KeyMint: improve HAL spec and tests

- clarify & test BIGNUM spec
- allow alternative return codes when requesting device unique
  attestation
- use specific error for early boot import failure
- test more early boot key scenarios (in post-early-boot mode)

Test: VtsAidlKeyMintTargetTest
Change-Id: I70a342084a29144aef1ed0ff80fec02cc06ffbc0
This commit is contained in:
David Drysdale 2021-05-18 11:43:31 +01:00
parent cad5403270
commit db0dcf5034
6 changed files with 71 additions and 6 deletions

View file

@ -234,7 +234,7 @@ enum Tag {
* IKeyMintDevice::earlyBootEnded() is called. Early boot keys may be created after
* early boot. Early boot keys may not be imported at all, if Tag::EARLY_BOOT_ONLY is
* provided to IKeyMintDevice::importKey, the import must fail with
* ErrorCode::INVALID_ARGUMENT.
* ErrorCode::EARLY_BOOT_ENDED.
*/
EARLY_BOOT_ONLY = (7 << 28) /* TagType:BOOL */ | 305,

View file

@ -39,7 +39,21 @@ enum TagType {
DATE = 6 << 28,
/** Boolean. If a tag with this type is present, the value is "true". If absent, "false". */
BOOL = 7 << 28,
/** Byte string containing an arbitrary-length integer, big-endian ordering. */
/**
* Byte string containing an arbitrary-length integer, in a two's-complement big-endian
* ordering. The byte array contains the minimum number of bytes needed to represent the
* integer, including at least one sign bit (so zero encodes as the single byte 0x00. This
* matches the encoding of both java.math.BigInteger.toByteArray() and contents octets for an
* ASN.1 INTEGER value (X.690 section 8.3). Examples:
* - value 65536 encodes as 0x01 0x00 0x00
* - value 65535 encodes as 0x00 0xFF 0xFF
* - value 255 encodes as 0x00 0xFF
* - value 1 encodes as 0x01
* - value 0 encodes as 0x00
* - value -1 encodes as 0xFF
* - value -255 encodes as 0xFF 0x01
* - value -256 encodes as 0xFF 0x00
*/
BIGNUM = 8 << 28,
/** Byte string */
BYTES = 9 << 28,

View file

@ -180,7 +180,9 @@ TEST_P(AttestKeyTest, RsaAttestedAttestKeys) {
auto subject = "cert subj 2";
vector<uint8_t> subject_der(make_name_from_str(subject));
uint64_t serial_int = 66;
// An X.509 certificate serial number SHOULD be >0, but this is not policed. Check
// that a zero value doesn't cause problems.
uint64_t serial_int = 0;
vector<uint8_t> serial_blob(build_serial_blob(serial_int));
/*
@ -223,7 +225,7 @@ TEST_P(AttestKeyTest, RsaAttestedAttestKeys) {
auto subject2 = "cert subject";
vector<uint8_t> subject_der2(make_name_from_str(subject2));
uint64_t serial_int2 = 987;
uint64_t serial_int2 = 255;
vector<uint8_t> serial_blob2(build_serial_blob(serial_int2));
EXPECT_EQ(ErrorCode::OK,

View file

@ -75,7 +75,7 @@ TEST_P(DeviceUniqueAttestationTest, RsaNonStrongBoxUnimplemented) {
.Authorization(TAG_DEVICE_UNIQUE_ATTESTATION),
&key_blob, &key_characteristics);
ASSERT_EQ(result, ErrorCode::INVALID_ARGUMENT);
ASSERT_TRUE(result == ErrorCode::INVALID_ARGUMENT || result == ErrorCode::UNSUPPORTED_TAG);
}
/*
@ -101,7 +101,7 @@ TEST_P(DeviceUniqueAttestationTest, EcdsaNonStrongBoxUnimplemented) {
.Authorization(TAG_DEVICE_UNIQUE_ATTESTATION),
&key_blob, &key_characteristics);
ASSERT_EQ(result, ErrorCode::INVALID_ARGUMENT);
ASSERT_TRUE(result == ErrorCode::INVALID_ARGUMENT || result == ErrorCode::UNSUPPORTED_TAG);
}
/*

View file

@ -1185,6 +1185,14 @@ vector<uint8_t> build_serial_blob(const uint64_t serial_int) {
return {};
}
if (serial_blob.empty() || serial_blob[0] & 0x80) {
// An empty blob is OpenSSL's encoding of the zero value; we need single zero byte.
// Top bit being set indicates a negative number in two's complement, but our input
// was positive.
// In either case, prepend a zero byte.
serial_blob.insert(serial_blob.begin(), 0x00);
}
return serial_blob;
}

View file

@ -6320,7 +6320,13 @@ INSTANTIATE_KEYMINT_AIDL_TEST(DestroyAttestationIdsTest);
using EarlyBootKeyTest = KeyMintAidlTestBase;
/*
* EarlyBootKeyTest.CreateEarlyBootKeys
*
* Verifies that creating early boot keys succeeds, even at a later stage (after boot).
*/
TEST_P(EarlyBootKeyTest, CreateEarlyBootKeys) {
// Early boot keys can be created after early boot.
auto [aesKeyData, hmacKeyData, rsaKeyData, ecdsaKeyData] =
CreateTestKeys(TAG_EARLY_BOOT_ONLY, ErrorCode::OK);
@ -6330,6 +6336,41 @@ TEST_P(EarlyBootKeyTest, CreateEarlyBootKeys) {
CheckedDeleteKey(&ecdsaKeyData.blob);
}
/*
* EarlyBootKeyTest.UsetEarlyBootKeyFailure
*
* Verifies that using early boot keys at a later stage fails.
*/
TEST_P(EarlyBootKeyTest, UseEarlyBootKeyFailure) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.Authorization(TAG_EARLY_BOOT_ONLY)
.HmacKey(128)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 256)));
AuthorizationSet output_params;
EXPECT_EQ(ErrorCode::EARLY_BOOT_ENDED, Begin(KeyPurpose::SIGN, key_blob_,
AuthorizationSetBuilder()
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MAC_LENGTH, 256),
&output_params));
}
/*
* EarlyBootKeyTest.ImportEarlyBootKeyFailure
*
* Verifies that importing early boot keys fails.
*/
TEST_P(EarlyBootKeyTest, ImportEarlyBootKeyFailure) {
ASSERT_EQ(ErrorCode::EARLY_BOOT_ENDED, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.Authorization(TAG_EARLY_BOOT_ONLY)
.EcdsaSigningKey(256)
.Digest(Digest::SHA_2_256)
.SetDefaultValidity(),
KeyFormat::PKCS8, ec_256_key));
}
// This is a more comprehensive test, but it can only be run on a machine which is still in early
// boot stage, which no proper Android device is by the time we can run VTS. To use this,
// un-disable it and modify vold to remove the call to earlyBootEnded(). Running the test will end