Add memory domain VTS generated tests.

Bug: 141353602
Bug: 141363565
Test: 1.3 VTS
Change-Id: Ifc7eb3fd6f15e28ba403f02bdf66b4568bddcb64
Merged-In: Ifc7eb3fd6f15e28ba403f02bdf66b4568bddcb64
(cherry picked from commit 1f50e54cf8)
This commit is contained in:
Xusong Wang 2020-01-13 11:44:45 -08:00
parent b345a4688f
commit e9da9852a5
3 changed files with 317 additions and 41 deletions

View file

@ -456,7 +456,7 @@ TEST_P(CompilationCachingTest, CacheSavingAndRetrieval) {
}
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
}
TEST_P(CompilationCachingTest, CacheSavingAndRetrievalNonZeroOffset) {
@ -518,7 +518,7 @@ TEST_P(CompilationCachingTest, CacheSavingAndRetrievalNonZeroOffset) {
}
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
}
TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
@ -539,7 +539,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -563,7 +563,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -586,7 +586,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -610,7 +610,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -721,7 +721,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -745,7 +745,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -768,7 +768,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -792,7 +792,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -904,7 +904,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -926,7 +926,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@ -1070,7 +1070,8 @@ TEST_P(CompilationCachingTest, SaveToCache_TOCTOU) {
ASSERT_EQ(preparedModel, nullptr);
} else {
ASSERT_NE(preparedModel, nullptr);
EvaluatePreparedModel(preparedModel, testModelAdd, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModelAdd,
/*testKind=*/TestKind::GENERAL);
}
}
}
@ -1131,7 +1132,8 @@ TEST_P(CompilationCachingTest, PrepareFromCache_TOCTOU) {
ASSERT_EQ(preparedModel, nullptr);
} else {
ASSERT_NE(preparedModel, nullptr);
EvaluatePreparedModel(preparedModel, testModelAdd, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModelAdd,
/*testKind=*/TestKind::GENERAL);
}
}
}

View file

@ -60,6 +60,7 @@ using implementation::PreparedModelCallback;
using V1_0::DataLocation;
using V1_0::ErrorStatus;
using V1_0::OperandLifeTime;
using V1_0::RequestArgument;
using V1_1::ExecutionPreference;
using V1_2::Constant;
using V1_2::MeasureTiming;
@ -75,27 +76,118 @@ enum class Executor { ASYNC, SYNC, BURST };
enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
enum class MemoryType { SHARED, DEVICE };
enum class IOType { INPUT, OUTPUT };
struct TestConfig {
Executor executor;
MeasureTiming measureTiming;
OutputType outputType;
MemoryType memoryType;
// `reportSkipping` indicates if a test should print an info message in case
// it is skipped. The field is set to true by default and is set to false in
// quantization coupling tests to suppress skipping a test
bool reportSkipping;
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType)
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
MemoryType memoryType)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(true) {}
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
bool reportSkipping)
MemoryType memoryType, bool reportSkipping)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(reportSkipping) {}
};
class DeviceMemoryAllocator {
public:
DeviceMemoryAllocator(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel)
: kDevice(device), kPreparedModel(preparedModel), kTestModel(testModel) {}
// Allocate device memory for a target input/output operand.
// Return {IBuffer object, token} if successful.
// Return {nullptr, 0} if device memory is not supported.
template <IOType ioType>
std::pair<sp<IBuffer>, int32_t> allocate(uint32_t index) {
std::pair<sp<IBuffer>, int32_t> buffer;
allocateInternal<ioType>(index, &buffer);
return buffer;
}
private:
template <IOType ioType>
void allocateInternal(uint32_t index, std::pair<sp<IBuffer>, int32_t>* result) {
ASSERT_NE(result, nullptr);
// Prepare arguments.
BufferRole role = {.modelIndex = 0, .ioIndex = index, .frequency = 1.0f};
hidl_vec<BufferRole> inputRoles, outputRoles;
if constexpr (ioType == IOType::INPUT) {
inputRoles = {role};
} else {
outputRoles = {role};
}
// Allocate device memory.
ErrorStatus status;
sp<IBuffer> buffer;
int32_t token;
const auto ret = kDevice->allocate(
{}, {kPreparedModel}, inputRoles, outputRoles,
[&status, &buffer, &token](ErrorStatus error, const sp<IBuffer>& buf, int32_t tok) {
status = error;
buffer = buf;
token = tok;
});
// Check allocation results.
ASSERT_TRUE(ret.isOk());
if (status == ErrorStatus::NONE) {
ASSERT_NE(buffer, nullptr);
ASSERT_GT(token, 0);
} else {
ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
ASSERT_EQ(buffer, nullptr);
ASSERT_EQ(token, 0);
}
// Initialize input data from TestBuffer.
if constexpr (ioType == IOType::INPUT) {
if (buffer != nullptr) {
// TestBuffer -> Shared memory.
const auto& testBuffer = kTestModel.operands[kTestModel.inputIndexes[index]].data;
ASSERT_GT(testBuffer.size(), 0);
hidl_memory tmp = nn::allocateSharedMemory(testBuffer.size());
sp<IMemory> inputMemory = mapMemory(tmp);
ASSERT_NE(inputMemory.get(), nullptr);
uint8_t* inputPtr =
static_cast<uint8_t*>(static_cast<void*>(inputMemory->getPointer()));
ASSERT_NE(inputPtr, nullptr);
const uint8_t* begin = testBuffer.get<uint8_t>();
const uint8_t* end = begin + testBuffer.size();
std::copy(begin, end, inputPtr);
// Shared memory -> IBuffer.
auto ret = buffer->copyFrom(tmp, {});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
}
}
*result = {std::move(buffer), token};
}
const sp<IDevice> kDevice;
const sp<IPreparedModel> kPreparedModel;
const TestModel& kTestModel;
};
} // namespace
Model createModel(const TestModel& testModel) {
@ -191,7 +283,7 @@ static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t inde
return byteSize > 1u;
}
static void makeOutputInsufficientSize(uint32_t outputIndex, V1_0::Request* request) {
static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
auto& length = request->outputs[outputIndex].location.length;
ASSERT_GT(length, 1u);
length -= 1u;
@ -204,6 +296,161 @@ static void makeOutputDimensionsUnspecified(Model* model) {
}
}
constexpr uint32_t kInputPoolIndex = 0;
constexpr uint32_t kOutputPoolIndex = 1;
constexpr uint32_t kDeviceMemoryBeginIndex = 2;
static std::pair<Request, std::vector<sp<IBuffer>>> createRequest(
const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, bool preferDeviceMemory) {
// Memory pools are organized as:
// - 0: Input shared memory pool
// - 1: Output shared memory pool
// - [2, 2+i): Input device memories
// - [2+i, 2+i+o): Output device memories
DeviceMemoryAllocator allocator(device, preparedModel, testModel);
std::vector<sp<IBuffer>> buffers;
std::vector<int32_t> tokens;
// Model inputs.
hidl_vec<RequestArgument> inputs(testModel.inputIndexes.size());
size_t inputSize = 0;
for (uint32_t i = 0; i < testModel.inputIndexes.size(); i++) {
const auto& op = testModel.operands[testModel.inputIndexes[i]];
if (op.data.size() == 0) {
// Omitted input.
inputs[i] = {.hasNoValue = true};
continue;
} else if (preferDeviceMemory) {
SCOPED_TRACE("Input index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::INPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<uint32_t>(buffers.size() +
kDeviceMemoryBeginIndex)};
buffers.push_back(std::move(buffer));
tokens.push_back(token);
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// Reserve shared memory for input.
DataLocation loc = {.poolIndex = kInputPoolIndex,
.offset = static_cast<uint32_t>(inputSize),
.length = static_cast<uint32_t>(op.data.size())};
inputSize += op.data.alignedSize();
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Model outputs.
hidl_vec<RequestArgument> outputs(testModel.outputIndexes.size());
size_t outputSize = 0;
for (uint32_t i = 0; i < testModel.outputIndexes.size(); i++) {
const auto& op = testModel.operands[testModel.outputIndexes[i]];
if (preferDeviceMemory) {
SCOPED_TRACE("Output index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::OUTPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<uint32_t>(buffers.size() +
kDeviceMemoryBeginIndex)};
buffers.push_back(std::move(buffer));
tokens.push_back(token);
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// In the case of zero-sized output, we should at least provide a one-byte buffer.
// This is because zero-sized tensors are only supported internally to the driver, or
// reported in output shapes. It is illegal for the client to pre-specify a zero-sized
// tensor as model output. Otherwise, we will have two semantic conflicts:
// - "Zero dimension" conflicts with "unspecified dimension".
// - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
size_t bufferSize = std::max<size_t>(op.data.size(), 1);
// Reserve shared memory for output.
DataLocation loc = {.poolIndex = kOutputPoolIndex,
.offset = static_cast<uint32_t>(outputSize),
.length = static_cast<uint32_t>(bufferSize)};
outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Memory pools.
hidl_vec<Request::MemoryPool> pools(kDeviceMemoryBeginIndex + buffers.size());
pools[kInputPoolIndex].hidlMemory(nn::allocateSharedMemory(std::max<size_t>(inputSize, 1)));
pools[kOutputPoolIndex].hidlMemory(nn::allocateSharedMemory(std::max<size_t>(outputSize, 1)));
CHECK_NE(pools[kInputPoolIndex].hidlMemory().size(), 0u);
CHECK_NE(pools[kOutputPoolIndex].hidlMemory().size(), 0u);
for (uint32_t i = 0; i < buffers.size(); i++) {
pools[kDeviceMemoryBeginIndex + i].token(tokens[i]);
}
// Copy input data to the input shared memory pool.
sp<IMemory> inputMemory = mapMemory(pools[kInputPoolIndex].hidlMemory());
CHECK(inputMemory.get() != nullptr);
uint8_t* inputPtr = static_cast<uint8_t*>(static_cast<void*>(inputMemory->getPointer()));
CHECK(inputPtr != nullptr);
for (uint32_t i = 0; i < testModel.inputIndexes.size(); i++) {
if (!inputs[i].hasNoValue && inputs[i].location.poolIndex == kInputPoolIndex) {
const auto& op = testModel.operands[testModel.inputIndexes[i]];
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, inputPtr + inputs[i].location.offset);
}
}
Request request = {
.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
return {std::move(request), std::move(buffers)};
}
// Get a TestBuffer with data copied from an IBuffer object.
static void getBuffer(const sp<IBuffer>& buffer, size_t size, TestBuffer* testBuffer) {
// IBuffer -> Shared memory.
hidl_memory tmp = nn::allocateSharedMemory(size);
const auto ret = buffer->copyTo(tmp);
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
// Shared memory -> TestBuffer.
sp<IMemory> outputMemory = mapMemory(tmp);
ASSERT_NE(outputMemory.get(), nullptr);
uint8_t* outputPtr = static_cast<uint8_t*>(static_cast<void*>(outputMemory->getPointer()));
ASSERT_NE(outputPtr, nullptr);
ASSERT_NE(testBuffer, nullptr);
*testBuffer = TestBuffer(size, outputPtr);
}
static std::vector<TestBuffer> getOutputBuffers(const TestModel& testModel, const Request& request,
const std::vector<sp<IBuffer>>& buffers) {
sp<IMemory> outputMemory = mapMemory(request.pools[kOutputPoolIndex].hidlMemory());
CHECK(outputMemory.get() != nullptr);
uint8_t* outputPtr = static_cast<uint8_t*>(static_cast<void*>(outputMemory->getPointer()));
CHECK(outputPtr != nullptr);
// Copy out output results.
std::vector<TestBuffer> outputBuffers;
for (uint32_t i = 0; i < request.outputs.size(); i++) {
const auto& outputLoc = request.outputs[i].location;
if (outputLoc.poolIndex == kOutputPoolIndex) {
outputBuffers.emplace_back(outputLoc.length, outputPtr + outputLoc.offset);
} else {
const auto& op = testModel.operands[testModel.outputIndexes[i]];
if (op.data.size() == 0) {
outputBuffers.emplace_back();
} else {
SCOPED_TRACE("Output index = " + std::to_string(i));
const uint32_t bufferIndex = outputLoc.poolIndex - kDeviceMemoryBeginIndex;
TestBuffer buffer;
getBuffer(buffers[bufferIndex], op.data.size(), &buffer);
outputBuffers.push_back(std::move(buffer));
}
}
}
return outputBuffers;
}
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
sp<ExecutionCallback>& callback) {
@ -233,8 +480,9 @@ static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
std::chrono::microseconds{0});
}
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
const TestConfig& testConfig, bool* skipped = nullptr) {
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, const TestConfig& testConfig,
bool* skipped = nullptr) {
if (skipped != nullptr) {
*skipped = false;
}
@ -244,11 +492,16 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
return;
}
V1_0::Request request10 = createRequest(testModel);
if (testConfig.outputType == OutputType::INSUFFICIENT) {
makeOutputInsufficientSize(/*outputIndex=*/0, &request10);
auto [request, buffers] =
createRequest(device, preparedModel, testModel,
/*preferDeviceMemory=*/testConfig.memoryType == MemoryType::DEVICE);
// Skip if testing memory domain but no device memory has been allocated.
if (testConfig.memoryType == MemoryType::DEVICE && buffers.empty()) {
return;
}
if (testConfig.outputType == OutputType::INSUFFICIENT) {
makeOutputInsufficientSize(/*outputIndex=*/0, &request);
}
Request request = nn::convertToV1_3(request10);
ErrorStatus executionStatus;
hidl_vec<OutputShape> outputShapes;
@ -288,6 +541,10 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
// V1_2.
SCOPED_TRACE("burst");
// check compliance
ASSERT_TRUE(nn::compliantWithV1_0(request));
V1_0::Request request10 = nn::convertToV1_0(request);
// create burst
const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
CreateBurst(preparedModel);
@ -363,17 +620,18 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
}
// Retrieve execution results.
const std::vector<TestBuffer> outputs = getOutputBuffers(request10);
const std::vector<TestBuffer> outputs = getOutputBuffers(testModel, request, buffers);
// We want "close-enough" results.
checkResults(testModel, outputs);
}
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
TestKind testKind) {
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, TestKind testKind) {
std::vector<OutputType> outputTypesList;
std::vector<MeasureTiming> measureTimingList;
std::vector<Executor> executorList;
MemoryType memoryType = MemoryType::SHARED;
switch (testKind) {
case TestKind::GENERAL: {
@ -386,6 +644,12 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
} break;
case TestKind::MEMORY_DOMAIN: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {MeasureTiming::NO};
executorList = {Executor::ASYNC, Executor::SYNC};
memoryType = MemoryType::DEVICE;
} break;
case TestKind::QUANTIZATION_COUPLING: {
LOG(FATAL) << "Wrong TestKind for EvaluatePreparedModel";
return;
@ -395,14 +659,15 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
for (const OutputType outputType : outputTypesList) {
for (const MeasureTiming measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
const TestConfig testConfig(executor, measureTiming, outputType);
EvaluatePreparedModel(preparedModel, testModel, testConfig);
const TestConfig testConfig(executor, measureTiming, outputType, memoryType);
EvaluatePreparedModel(device, preparedModel, testModel, testConfig);
}
}
}
}
void EvaluatePreparedCoupledModels(const sp<IPreparedModel>& preparedModel,
void EvaluatePreparedCoupledModels(const sp<IDevice>& device,
const sp<IPreparedModel>& preparedModel,
const TestModel& testModel,
const sp<IPreparedModel>& preparedCoupledModel,
const TestModel& coupledModel) {
@ -413,12 +678,12 @@ void EvaluatePreparedCoupledModels(const sp<IPreparedModel>& preparedModel,
for (const OutputType outputType : outputTypesList) {
for (const MeasureTiming measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
const TestConfig testConfig(executor, measureTiming, outputType,
const TestConfig testConfig(executor, measureTiming, outputType, MemoryType::SHARED,
/*reportSkipping=*/false);
bool baseSkipped = false;
EvaluatePreparedModel(preparedModel, testModel, testConfig, &baseSkipped);
EvaluatePreparedModel(device, preparedModel, testModel, testConfig, &baseSkipped);
bool coupledSkipped = false;
EvaluatePreparedModel(preparedCoupledModel, coupledModel, testConfig,
EvaluatePreparedModel(device, preparedCoupledModel, coupledModel, testConfig,
&coupledSkipped);
ASSERT_EQ(baseSkipped, coupledSkipped);
if (baseSkipped) {
@ -443,15 +708,12 @@ void Execute(const sp<IDevice>& device, const TestModel& testModel, TestKind tes
sp<IPreparedModel> preparedModel;
switch (testKind) {
case TestKind::GENERAL: {
case TestKind::GENERAL:
case TestKind::DYNAMIC_SHAPE:
case TestKind::MEMORY_DOMAIN: {
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
EvaluatePreparedModel(preparedModel, testModel, TestKind::GENERAL);
} break;
case TestKind::DYNAMIC_SHAPE: {
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
EvaluatePreparedModel(preparedModel, testModel, TestKind::DYNAMIC_SHAPE);
EvaluatePreparedModel(device, preparedModel, testModel, testKind);
} break;
case TestKind::QUANTIZATION_COUPLING: {
ASSERT_TRUE(testModel.hasQuant8CoupledOperands());
@ -475,7 +737,7 @@ void Execute(const sp<IDevice>& device, const TestModel& testModel, TestKind tes
GTEST_SKIP();
}
ASSERT_NE(preparedCoupledModel, nullptr);
EvaluatePreparedCoupledModels(preparedModel, testModel, preparedCoupledModel,
EvaluatePreparedCoupledModels(device, preparedModel, testModel, preparedCoupledModel,
signedQuantizedModel);
} break;
}
@ -501,6 +763,9 @@ class GeneratedTest : public GeneratedTestBase {};
// Tag for the dynamic output shape tests
class DynamicOutputShapeTest : public GeneratedTest {};
// Tag for the memory domain tests
class MemoryDomainTest : public GeneratedTest {};
// Tag for the dynamic output shape tests
class QuantizationCouplingTest : public GeneratedTest {};
@ -512,6 +777,10 @@ TEST_P(DynamicOutputShapeTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::DYNAMIC_SHAPE);
}
TEST_P(MemoryDomainTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::MEMORY_DOMAIN);
}
TEST_P(QuantizationCouplingTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::QUANTIZATION_COUPLING);
}
@ -522,6 +791,9 @@ INSTANTIATE_GENERATED_TEST(GeneratedTest,
INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(MemoryDomainTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) {
return testModel.hasQuant8CoupledOperands() && testModel.operations.size() == 1;
});

View file

@ -62,13 +62,15 @@ enum class TestKind {
GENERAL,
// Same as GENERAL but sets dimensions for the output tensors to zeros
DYNAMIC_SHAPE,
// Same as GENERAL but use device memories for inputs and outputs
MEMORY_DOMAIN,
// Tests if quantized model with TENSOR_QUANT8_ASYMM produces the same result
// (OK/SKIPPED/FAILED) as the model with all such tensors converted to
// TENSOR_QUANT8_ASYMM_SIGNED.
QUANTIZATION_COUPLING
};
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel,
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const test_helper::TestModel& testModel, TestKind testKind);
} // namespace android::hardware::neuralnetworks::V1_3::vts::functional