diff --git a/current.txt b/current.txt index 12cc6ff44f..36f19b7af0 100644 --- a/current.txt +++ b/current.txt @@ -260,7 +260,7 @@ fb92e2b40f8e9d494e8fd3b4ac18499a3216342e7cff160714c3bbf3660b6e79 android.hardwar 4e7169919d24fbe5573e5bcd683d0bd7abf553a4e6c34c41f9dfc1e12050db07 android.hardware.gnss@1.0::IGnssNavigationMessageCallback 5804ca86611d72e5481f022b3a0c1b334217f2e4988dad25730c42af2d1f4d1c android.hardware.neuralnetworks@1.0::IDevice 12e8dca4ab7d8aadd0ef8f1b438021938e2396139e85db2ed65783b08800aa52 android.hardware.neuralnetworks@1.0::IExecutionCallback -934b9a0627080bca5dee83126d23ace31bdf1ed36fe192a2a7694f81b4f0c2af android.hardware.neuralnetworks@1.0::types +18e6885e184fe48401c2c53f1d1b8bfb07240f40c81ae6b9d2e336fca6efdbb7 android.hardware.neuralnetworks@1.0::types d4840db8efabdf1e4b344fc981cd36e5fe81a39aff6e199f6d06c1c8da413efd android.hardware.radio@1.0::types b280c4704dfcc548a9bf127b59b7c3578f460c50cce70a06b66fe0df8b27cff0 android.hardware.wifi@1.0::types @@ -339,7 +339,7 @@ b8c7ed58aa8740361e63d0ce9e7c94227572a629f356958840b34809d2393a7c android.hardwar 4a2c0dc82780e6c90731725a103feab8ab6ecf85a64e049b9cbd2b2c61620fe1 android.hardware.media.bufferpool@1.0::IConnection 6aef1218e5949f867b0104752ac536c1b707222a403341720de90141df129e3e android.hardware.media.bufferpool@1.0::types 7698dc2382a2eeb43541840e3ee624f34108efdfb976b2bfa7c13ef15fb8c4c4 android.hardware.neuralnetworks@1.1::IDevice -ce5dab4b2dd828bcff09acfb93fcd4846f847868b9e914d214095532c28dc0cf android.hardware.neuralnetworks@1.1::types +72cc6126632456e8fbb8776fe50150c3c4dd5d09145653193affb70785211dfa android.hardware.neuralnetworks@1.1::types 8d3d86da0bfa4bf070970d8303c659f67f35d670c287d45a3f542e4fedadd578 android.hardware.nfc@1.1::INfc e85f566698d2a2c28100e264fcf2c691a066756ddf8dd341d009ff50cfe10614 android.hardware.nfc@1.1::INfcClientCallback 5e278fcaa3287d397d8eebe1c22aaa28150f5caae1cf9381cd6dc32cb37899c5 android.hardware.nfc@1.1::types diff --git a/neuralnetworks/1.0/types.hal b/neuralnetworks/1.0/types.hal index 802f6cb38a..4efa13add0 100644 --- a/neuralnetworks/1.0/types.hal +++ b/neuralnetworks/1.0/types.hal @@ -42,7 +42,8 @@ enum OperandType : int32_t { TENSOR_FLOAT32 = 3, /** A tensor of 32 bit integer values. */ TENSOR_INT32 = 4, - /** A tensor of 8 bit integers that represent real numbers. + /** + * A tensor of 8 bit integers that represent real numbers. * * Attached to this tensor are two numbers that can be used to convert the * 8 bit integer to the real value and vice versa. These two numbers are: @@ -70,15 +71,17 @@ enum OperationType : int32_t { /** * Adds two tensors, element-wise. * - * Takes two input tensors of identical type and compatible dimensions. The output - * is the sum of both input tensors, optionally modified by an activation function. + * Takes two input tensors of identical {@link OperandType} and compatible + * dimensions. The output is the sum of both input tensors, optionally + * modified by an activation function. * * Two dimensions are compatible when: * 1. they are equal, or * 2. one of them is 1 * - * The size of the output is the maximum size along each dimension of the input operands. - * It starts with the trailing dimensions, and works its way forward. + * The size of the output is the maximum size along each dimension of the + * input operands. It starts with the trailing dimensions, and works its + * way forward. * * Example: * @@ -86,7 +89,7 @@ enum OperationType : int32_t { * input2.dimension = {5, 4, 3, 1} * output.dimension = {5, 4, 3, 2} * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * @@ -94,98 +97,119 @@ enum OperationType : int32_t { * * Inputs: * * 0: A tensor. - * * 1: A tensor of the same type, and compatible dimensions as input0. - * * 2: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 1: A tensor of the same {@link OperandType}, and compatible dimensions + * as input0. + * * 2: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Outputs: - * * 0: The sum, a tensor of the same type as input0. + * * 0: The sum, a tensor of the same {@link OperandType} as input0. */ ADD = 0, /** * Performs a 2-D average pooling operation. * - * The output dimensions are functions of the filter dimensions, stride, and padding. + * The output dimensions are functions of the filter dimensions, stride, and + * padding. * * The values in the output tensor are computed as: * * output[batch, row, col, channel] = * sum_{i, j}(input[batch, row + i, col + j, channel]) / sum(1) * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * - * Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width, and Channels) - * data layout. + * Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width, + * and Channels) data layout. * * Both explicit padding and implicit padding are supported. * * Inputs (explicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input. - * * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension. - * * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension. - * * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension. - * * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension. - * * 5: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 6: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 7: An INT32 value, specifying the filter width. - * * 8: An INT32 value, specifying the filter height. - * * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying + * the input. + * * 1: An {@link OperandType::INT32} scalar, specifying the padding on + * the left, in the ‘width’ dimension. + * * 2: An {@link OperandType::INT32} scalar, specifying the padding on + * the right, in the ‘width’ dimension. + * * 3: An {@link OperandType::INT32} scalar, specifying the padding on + * the top, in the ‘height’ dimension. + * * 4: An {@link OperandType::INT32} scalar, specifying the padding on + * the bottom, in the ‘height’ dimension. + * * 5: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 6: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 7: An {@link OperandType::INT32} scalar, specifying the filter + * width. + * * 8: An {@link OperandType::INT32} scalar, specifying the filter + * height. + * * 9: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Inputs (implicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input. - * * 1: An INT32 value, specifying the implicit padding scheme, has to be one of the + * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying + * the input. + * * 1: An {@link OperandType::INT32} scalar, specifying the implicit + * padding scheme, has to be one of the * following values: {0 (NONE), 1 (SAME), 2 (VALID)}. - * * 2: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 3: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 4: An INT32 value, specifying the filter width. - * * 5: An INT32 value, specifying the filter height. - * * 6: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 2: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 3: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 4: An {@link OperandType::INT32} scalar, specifying the filter + * width. + * * 5: An {@link OperandType::INT32} scalar, specifying the filter + * height. + * * 6: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Outputs: - * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth]. + * * 0: The output 4-D tensor, of shape + [batches, out_height, out_width, depth]. */ AVERAGE_POOL_2D = 1, /** * Concatenates the input tensors along the given dimension. * - * The input tensors must have identical type and the same dimensions except the - * dimension along the concatenation axis. + * The input tensors must have identical {@link OperandType} and the same + * dimensions except the dimension along the concatenation axis. * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * * Supported tensor rank: up to 4 * * Inputs: - * * 0 ~ n-1: The list of n input tensors, of shape [D0, D1, ..., Daxis(i), ..., Dm]. - * For inputs of {@link OperandType::TENSOR_QUANT8_ASYMM} type, all - * input tensors must have the same scale and zeroPoint. - * * n: An INT32 value, specifying the concatenation axis. + * * 0 ~ n-1: The list of n input tensors, of shape + * [D0, D1, ..., Daxis(i), ..., Dm]. For inputs of + * {@link OperandType::TENSOR_QUANT8_ASYMM}, all input tensors + * must have the same scale and zeroPoint. + * * n: An {@link OperandType::INT32} scalar, specifying the + * concatenation axis. * * Outputs: - * * 0: The output, a tensor of the same type as the input tensors. - * The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm]. + * * 0: The output, a tensor of the same {@link OperandType} as the input + * tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm]. */ CONCATENATION = 2, /** * Performs an 2-D convolution operation. * - * The CONV_2D op sweeps a 2-D filter that can mix channels together over a batch of - * images, applying the filter to each window of each image of the appropriate size. + * The CONV_2D op sweeps a 2-D filter that can mix channels together over a + * batch of images, applying the filter to each window of each image of the + * appropriate size. * - * The output dimensions are functions of the filter dimensions, stride, and padding. + * The output dimensions are functions of the filter dimensions, stride, and + * padding. * * The values in the output tensor are computed as: * @@ -196,7 +220,7 @@ enum OperationType : int32_t { * bias[channel] * ) * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * @@ -205,63 +229,77 @@ enum OperationType : int32_t { * Both explicit padding and implicit padding are supported. * * Inputs (explicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input. - * * 1: A 4-D tensor, of shape [depth_out, filter_height, filter_width, depth_in], - * specifying the filter. + * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], + * specifying the input. + * * 1: A 4-D tensor, of shape + * [depth_out, filter_height, filter_width, depth_in], specifying the + * filter. * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. - * For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should - * also be of {@link OperandType::TENSOR_FLOAT32}. - * For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias - * should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and - * bias_scale == input_scale * filter_scale. - * * 3: An INT32 value, specifying the padding on the left, in the ‘width’ dimension. - * * 4: An INT32 value, specifying the padding on the right,in the ‘width’ dimension. - * * 5: An INT32 value, specifying the padding on the top, in the ‘height’ dimension. - * * 6: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension. - * * 7: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 8: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * For input tensor of {@link OperandType::TENSOR_FLOAT32}, the bias + * should also be of {@link OperandType::TENSOR_FLOAT32}. For input + * tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias + * should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of + * 0 and bias_scale == input_scale * filter_scale. + * * 3: An {@link OperandType::INT32} scalar, specifying the padding on + * the left, in the ‘width’ dimension. + * * 4: An {@link OperandType::INT32} scalar, specifying the padding on + * the right, in the ‘width’ dimension. + * * 5: An {@link OperandType::INT32} scalar, specifying the padding on + * the top, in the ‘height’ dimension. + * * 6: An {@link OperandType::INT32} scalar, specifying the padding on + * the bottom, in the ‘height’ dimension. + * * 7: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 8: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 9: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Inputs (implicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input. - * * 1: A 4-D tensor, of shape [depth_out, filter_height, filter_width, depth_in], - * specifying the filter. - * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. - * For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should - * also be of {@link OperandType::TENSOR_FLOAT32}. - * For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias - * should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and + * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], + * specifying the input. + * * 1: A 4-D tensor, of shape + * [depth_out, filter_height, filter_width, depth_in], specifying the + * filter. + * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input + * tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should + * also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor + * of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be + * of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and * bias_scale == input_scale * filter_scale. - * * 3: An INT32 value, specifying the implicit padding scheme, has to be one of the + * * 3: An {@link OperandType::INT32} scalar, specifying the implicit + * padding scheme, has to be one of the * following values: {0 (NONE), 1 (SAME), 2 (VALID)}. - * * 4: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 5: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 6: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 4: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 5: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 6: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Outputs: - * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth_out]. - * For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the following - * condition must be satisfied: output_scale > input_scale * filter_scale. + * * 0: The output 4-D tensor, of shape + * [batches, out_height, out_width, depth_out]. For output tensor of + * {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition + * must be satisfied: output_scale > input_scale * filter_scale. */ CONV_2D = 3, /** * Performs a depthwise 2-D convolution operation. * - * Given an input tensor of shape [batches, height, width, depth_in] and a filter - * tensor of shape [1, filter_height, filter_width, depth_out] containing - * depth_out convolutional filters of depth 1, DEPTHWISE_CONV applies a different - * filter to each input channel (expanding from 1 channel to channel_multiplier channels - * for each), then concatenates the results together. + * Given an input tensor of shape [batches, height, width, depth_in] and a + * filter tensor of shape [1, filter_height, filter_width, depth_out] + * containing depth_out convolutional filters of depth 1, DEPTHWISE_CONV + * applies a different filter to each input channel (expanding from 1 + * channel to channel_multiplier channels for each), then concatenates the + * results together. * * The output has depth_out = depth_in * depth_multiplier channels. - * The output dimensions are functions of the filter dimensions, stride, and padding. + * The output dimensions are functions of the filter dimensions, stride, and + * padding. * * The values in the output tensor are computed as: * @@ -271,7 +309,7 @@ enum OperationType : int32_t { * filter[1, di, dj, k * channel_multiplier + q] * ) * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * @@ -280,82 +318,97 @@ enum OperationType : int32_t { * Both explicit padding and implicit padding are supported. * * Inputs (explicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input. + * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], + * specifying the input. * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out], * specifying the filter. - * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. - * For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should - * also be of {@link OperandType::TENSOR_FLOAT32}. - * For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias - * should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and + * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input + * tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should + * also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor + * of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be + * of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and * bias_scale == input_scale * filter_scale. - * * 3: An INT32 value, specifying the padding on the left, in the ‘width’ dimension. - * * 4: An INT32 value, specifying the padding on the right,in the ‘width’ dimension. - * * 5: An INT32 value, specifying the padding on the top, in the ‘height’ dimension. - * * 6: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension. - * * 7: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 8: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 9: An INT32 value, specifying the depthwise multiplier. - * * 10: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 3: An {@link OperandType::INT32} scalar, specifying the padding on + * the left, in the ‘width’ dimension. + * * 4: An {@link OperandType::INT32} scalar, specifying the padding on + * the right, in the ‘width’ dimension. + * * 5: An {@link OperandType::INT32} scalar, specifying the padding on + * the top, in the ‘height’ dimension. + * * 6: An {@link OperandType::INT32} scalar, specifying the padding on + * the bottom, in the ‘height’ dimension. + * * 7: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 8: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 9: An {@link OperandType::INT32} scalar, specifying the depthwise + * multiplier. + * * 10: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Inputs (implicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input. + * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], + * specifying the input. * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out], * specifying the filter. - * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. - * For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should - * also be of {@link OperandType::TENSOR_FLOAT32}. - * For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias - * should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and + * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input + * tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should + * also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor + * of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be + * of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and * bias_scale == input_scale * filter_scale. - * * 3: An INT32 value, specifying the implicit padding scheme, has to be one of the + * * 3: An {@link OperandType::INT32} scalar, specifying the implicit + * padding scheme, has to be one of the * following values: {0 (NONE), 1 (SAME), 2 (VALID)}. - * * 4: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 5: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 6: An INT32 value, specifying the depthwise multiplier. - * * 7: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 4: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 5: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 6: An {@link OperandType::INT32} scalar, specifying the depthwise + * multiplier. + * * 7: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Outputs: - * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth_out]. - * For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the following - * condition must be satisfied: output_scale > input_scale * filter_scale. + * * 0: The output 4-D tensor, of shape + * [batches, out_height, out_width, depth_out]. For output tensor of + * {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition + * must be satisfied: output_scale > input_scale * filter_scale. */ DEPTHWISE_CONV_2D = 4, /** * Rearranges data from depth into blocks of spatial data. * - * More specifically, this op outputs a copy of the input tensor where values from - * the depth dimension are moved in spatial blocks to the height and width dimensions. - * The value block_size indicates the input block size and how the data is moved. + * More specifically, this op outputs a copy of the input tensor where + * values from the depth dimension are moved in spatial blocks to the height + * and width dimensions. The value block_size indicates the input block size + * and how the data is moved. * - * Chunks of data of size block_size * block_size from depth are rearranged into - * non-overlapping blocks of size block_size x block_size. + * Chunks of data of size block_size * block_size from depth are rearranged + * into non-overlapping blocks of size block_size x block_size. * - * The width of the output tensor is input_depth * block_size, whereas the height is - * input_height * block_size. - * The depth of the input tensor must be divisible by block_size * block_size + * The width of the output tensor is input_depth * block_size, whereas the + * height is input_height * block_size. The depth of the input tensor must + * be divisible by block_size * block_size * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * * Supported tensor rank: 4, with "NHWC" data layout. * * Inputs: - * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], specifying the input. - * * 1: An INT32 value, specifying the block_size. block_size must be >=1 and - * block_size * block_size must be a divisor of the input depth. + * * 0: A 4-D tensor, of shape [batches, height, width, depth_in], + * specifying the input. + * * 1: An {@link OperandType::INT32} scalar, specifying the block_size. + * block_size must be >=1 and block_size * block_size must be a divisor + * of the input depth. * * Outputs: - * * 0: The output 4-D tensor, of shape [batch, height*block_size, width*block_size, - * depth/(block_size*block_size)]. + * * 0: The output 4-D tensor, of shape [batch, height*block_size, + * width*block_size, depth/(block_size*block_size)]. */ DEPTH_TO_SPACE = 5, @@ -366,16 +419,16 @@ enum OperationType : int32_t { * * output = (input - zeroPoint) * scale. * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_QUANT8_ASYMM} * * Supported tensor rank: up to 4 * * Inputs: - * * 0: A tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}. + * * 0: A tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}. * * Outputs: - * * 0: The output tensor of same shape as input0, but with type + * * 0: The output tensor of same shape as input0, but with * {@link OperandType::TENSOR_FLOAT32}. */ DEQUANTIZE = 6, @@ -401,7 +454,7 @@ enum OperationType : int32_t { * and an error must be reported. * * Inputs: - * * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32} type. + * * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32}. * The values are indices into the first dimension of Values. * * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are * extracted. @@ -416,7 +469,7 @@ enum OperationType : int32_t { /** * Computes element-wise floor() on the input tensor. * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * Supported tensor rank: up to 4 @@ -425,45 +478,51 @@ enum OperationType : int32_t { * * 0: A tensor. * * Outputs: - * * 0: The output tensor, of the same type and dimensions as the input tensor. + * * 0: The output tensor, of the same {@link OperandType} and dimensions as + * the input tensor. */ FLOOR = 8, /** - * Denotes a fully (densely) connected layer, which connects all elements in the input - * tensor with each element in the output tensor. + * Denotes a fully (densely) connected layer, which connects all elements + * in the input tensor with each element in the output tensor. * * This layer implements the operation: * * outputs = activation(inputs * weights’ + bias) * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * * Supported tensor rank: up to 4. * * Inputs: - * * 0: A tensor of at least rank 2, specifying the input. If rank is greater than 2, - * then it gets flattened to a 2-D Tensor. The (flattened) 2-D Tensor is reshaped - * (if necessary) to [batch_size, input_size], where "input_size" corresponds to - * the number of inputs to the layer, matching the second dimension of weights, and - * "batch_size" is calculated by dividing the number of elements by "input_size". - * * 1: A 2-D tensor, specifying the weights, of shape [num_units, input_size], where - * "num_units" corresponds to the number of output nodes. - * * 2: A 1-D tensor, of shape [num_units], specifying the bias. - * For input tensor of {@link OperandType::TENSOR_FLOAT32} type, the bias should - * also be of {@link OperandType::TENSOR_FLOAT32}. - * For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the bias - * should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and + * * 0: A tensor of at least rank 2, specifying the input. If rank is + * greater than 2, then it gets flattened to a 2-D Tensor. The + * (flattened) 2-D Tensor is reshaped (if necessary) to + * [batch_size, input_size], where "input_size" corresponds to the + * number of inputs to the layer, matching the second dimension of + * weights, and "batch_size" is calculated by dividing the number of + * elements by "input_size". + * * 1: A 2-D tensor, specifying the weights, of shape + * [num_units, input_size], where "num_units" corresponds to the number + * of output nodes. + * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input + * tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should + * also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor + * of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be + * of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and * bias_scale == input_scale * filter_scale. - * * 3: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 3: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Outputs: - * * 0: The output tensor, of shape [batch_size, num_units]. - * For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM} type, the following - * condition must be satisfied: output_scale > input_scale * filter_scale. + * * 0: The output tensor, of shape [batch_size, num_units]. For output + * tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following + * condition must be satisfied: + * output_scale > input_scale * filter_scale. */ FULLY_CONNECTED = 9, @@ -495,19 +554,22 @@ enum OperationType : int32_t { * must be concatenated. * * Inputs: - * * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [ k ]. - * * 1: Keys. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [ n ]; - * Keys and Values pair represent a map, i.e., the ith element - * in Keys (Keys[i]) is the key to select the ith sub-tensor - * in Values (Values[i]), where 0 <= i <= n-1. - * Keys tensor *MUST* be sorted in ascending order. - * * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension must be n. + * * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with + * shape [ k ]. + * * 1: Keys. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape + * [ n ]; Keys and Values pair represent a map, i.e., the ith element + * in Keys (Keys[i]) is the key to select the ith sub-tensor in Values + * (Values[i]), where 0 <= i <= n-1. Keys tensor *MUST* be sorted in + * ascending order. + * * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension + * must be n. * * Outputs: * * 0: Output. A tensor with shape [ k …]. * * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup * hits (True) or not (False). - * Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0 and scale 1.0f. + * Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0 + * and scale 1.0f. * A non-zero byte represents True, a hit. A zero indicates otherwise. */ HASHTABLE_LOOKUP = 10, @@ -521,32 +583,37 @@ enum OperationType : int32_t { * input[batch, row, col, channel] / * sqrt(sum_{c} pow(input[batch, row, col, c], 2)) * - * For input tensor with more dimensions, independently normalizes each 1-D slice along dimension dim. + * For input tensor with more dimensions, independently normalizes each 1-D + * slice along dimension dim. * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * - * Supported tensor rank: 4, with "NHWC" data layout (i.e., Num_samples, Height, Width, and Channels). + * Supported tensor rank: 4, with "NHWC" data layout (i.e., Num_samples, + * Height, Width, and Channels). * * Inputs: * * 0: A 4-D tensor, of shape [batches, height, width, depth]. * * Outputs: - * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth]. + * * 0: The output 4-D tensor, of shape + * [batches, out_height, out_width, depth]. */ L2_NORMALIZATION = 11, /** * Performs an 2-D L2 pooling operation. * - * The output dimensions are functions of the filter dimensions, stride, and padding. + * The output dimensions are functions of the filter dimensions, stride, and + * padding. * * The values in the output tensor are computed as: * * output[batch, row, col, channel] = - * sqrt(sum_{i, j} pow(input[batch, row + i, col + j, channel], 2) / sum(1)) + * sqrt(sum_{i, j} pow(input[batch, row + i, col + j, channel], 2) / + * sum(1)) * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * Supported tensor rank: 4, with "NHWC" data layout. @@ -554,62 +621,82 @@ enum OperationType : int32_t { * Both explicit padding and implicit padding are supported. * * Inputs (explicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input. - * * 1: An INT32 value, specifying the padding on the left, in the ‘width’ dimension. - * * 2: An INT32 value, specifying the padding on the right,in the ‘width’ dimension. - * * 3: An INT32 value, specifying the padding on the top, in the ‘height’ dimension. - * * 4: An INT32 value, specifying the padding on the bottom, in the ‘height’ dimension. - * * 5: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 6: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 7: An INT32 value, specifying the filter width. - * * 8: An INT32 value, specifying the filter height. - * * 9: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying + * the input. + * * 1: An {@link OperandType::INT32} scalar, specifying the padding on + * the left, in the ‘width’ dimension. + * * 2: An {@link OperandType::INT32} scalar, specifying the padding on + * the right, in the ‘width’ dimension. + * * 3: An {@link OperandType::INT32} scalar, specifying the padding on + * the top, in the ‘height’ dimension. + * * 4: An {@link OperandType::INT32} scalar, specifying the padding on + * the bottom, in the ‘height’ dimension. + * * 5: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 6: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 7: An {@link OperandType::INT32} scalar, specifying the filter + * width. + * * 8: An {@link OperandType::INT32} scalar, specifying the filter + * height. + * * 9: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Inputs (implicit padding): - * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input. - * * 1: An INT32 value, specifying the implicit padding scheme, has to be one of the + * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying + * the input. + * * 1: An {@link OperandType::INT32} scalar, specifying the implicit + * padding scheme, has to be one of the * following values: {0 (NONE), 1 (SAME), 2 (VALID)}. - * * 2: An INT32 value, specifying the stride when walking through input - * in the ‘width’ dimension. - * * 3: An INT32 value, specifying the stride when walking through input - * in the ‘height’ dimension. - * * 4: An INT32 value, specifying the filter width. - * * 5: An INT32 value, specifying the filter height. - * * 6: An INT32 value, and has to be one of the {@link FusedActivationFunc} values. - * Specifies the activation to invoke on the result of each addition. + * * 2: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘width’ dimension. + * * 3: An {@link OperandType::INT32} scalar, specifying the stride when + * walking through input in the ‘height’ dimension. + * * 4: An {@link OperandType::INT32} scalar, specifying the filter + * width. + * * 5: An {@link OperandType::INT32} scalar, specifying the filter + * height. + * * 6: An {@link OperandType::INT32} scalar, and has to be one of the + * {@link FusedActivationFunc} values. Specifies the activation to + * invoke on the result. * * Outputs: - * * 0: The output 4-D tensor, of shape [batches, out_height, out_width, depth]. + * * 0: The output 4-D tensor, of shape + * [batches, out_height, out_width, depth]. */ L2_POOL_2D = 12, /** * Applies Local Response Normalization along the depth dimension. * - * The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last - * dimension), and each vector is normalized independently. Within a given vector, - * each component is divided by the weighted, squared sum of inputs within depth_radius. + * The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the + * last dimension), and each vector is normalized independently. Within a + * given vector, each component is divided by the weighted, squared sum of + * inputs within depth_radius. * * The output is calculated using this formula: * - * sqr_sum[a, b, c, d] = - * sum(pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2) + * sqr_sum[a, b, c, d] = sum( + * pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2)) * output = input / pow((bias + alpha * sqr_sum), beta) * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * Supported tensor rank: 4, with "NHWC" data layout. * * Inputs: - * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying the input. - * * 1: An INT32 value, specifying the radius of the normalization window. - * * 2: A FLOAT32 value, specifying the bias, must not be zero. - * * 3: A FLOAT32 value, specifying the scale factor, alpha. - * * 4: A FLOAT32 value, specifying the exponent, beta. + * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying + * the input. + * * 1: An {@link OperandType::INT32} scalar, specifying the radius of + * the normalization window. + * * 2: An {@link OperandType::FLOAT32} scalar, specifying the bias, must + * not be zero. + * * 3: An {@link OperandType::FLOAT32} scalar, specifying the scale + * factor, alpha. + * * 4: An {@link OperandType::FLOAT32} scalar, specifying the exponent, + * beta. * * Outputs: * * 0: The output tensor of same shape as input0. @@ -623,7 +710,7 @@ enum OperationType : int32_t { * * output = 1 / (1 + exp(-input)) * - * Supported tensor types: + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * {@link OperandType::TENSOR_QUANT8_ASYMM} * @@ -634,7 +721,7 @@ enum OperationType : int32_t { * * Outputs: * * 0: The output tensor of same shape as input0. - * For {@link OperandType::TENSOR_QUANT8_ASYMM} type, + * For {@link OperandType::TENSOR_QUANT8_ASYMM}, * the scale must be 1.f / 256 and the zeroPoint must be 0. */ LOGISTIC = 14, @@ -650,18 +737,19 @@ enum OperationType : int32_t { * * * 1: Input. Dim.size >= 1, no restriction on DataType. * * 2: Weight. Optional. Dim.size == 1, DataType: Float. - * If not set, each input element is considered to have the same weight of - * 1.0. + * If not set, each input element is considered to have the same weight + * of 1.0. * Tensor[1].Dim[0] == Tensor[2].Dim[0] * * 3: Type: * Sparse: Value LSHProjectionType_SPARSE(=1). * Computed bit vector is considered to be sparse. - * Each output element is an int32 made up of multiple bits computed from - * hash functions. + * Each output element is an int32 made up of multiple bits + * computed from hash functions. * * Dense: Value LSHProjectionType_DENSE(=2). - * Computed bit vector is considered to be dense. Each output element - * represents a bit and can take the value of either 0 or 1. + * Computed bit vector is considered to be dense. Each output + * element represents a bit and can take the value of either + * 0 or 1. * * Outputs: * * 0: If the projection type is sparse: @@ -681,9 +769,12 @@ enum OperationType : int32_t { * \f{eqnarray*}{ * i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\ * f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\ - * C_t =& clip(f_t \odot C_{t-1} + i_t \odot g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell})& \\ - * o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o)& \\ - * & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj}) & if\ there\ is\ a\ projection; \\ + * C_t =& clip(f_t \odot C_{t-1} + i_t \odot + * g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell}) & \\ + * o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o) & \\ + * & & \\ + * & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj}) + * & if\ there\ is\ a\ projection; \\ * h_t =& & \\ * & o_t \odot g(C_t) & otherwise. \\ * \f} @@ -695,7 +786,8 @@ enum OperationType : int32_t { * * \f$o_t\f$ is the output, * * \f$h_t\f$ is the output state, * * \f$\sigma\f$ is the logistic sigmoid function, - * * \f$g\f$ is the cell input and cell output activation function, usually \f$tahn\f$, + * * \f$g\f$ is the cell input and cell output activation function, usually + * \f$tahn\f$, * * \f$W_{xi}\f$ is the input-to-input weight matrix, * * \f$W_{hi}\f$ is the recurrent to input weight matrix, * * \f$W_{ci}\f$ is the cell-to-input weight matrix, @@ -715,29 +807,32 @@ enum OperationType : int32_t { * * \f$b_{proj}\f$ is the projection bias, * * \f$t_{cell}\f$ is the threshold for clipping the cell state, and * * \f$t_{proj}\f$ is the threshold for clipping the projected output. - * * \f$\odot\f$ is the + * * \f$\odot\f$ is the + * * Hadamard product that takes two matrices and produces another * matrix, each element of which is the product of the corresponding * elements of the input matrices. * * The operation has the following independently optional inputs: - * * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights (\f$W_{hi}\f$), - * cell-to-input (\f$W_{ci}\f$) weights, and input gate bias (\f$b_i\f$) either all have values, - * or none of them have values (i.e., all set to null). If they have no - * values, coupling of input and forget gates (CIFG) is used, in which case - * the input gate (\f$i_t\f$) is calculated using the following equation instead. + * * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights + * (\f$W_{hi}\f$), cell-to-input (\f$W_{ci}\f$) weights, and input gate + * bias (\f$b_i\f$) either all have values, or none of them have values + * (i.e., all set to null). If they have no values, coupling of input and + * forget gates (CIFG) is used, in which case the input gate (\f$i_t\f$) + * is calculated using the following equation instead. * \f{eqnarray*}{ * i_t = 1 - f_t * \f} - * * The cell-to-forget weights (\f$W_{cf}\f$) and cell-to-output - * weights (\f$W_{co}\f$) either both have values or neither of them have values. + * * The cell-to-forget weights (\f$W_{cf}\f$) and cell-to-output weights + * (\f$W_{co}\f$) either both have values or neither of them have values. * If they have values, the peephole optimization is used. Additionally, * if CIFG is not used, cell-to-input weights (\f$W_{ci}\f$) is also * required to have values for peephole optimization. - * * The projection weights (\f$W_{proj}\f$) is required only for the recurrent projection - * layer, and should otherwise have no value. - * * The projection bias (\f$b_{proj}\f$) may (but not required to) have a value if the - * recurrent projection layer exists, and should otherwise have no value. + * * The projection weights (\f$W_{proj}\f$) is required only for the + * recurrent projection layer, and should otherwise have no value. + * * The projection bias (\f$b_{proj}\f$) may (but not required to) have a + * value if the recurrent projection layer exists, and should otherwise + * have no value. * * References: * @@ -749,8 +844,8 @@ enum OperationType : int32_t { * The peephole implementation and projection layer is based on: * https://research.google.com/pubs/archive/43905.pdf * Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory - * recurrent neural network architectures for large scale acoustic modeling." - * INTERSPEECH, 2014. + * recurrent neural network architectures for large scale acoustic + * modeling." INTERSPEECH, 2014. * (However, the concept of peephole optimization was introduced in work * prior to this paper.) * @@ -758,56 +853,74 @@ enum OperationType : int32_t { * http://arxiv.org/pdf/1503.04069.pdf * Greff et al. "LSTM: A Search Space Odyssey" * - * Supported tensor types (type T): + * Supported tensor {@link OperandType}: * * {@link OperandType::TENSOR_FLOAT32} * * Inputs: * * 0: The input (\f$x_t\f$). - * A 2-D tensor of type T, of shape [batch_size, input_size], where - * “batch_size” corresponds to the batching dimension, and “input_size” - * is the size of the input. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [batch_size, input_size], where “batch_size” corresponds to the + * batching dimension, and “input_size” is the size of the input. * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional. - * A 2-D tensor of type T, of shape [num_units, input_size], where - * “num_units” corresponds to the number of cell units. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, input_size], where “num_units” corresponds to the + * number of cell units. * * 2: The input-to-forget weights (\f$W_{xf}\f$). - * A 2-D tensor of type T, of shape [num_units, input_size]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, input_size]. * * 3: The input-to-cell weights (\f$W_{xc}\f$). - * A 2-D tensor of type T, of shape [num_units, input_size]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, input_size]. * * 4: The input-to-output weights (\f$W_{xo}\f$). - * A 2-D tensor of type T, of shape [num_units, input_size]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, input_size]. * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional. - * A 2-D tensor of type T, of shape [num_units, output_size], where - * “output_size” corresponds to either the number of cell units (i.e., - * “num_units”), or the second dimension of the “projection_weights”, if - * defined. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, output_size], where “output_size” corresponds to either + * the number of cell units (i.e., “num_units”), or the second + * dimension of the “projection_weights”, if defined. * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$). - * A 2-D tensor of type T, of shape [num_units, output_size]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, output_size]. * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$). - * A 2-D tensor of type T, of shape [num_units, output_size]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, output_size]. * * 8: The recurrent-to-output weights (\f$W_{ho}\f$). - * A 2-D tensor of type T, of shape [num_units, output_size]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units, output_size]. * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional. - * A 1-D tensor of type T, of shape [num_units]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units]. * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional. - * A 1-D tensor of type T, of shape [num_units]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units]. * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional. - * A 1-D tensor of type T, of shape [num_units]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units]. * * 12:The input gate bias (\f$b_i\f$). Optional. - * A 1-D tensor of type T, of shape [num_units]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units]. * * 13:The forget gate bias (\f$b_f\f$). - * A 1-D tensor of type T, of shape [num_units]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units]. * * 14:The cell bias (\f$b_c\f$). - * A 1-D tensor of type T, of shape [num_units]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units]. * * 15:The output gate bias (\f$b_o\f$). - * A 1-D tensor of type T, of shape [num_units]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [num_units]. * * 16:The projection weights (\f$W_{proj}\f$). Optional. - * A 2-D tensor of type T, of shape [output_size, num_units]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [output_size, num_units]. * * 17:The projection bias (\f$b_{proj}\f$). Optional. - * A 1-D tensor of type T, of shape [output_size]. + * A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [output_size]. * * 18:The output state (in) (\f$h_{t-1}\f$). - * A 2-D tensor of type T, of shape [batch_size, output_size]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [batch_size, output_size]. * * 19:The cell state (in) (\f$C_{t-1}\f$). - * A 2-D tensor of type T, of shape [batch_size, num_units]. + * A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape + * [batch_size, num_units]. * * 20:The activation function (\f$g\f$). * A value indicating the activation function: *