE_ENUMS(MISSED_DEADLINE_TRANSIENT);
COMPARE_ENUMS(MISSED_DEADLINE_PERSISTENT);
COMPARE_ENUMS(RESOURCE_EXHAUSTED_TRANSIENT);
COMPARE_ENUMS(RESOURCE_EXHAUSTED_PERSISTENT);
#undef COMPARE_ENUMS
#undef COMPARE_ENUMS_FULL
} // anonymous namespace

View file

@ -0,0 +1,552 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/1.2/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>
namespace {
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
} // namespace
namespace android::nn {
namespace {
constexpr auto validOperandType(nn::OperandType operandType) {
switch (operandType) {
case nn::OperandType::FLOAT32:
case nn::OperandType::INT32:
case nn::OperandType::UINT32:
case nn::OperandType::TENSOR_FLOAT32:
case nn::OperandType::TENSOR_INT32:
case nn::OperandType::TENSOR_QUANT8_ASYMM:
case nn::OperandType::BOOL:
case nn::OperandType::TENSOR_QUANT16_SYMM:
case nn::OperandType::TENSOR_FLOAT16:
case nn::OperandType::TENSOR_BOOL8:
case nn::OperandType::FLOAT16:
case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case nn::OperandType::TENSOR_QUANT16_ASYMM:
case nn::OperandType::TENSOR_QUANT8_SYMM:
case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case nn::OperandType::SUBGRAPH:
case nn::OperandType::OEM:
case nn::OperandType::TENSOR_OEM_BYTE:
return true;
}
return nn::isExtension(operandType);
}
using hardware::hidl_vec;
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
Result<std::vector<ConvertOutput<Type>>> convertVec(const hidl_vec<Type>& arguments) {
std::vector<ConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::convert(argument)));
}
return canonical;
}
template <typename Type>
Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
return convertVec(arguments);
}
} // anonymous namespace
Result<OperandType> convert(const hal::V1_3::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
Result<OperationType> convert(const hal::V1_3::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
Result<Priority> convert(const hal::V1_3::Priority& priority) {
return static_cast<Priority>(priority);
}
Result<Capabilities> convert(const hal::V1_3::Capabilities& capabilities) {
const bool validOperandTypes = std::all_of(
capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
[](const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
const auto maybeType = convert(operandPerformance.type);
return !maybeType.has_value() ? false : validOperandType(maybeType.value());
});
if (!validOperandTypes) {
return NN_ERROR()
<< "Invalid OperandType when converting OperandPerformance in Capabilities";
}
auto operandPerformance = NN_TRY(convert(capabilities.operandPerformance));
auto table =
NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = std::move(table),
.ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
};
}
Result<Capabilities::OperandPerformance> convert(
const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(convert(operandPerformance.type)),
.info = NN_TRY(convert(operandPerformance.info)),
};
}
Result<Operation> convert(const hal::V1_3::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
Result<Operand::LifeTime> convert(const hal::V1_3::OperandLifeTime& operandLifeTime) {
return static_cast<Operand::LifeTime>(operandLifeTime);
}
Result<Operand> convert(const hal::V1_3::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
.extraParams = NN_TRY(convert(operand.extraParams)),
};
}
Result<Model> convert(const hal::V1_3::Model& model) {
return Model{
.main = NN_TRY(convert(model.main)),
.referenced = NN_TRY(convert(model.referenced)),
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
};
}
Result<Model::Subgraph> convert(const hal::V1_3::Subgraph& subgraph) {
auto operations = NN_TRY(convert(subgraph.operations));
// Verify number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(subgraph.operands.size(), operations);
CHECK(subgraph.operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < subgraph.operands.size(); ++i) {
if (subgraph.operands[i].numberOfConsumers != numberOfConsumers[i]) {
return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
<< numberOfConsumers[i] << " but found "
<< subgraph.operands[i].numberOfConsumers;
}
}
return Model::Subgraph{
.operands = NN_TRY(convert(subgraph.operands)),
.operations = std::move(operations),
.inputIndexes = subgraph.inputIndexes,
.outputIndexes = subgraph.outputIndexes,
};
}
Result<BufferDesc> convert(const hal::V1_3::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = bufferDesc.dimensions};
}
Result<BufferRole> convert(const hal::V1_3::BufferRole& bufferRole) {
return BufferRole{
.modelIndex = bufferRole.modelIndex,
.ioIndex = bufferRole.ioIndex,
.frequency = bufferRole.frequency,
};
}
Result<Request> convert(const hal::V1_3::Request& request) {
return Request{
.inputs = NN_TRY(convert(request.inputs)),
.outputs = NN_TRY(convert(request.outputs)),
.pools = NN_TRY(convert(request.pools)),
};
}
Result<Request::MemoryPool> convert(const hal::V1_3::Request::MemoryPool& memoryPool) {
using Discriminator = hal::V1_3::Request::MemoryPool::hidl_discriminator;
switch (memoryPool.getDiscriminator()) {
case Discriminator::hidlMemory:
return createSharedMemoryFromHidlMemory(memoryPool.hidlMemory());
case Discriminator::token:
return static_cast<Request::MemoryDomainToken>(memoryPool.token());
}
return NN_ERROR() << "Invalid Request::MemoryPool discriminator "
<< underlyingType(memoryPool.getDiscriminator());
}
Result<OptionalTimePoint> convert(const hal::V1_3::OptionalTimePoint& optionalTimePoint) {
constexpr auto kTimePointMaxCount = TimePoint::max().time_since_epoch().count();
const auto makeTimePoint = [](uint64_t count) -> Result<OptionalTimePoint> {
if (count > kTimePointMaxCount) {
return NN_ERROR()
<< "Unable to convert OptionalTimePoint because the count exceeds the max";
}
const auto nanoseconds = std::chrono::nanoseconds{count};
return TimePoint{nanoseconds};
};
using Discriminator = hal::V1_3::OptionalTimePoint::hidl_discriminator;
switch (optionalTimePoint.getDiscriminator()) {
case Discriminator::none:
return std::nullopt;
case Discriminator::nanosecondsSinceEpoch:
return makeTimePoint(optionalTimePoint.nanosecondsSinceEpoch());
}
return NN_ERROR() << "Invalid OptionalTimePoint discriminator "
<< underlyingType(optionalTimePoint.getDiscriminator());
}
Result<OptionalTimeoutDuration> convert(
const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration) {
constexpr auto kTimeoutDurationMaxCount = TimeoutDuration::max().count();
const auto makeTimeoutDuration = [](uint64_t count) -> Result<OptionalTimeoutDuration> {
if (count > kTimeoutDurationMaxCount) {
return NN_ERROR()
<< "Unable to convert OptionalTimeoutDuration because the count exceeds the max";
}
return TimeoutDuration{count};
};
using Discriminator = hal::V1_3::OptionalTimeoutDuration::hidl_discriminator;
switch (optionalTimeoutDuration.getDiscriminator()) {
case Discriminator::none:
return std::nullopt;
case Discriminator::nanoseconds:
return makeTimeoutDuration(optionalTimeoutDuration.nanoseconds());
}
return NN_ERROR() << "Invalid OptionalTimeoutDuration discriminator "
<< underlyingType(optionalTimeoutDuration.getDiscriminator());
}
Result<ErrorStatus> convert(const hal::V1_3::ErrorStatus& status) {
switch (status) {
case hal::V1_3::ErrorStatus::NONE:
case hal::V1_3::ErrorStatus::DEVICE_UNAVAILABLE:
case hal::V1_3::ErrorStatus::GENERAL_FAILURE:
case hal::V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case hal::V1_3::ErrorStatus::INVALID_ARGUMENT:
case hal::V1_3::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case hal::V1_3::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(status);
}
return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
}
Result<std::vector<BufferRole>> convert(
const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles) {
return convertVec(bufferRoles);
}
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_3::utils {
namespace {
using utils::convert;
nn::Result<V1_0::PerformanceInfo> convert(
const nn::Capabilities::PerformanceInfo& performanceInfo) {
return V1_0::utils::convert(performanceInfo);
}
nn::Result<V1_0::DataLocation> convert(const nn::DataLocation& dataLocation) {
return V1_0::utils::convert(dataLocation);
}
nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
return V1_0::utils::convert(operandValues);
}
nn::Result<hidl_memory> convert(const nn::Memory& memory) {
return V1_0::utils::convert(memory);
}
nn::Result<V1_0::RequestArgument> convert(const nn::Request::Argument& argument) {
return V1_0::utils::convert(argument);
}
nn::Result<V1_2::Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams) {
return V1_2::utils::convert(extraParams);
}
nn::Result<V1_2::Model::ExtensionNameAndPrefix> convert(
const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return V1_2::utils::convert(extensionNameAndPrefix);
}
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
nn::Result<hidl_vec<ConvertOutput<Type>>> convertVec(const std::vector<Type>& arguments) {
hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(convert(arguments[i]));
}
return halObject;
}
template <typename Type>
nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
return convertVec(arguments);
}
nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Memory& memory) {
Request::MemoryPool ret;
ret.hidlMemory(NN_TRY(convert(memory)));
return ret;
}
nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Request::MemoryDomainToken& token) {
Request::MemoryPool ret;
ret.token(underlyingType(token));
return ret;
}
nn::Result<Request::MemoryPool> makeMemoryPool(
const std::shared_ptr<const nn::IBuffer>& /*buffer*/) {
return NN_ERROR() << "Unable to make memory pool from IBuffer";
}
} // anonymous namespace
nn::Result<OperandType> convert(const nn::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
nn::Result<OperationType> convert(const nn::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
nn::Result<Priority> convert(const nn::Priority& priority) {
return static_cast<Priority>(priority);
}
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
std::vector<nn::Capabilities::OperandPerformance> operandPerformance;
operandPerformance.reserve(capabilities.operandPerformance.asVector().size());
std::copy_if(capabilities.operandPerformance.asVector().begin(),
capabilities.operandPerformance.asVector().end(),
std::back_inserter(operandPerformance),
[](const nn::Capabilities::OperandPerformance& operandPerformance) {
return nn::validOperandType(operandPerformance.type);
});
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = NN_TRY(convert(operandPerformance)),
.ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
};
}
nn::Result<Capabilities::OperandPerformance> convert(
const nn::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(convert(operandPerformance.type)),
.info = NN_TRY(convert(operandPerformance.info)),
};
}
nn::Result<Operation> convert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& operandLifeTime) {
if (operandLifeTime == nn::Operand::LifeTime::POINTER) {
return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
}
return static_cast<OperandLifeTime>(operandLifeTime);
}
nn::Result<Operand> convert(const nn::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.numberOfConsumers = 0,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
.extraParams = NN_TRY(convert(operand.extraParams)),
};
}
nn::Result<Model> convert(const nn::Model& model) {
if (!hal::utils::hasNoPointerData(model)) {
return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
}
return Model{
.main = NN_TRY(convert(model.main)),
.referenced = NN_TRY(convert(model.referenced)),
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
};
}
nn::Result<Subgraph> convert(const nn::Model::Subgraph& subgraph) {
auto operands = NN_TRY(convert(subgraph.operands));
// Update number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(operands.size(), subgraph.operations);
CHECK(operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < operands.size(); ++i) {
operands[i].numberOfConsumers = numberOfConsumers[i];
}
return Subgraph{
.operands = std::move(operands),
.operations = NN_TRY(convert(subgraph.operations)),
.inputIndexes = subgraph.inputIndexes,
.outputIndexes = subgraph.outputIndexes,
};
}
nn::Result<BufferDesc> convert(const nn::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = bufferDesc.dimensions};
}
nn::Result<BufferRole> convert(const nn::BufferRole& bufferRole) {
return BufferRole{
.modelIndex = bufferRole.modelIndex,
.ioIndex = bufferRole.ioIndex,
.frequency = bufferRole.frequency,
};
}
nn::Result<Request> convert(const nn::Request& request) {
if (!hal::utils::hasNoPointerData(request)) {
return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
}
return Request{
.inputs = NN_TRY(convert(request.inputs)),
.outputs = NN_TRY(convert(request.outputs)),
.pools = NN_TRY(convert(request.pools)),
};
}
nn::Result<Request::MemoryPool> convert(const nn::Request::MemoryPool& memoryPool) {
return std::visit([](const auto& o) { return makeMemoryPool(o); }, memoryPool);
}
nn::Result<OptionalTimePoint> convert(const nn::OptionalTimePoint& optionalTimePoint) {
OptionalTimePoint ret;
if (optionalTimePoint.has_value()) {
const auto count = optionalTimePoint.value().time_since_epoch().count();
if (count < 0) {
return NN_ERROR() << "Unable to convert OptionalTimePoint because time since epoch "
"count is negative";
}
ret.nanosecondsSinceEpoch(count);
}
return ret;
}
nn::Result<OptionalTimeoutDuration> convert(
const nn::OptionalTimeoutDuration& optionalTimeoutDuration) {
OptionalTimeoutDuration ret;
if (optionalTimeoutDuration.has_value()) {
const auto count = optionalTimeoutDuration.value().count();
if (count < 0) {
return NN_ERROR()
<< "Unable to convert OptionalTimeoutDuration because count is negative";
}
ret.nanoseconds(count);
}
return ret;
}
nn::Result<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
switch (errorStatus) {
case nn::ErrorStatus::NONE:
case nn::ErrorStatus::DEVICE_UNAVAILABLE:
case nn::ErrorStatus::GENERAL_FAILURE:
case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case nn::ErrorStatus::INVALID_ARGUMENT:
case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(errorStatus);
default:
return ErrorStatus::GENERAL_FAILURE;
}
}
nn::Result<hidl_vec<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles) {
return convertVec(bufferRoles);
}
} // namespace android::hardware::neuralnetworks::V1_3::utils

View file

@ -0,0 +1,11 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
galarragas@google.com
jeanluc@google.com
levp@google.com
miaowang@google.com
pszczepaniak@google.com
slavash@google.com
vddang@google.com
xusongw@google.com

View file

@ -0,0 +1,29 @@
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_library_static {
name: "neuralnetworks_utils_hal_common",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
local_include_dirs: ["include/nnapi/hal"],
export_include_dirs: ["include"],
static_libs: [
"neuralnetworks_types",
],
shared_libs: [
"libhidlbase",
],
}

View file

@ -0,0 +1,59 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_COMMON_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_COMMON_UTILS_H
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <vector>
// Shorthand
namespace android::hardware::neuralnetworks {
namespace hal = ::android::hardware::neuralnetworks;
} // namespace android::hardware::neuralnetworks
// Shorthand
namespace android::nn {
namespace hal = ::android::hardware::neuralnetworks;
}
namespace android::hardware::neuralnetworks::utils {
nn::Capabilities::OperandPerformanceTable makeQuantized8PerformanceConsistentWithP(
const nn::Capabilities::PerformanceInfo& float32Performance,
const nn::Capabilities::PerformanceInfo& quantized8Performance);
// Indicates if the object contains no pointer-based data that could be relocated to shared memory.
bool hasNoPointerData(const nn::Model& model);
bool hasNoPointerData(const nn::Request& request);
// Relocate pointer-based data to shared memory.
nn::Result<nn::Model> flushDataFromPointerToShared(const nn::Model& model);
nn::Result<nn::Request> flushDataFromPointerToShared(const nn::Request& request);
// Undoes `flushDataFromPointerToShared` on a Request object. More specifically,
// `unflushDataFromSharedToPointer` copies the output shared memory data from the transformed
// Request object back to the output pointer-based memory in the original Request object.
nn::Result<void> unflushDataFromSharedToPointer(const nn::Request& request,
const nn::Request& requestInShared);
std::vector<uint32_t> countNumberOfConsumers(size_t numberOfOperands,
const std::vector<nn::Operation>& operations);
} // namespace android::hardware::neuralnetworks::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_COMMON_UTILS_H

View file

@ -0,0 +1,224 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CommonUtils.h"
#include <android-base/logging.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <algorithm>
#include <any>
#include <optional>
#include <variant>
#include <vector>
namespace android::hardware::neuralnetworks::utils {
namespace {
bool hasNoPointerData(const nn::Operand& operand);
bool hasNoPointerData(const nn::Model::Subgraph& subgraph);
bool hasNoPointerData(const nn::Request::Argument& argument);
template <typename Type>
bool hasNoPointerData(const std::vector<Type>& objects) {
return std::all_of(objects.begin(), objects.end(),
[](const auto& object) { return hasNoPointerData(object); });
}
bool hasNoPointerData(const nn::DataLocation& location) {
return std::visit([](auto ptr) { return ptr == nullptr; }, location.pointer);
}
bool hasNoPointerData(const nn::Operand& operand) {
return hasNoPointerData(operand.location);
}
bool hasNoPointerData(const nn::Model::Subgraph& subgraph) {
return hasNoPointerData(subgraph.operands);
}
bool hasNoPointerData(const nn::Request::Argument& argument) {
return hasNoPointerData(argument.location);
}
void copyPointersToSharedMemory(nn::Operand* operand, nn::ConstantMemoryBuilder* memoryBuilder) {
CHECK(operand != nullptr);
CHECK(memoryBuilder != nullptr);
if (operand->lifetime != nn::Operand::LifeTime::POINTER) {
return;
}
const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); },
operand->location.pointer);
CHECK(data != nullptr);
operand->lifetime = nn::Operand::LifeTime::CONSTANT_REFERENCE;
operand->location = memoryBuilder->append(data, operand->location.length);
}
void copyPointersToSharedMemory(nn::Model::Subgraph* subgraph,
nn::ConstantMemoryBuilder* memoryBuilder) {
CHECK(subgraph != nullptr);
std::for_each(subgraph->operands.begin(), subgraph->operands.end(),
[memoryBuilder](auto& operand) {
copyPointersToSharedMemory(&operand, memoryBuilder);
});
}
} // anonymous namespace
nn::Capabilities::OperandPerformanceTable makeQuantized8PerformanceConsistentWithP(
const nn::Capabilities::PerformanceInfo& float32Performance,
const nn::Capabilities::PerformanceInfo& quantized8Performance) {
// In Android P, most data types are treated as having the same performance as
// TENSOR_QUANT8_ASYMM. This collection must be in sorted order.
std::vector<nn::Capabilities::OperandPerformance> operandPerformances = {
{.type = nn::OperandType::FLOAT32, .info = float32Performance},
{.type = nn::OperandType::INT32, .info = quantized8Performance},
{.type = nn::OperandType::UINT32, .info = quantized8Performance},
{.type = nn::OperandType::TENSOR_FLOAT32, .info = float32Performance},
{.type = nn::OperandType::TENSOR_INT32, .info = quantized8Performance},
{.type = nn::OperandType::TENSOR_QUANT8_ASYMM, .info = quantized8Performance},
{.type = nn::OperandType::OEM, .info = quantized8Performance},
{.type = nn::OperandType::TENSOR_OEM_BYTE, .info = quantized8Performance},
};
return nn::Capabilities::OperandPerformanceTable::create(std::move(operandPerformances))
.value();
}
bool hasNoPointerData(const nn::Model& model) {
return hasNoPointerData(model.main) && hasNoPointerData(model.referenced);
}
bool hasNoPointerData(const nn::Request& request) {
return hasNoPointerData(request.inputs) && hasNoPointerData(request.outputs);
}
nn::Result<nn::Model> flushDataFromPointerToShared(const nn::Model& model) {
auto modelInShared = model;
nn::ConstantMemoryBuilder memoryBuilder(modelInShared.pools.size());
copyPointersToSharedMemory(&modelInShared.main, &memoryBuilder);
std::for_each(modelInShared.referenced.begin(), modelInShared.referenced.end(),
[&memoryBuilder](auto& subgraph) {
copyPointersToSharedMemory(&subgraph, &memoryBuilder);
});
if (!memoryBuilder.empty()) {
auto memory = NN_TRY(memoryBuilder.finish());
modelInShared.pools.push_back(std::move(memory));
}
return modelInShared;
}
nn::Result<nn::Request> flushDataFromPointerToShared(const nn::Request& request) {
auto requestInShared = request;
// Change input pointers to shared memory.
nn::ConstantMemoryBuilder inputBuilder(requestInShared.pools.size());
for (auto& input : requestInShared.inputs) {
const auto& location = input.location;
if (input.lifetime != nn::Request::Argument::LifeTime::POINTER) {
continue;
}
input.lifetime = nn::Request::Argument::LifeTime::POOL;
const void* data = std::visit([](auto ptr) { return static_cast<const void*>(ptr); },
location.pointer);
CHECK(data != nullptr);
input.location = inputBuilder.append(data, location.length);
}
// Allocate input memory.
if (!inputBuilder.empty()) {
auto memory = NN_TRY(inputBuilder.finish());
requestInShared.pools.push_back(std::move(memory));
}
// Change output pointers to shared memory.
nn::MutableMemoryBuilder outputBuilder(requestInShared.pools.size());
for (auto& output : requestInShared.outputs) {
const auto& location = output.location;
if (output.lifetime != nn::Request::Argument::LifeTime::POINTER) {
continue;
}
output.lifetime = nn::Request::Argument::LifeTime::POOL;
output.location = outputBuilder.append(location.length);
}
// Allocate output memory.
if (!outputBuilder.empty()) {
auto memory = NN_TRY(outputBuilder.finish());
requestInShared.pools.push_back(std::move(memory));
}
return requestInShared;
}
nn::Result<void> unflushDataFromSharedToPointer(const nn::Request& request,
const nn::Request& requestInShared) {
if (requestInShared.pools.empty() ||
!std::holds_alternative<nn::Memory>(requestInShared.pools.back())) {
return {};
}
// Map the memory.
const auto& outputMemory = std::get<nn::Memory>(requestInShared.pools.back());
const auto [pointer, size, context] = NN_TRY(map(outputMemory));
const uint8_t* constantPointer =
std::visit([](const auto& o) { return static_cast<const uint8_t*>(o); }, pointer);
// Flush each output pointer.
CHECK_EQ(request.outputs.size(), requestInShared.outputs.size());
for (size_t i = 0; i < request.outputs.size(); ++i) {
const auto& location = request.outputs[i].location;
const auto& locationInShared = requestInShared.outputs[i].location;
if (!std::holds_alternative<void*>(location.pointer)) {
continue;
}
// Get output pointer and size.
void* data = std::get<void*>(location.pointer);
CHECK(data != nullptr);
const size_t length = location.length;
// Get output pool location.
CHECK(requestInShared.outputs[i].lifetime == nn::Request::Argument::LifeTime::POOL);
const size_t index = locationInShared.poolIndex;
const size_t offset = locationInShared.offset;
const size_t outputPoolIndex = requestInShared.pools.size() - 1;
CHECK(locationInShared.length == length);
CHECK(index == outputPoolIndex);
// Flush memory.
std::memcpy(data, constantPointer + offset, length);
}
return {};
}
std::vector<uint32_t> countNumberOfConsumers(size_t numberOfOperands,
const std::vector<nn::Operation>& operations) {
return nn::countNumberOfConsumers(numberOfOperands, operations);
}
} // namespace android::hardware::neuralnetworks::utils