Merge "Update the specification for the following operations" into rvc-dev am: 6dbc481649

Change-Id: I187c80676737174767e89aa7b6dcc6a163381075
This commit is contained in:
Miao Wang 2020-03-27 22:14:11 +00:00 committed by Automerger Merge Worker
commit ce17e0be4f
4 changed files with 20 additions and 16 deletions

View file

@ -598,11 +598,11 @@ bceee81ec1b59324abd05932b5620fda5a6589597c9cb3953ba7f3ea02cccd3e android.hardwar
2ce820dc4f3c6d85721b65150ed2157c6e2e2055f866fb6c6ba4790f14408d66 android.hardware.camera.provider@2.4::ICameraProviderCallback
b69a7615c508acf5c5201efd1bfa3262167874fc3594e2db5a3ff93addd8ac75 android.hardware.keymaster@4.0::IKeymasterDevice
eb2fa0c883c2185d514be0b84c179b283753ef0c1b77b45b4f359bd23bba8b75 android.hardware.neuralnetworks@1.0::IPreparedModel
8eac60e1f724d141c71c69f06d4544acb720a55dfbbcd97fa01bb3d25ee4e2f5 android.hardware.neuralnetworks@1.0::types
92e101b30e47bdf526a01c52cecfbe730def5997b8260ab497eb949eb2a6dcdf android.hardware.neuralnetworks@1.0::types
5f6d3097ba84cb63c430787123f4de1b31c11f90b531b98eae9a8623a5ae962a android.hardware.neuralnetworks@1.1::types
fb382e986c10b8fbb797a8546e8f9ea6d1107bfe6f3fb7e57f6bbbf1f807a906 android.hardware.neuralnetworks@1.2::IDevice
40e71cd693de5b832325c5d8f081f2ff20a7ba2b89d401cee5b4b3eb0e241681 android.hardware.neuralnetworks@1.2::IPreparedModel
00649d29680f2c47edf60000c3ae7ae906ba638f0616947147e3676a83cf36fa android.hardware.neuralnetworks@1.2::types
ee1a0dee5be00a6fe2d4d3270068c78016dcb194d768fe07ed894ea20904037f android.hardware.neuralnetworks@1.2::types
a785a57447a81e9c130eef6904c3a5c256076c6a04588c40620ebd6fa2660d77 android.hardware.radio@1.2::types
1a6e2bd289f22931c526b21916910f1d4c436b7acb9556e4243de4ce8e6cc2e4 android.hardware.soundtrigger@2.0::ISoundTriggerHwCallback
fd65298e1e09e0e3c781ab18305920d757dbe55a3b459ce17814ec5cf6dfee99 android.hardware.wifi@1.0::IWifiP2pIface
@ -719,7 +719,7 @@ a3eddd9bbdc87e8c22764070037dd1154f1cf006e6fba93364c4f85d4c134a19 android.hardwar
6e904be0ddca5ae1de8eba020e6c38ed935ea7d80cd08f47787f137a0ca58555 android.hardware.neuralnetworks@1.3::IFencedExecutionCallback
2b0b10d2ea7a18a4048cd0eb83d35c19a817aeee95f65807fc31f4ef21381397 android.hardware.neuralnetworks@1.3::IPreparedModel
eee3430cc86c97c7b407495863d8fb61da6f1a64b7721e77b9b4909b11b174e9 android.hardware.neuralnetworks@1.3::IPreparedModelCallback
e442ab1b440327fe4e8a3b0b8ac6874e9bc6342e91fe976eb9fea77c63961ec8 android.hardware.neuralnetworks@1.3::types
acf84925f8ee0a651f2ec547ac334034de266479b93af5434f6c1f25e66aba96 android.hardware.neuralnetworks@1.3::types
b454df853441c12f6e425e8a60dd29fda20f5e6e39b93d1103e4b37495db38aa android.hardware.radio@1.5::IRadio
fcbb0742a88215ee7a6d7ce0825d253eb2b50391fc6c8c48667f9fd7f6d4549e android.hardware.radio@1.5::IRadioIndication
b809193970a91ca637a4b0184767315601d32e3ef3d5992ffbc7a8d14a14f015 android.hardware.radio@1.5::IRadioResponse

View file

@ -261,7 +261,7 @@ enum OperationType : int32_t {
* filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same type.
* the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
@ -289,7 +289,7 @@ enum OperationType : int32_t {
* filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same
* the bias must be of the same
* type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
@ -356,7 +356,7 @@ enum OperationType : int32_t {
* specifying the filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same type.
* the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
@ -385,7 +385,7 @@ enum OperationType : int32_t {
* specifying the filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same type.
* the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
@ -628,7 +628,7 @@ enum OperationType : int32_t {
HASHTABLE_LOOKUP = 10,
/**
* Applies L2 normalization along the depth dimension.
* Applies L2 normalization along the axis dimension.
*
* The values in the output tensor are computed as:
*

View file

@ -846,7 +846,7 @@ enum OperationType : int32_t {
HASHTABLE_LOOKUP = @1.1::OperationType:HASHTABLE_LOOKUP,
/**
* Applies L2 normalization along the depth dimension.
* Applies L2 normalization along the axis dimension.
*
* The values in the output tensor are computed as:
*
@ -854,8 +854,7 @@ enum OperationType : int32_t {
* input[batch, row, col, channel] /
* sqrt(sum_{c} pow(input[batch, row, col, c], 2))
*
* For input tensor with rank less than 4, independently normalizes each
* 1-D slice along dimension dim.
* By default the axis dimension is the last dimension of the input tensor.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
@ -3843,7 +3842,8 @@ enum OperationType : int32_t {
* * 1: A scalar {@link OperandType::INT32}, specifying the number of
* independent samples to draw for each row slice.
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [2],
* specifying seeds used to initialize the random distribution.
* specifying seeds used to initialize the random distribution. If both
* provided seeds are 0, both will be randomly generated.
* Outputs:
* * 0: A 2-D {@link OperandType::TENSOR_INT32} tensor with shape
* [batches, samples], containing the drawn samples.

View file

@ -833,7 +833,7 @@ enum OperationType : int32_t {
HASHTABLE_LOOKUP = @1.2::OperationType:HASHTABLE_LOOKUP,
/**
* Applies L2 normalization along the depth dimension.
* Applies L2 normalization along the axis dimension.
*
* The values in the output tensor are computed as:
*
@ -841,8 +841,7 @@ enum OperationType : int32_t {
* input[batch, row, col, channel] /
* sqrt(sum_{c} pow(input[batch, row, col, c], 2))
*
* For input tensor with rank less than 4, independently normalizes each
* 1-D slice along dimension dim.
* By default the axis dimension is the last dimension of the input tensor.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
@ -867,6 +866,10 @@ enum OperationType : int32_t {
* the scale must be 1.f / 128 and the zeroPoint must be 128.
* For {@link OperandType::TENSOR_QUANT8_ASYMM_SIGNED},
* the scale must be 1.f / 128 and the zeroPoint must be 0.
*
* NOTE: Before HAL version 1.3, if the elements along an axis are all zeros,
* the result is undefined. Since HAL version 1.3, if the elements along an axis
* are all zeros, the result is logical zero.
*/
L2_NORMALIZATION = @1.2::OperationType:L2_NORMALIZATION,
@ -4063,7 +4066,8 @@ enum OperationType : int32_t {
* * 1: A scalar {@link OperandType::INT32}, specifying the number of
* independent samples to draw for each row slice.
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [2],
* specifying seeds used to initialize the random distribution.
* specifying seeds used to initialize the random distribution. If both
* provided seeds are 0, both will be randomly generated.
* Outputs:
* * 0: A 2-D {@link OperandType::TENSOR_INT32} tensor with shape
* [batches, samples], containing the drawn samples.