diff --git a/current.txt b/current.txt index 5383877e3c..4f7389a8c9 100644 --- a/current.txt +++ b/current.txt @@ -450,7 +450,7 @@ dbe96a8ecf3c1f645585c27568464bc4db3c4b2d9a9624d88da606c59959afbe android.hardwar 92714960d1a53fc2ec557302b41c7cc93d2636d8364a44bd0f85be0c92927ff8 android.hardware.neuralnetworks@1.2::IExecutionCallback 83885d366f22ada42c00d8854f0b7e7ba4cf73ddf80bb0d8e168ce132cec57ea android.hardware.neuralnetworks@1.2::IPreparedModel e1c734d1545e1a4ae749ff1dd9704a8e594c59aea7c8363159dc258e93e0df3b android.hardware.neuralnetworks@1.2::IPreparedModelCallback -ba7e93fb136cabfde41ac1b035abd87a51f2c260cea89163984e4e9c69b55a5f android.hardware.neuralnetworks@1.2::types +3316184c595df550eb57837a6eed041d4682314b17b826969da3588ab12f19b6 android.hardware.neuralnetworks@1.2::types cf7a4ba516a638f9b82a249c91fb603042c2d9ca43fd5aad9cf6c0401ed2a5d7 android.hardware.nfc@1.2::INfc abf98c2ae08bf765db54edc8068e36d52eb558cff6706b6fd7c18c65a1f3fc18 android.hardware.nfc@1.2::types 4cb252dc6372a874aef666b92a6e9529915aa187521a700f0789065c3c702ead android.hardware.power.stats@1.0::IPowerStats diff --git a/neuralnetworks/1.2/types.hal b/neuralnetworks/1.2/types.hal index 77e1eb3c2a..5f69f919c4 100644 --- a/neuralnetworks/1.2/types.hal +++ b/neuralnetworks/1.2/types.hal @@ -2270,113 +2270,113 @@ enum OperationType : int32_t { * Inputs: * * 0: The input. * A 3-D tensor of shape: - * If time-major: [max_time, batch_size, output_size] - * If batch-major: [batch_size, max_time, output_size] + * If time-major: [max_time, batch_size, input_size] + * If batch-major: [batch_size, max_time, input_size] * where "max_time" is the number of timesteps (sequence length), * "batch_size" corresponds to the batching dimension, and * "input_size" is the size of the input. * * 1: The forward input-to-input weights. Optional. - * A 2-D tensor of shape [num_units, input_size], where “num_units” - * corresponds to the number of cell units. + * A 2-D tensor of shape [fw_num_units, input_size], where “fw_num_units” + * corresponds to the number of forward cell units. * * 2: The forward input-to-forget weights. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [fw_num_units, input_size]. * * 3: The forward input-to-cell weights. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [fw_num_units, input_size]. * * 4: The forward input-to-output weights. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [fw_num_units, input_size]. * * 5: The forward recurrent-to-input weights. Optional. - * A 2-D tensor of shape [num_units, output_size], where “output_size” - * corresponds to either the number of cell units (i.e., “num_units”), - * or the second dimension of the “projection_weights”, if defined. + * A 2-D tensor of shape [fw_num_units, fw_output_size], where “fw_output_size” + * corresponds to either the number of cell units (i.e., fw_num_units), + * or the second dimension of the “fw_projection_weights”, if defined. * * 6: The forward recurrent-to-forget weights. - * A 2-D tensor of shape [num_units, output_size]. + * A 2-D tensor of shape [fw_num_units, fw_output_size]. * * 7: The forward recurrent-to-cell weights. - * A 2-D tensor of shape [num_units, output_size]. + * A 2-D tensor of shape [fw_num_units, fw_output_size]. * * 8: The forward recurrent-to-output weights. - * A 2-D tensor of shape [num_units, output_size]. + * A 2-D tensor of shape [fw_num_units, fw_output_size]. * * 9: The forward cell-to-input weights. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [fw_num_units]. * * 10: The forward cell-to-forget weights. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [fw_num_units]. * * 11: The forward cell-to-output weights. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [fw_num_units]. * * 12: The forward input gate bias. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [fw_num_units]. * * 13: The forward forget gate bias. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [fw_num_units]. * * 14: The forward cell gate bias. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [fw_num_units]. * * 15: The forward output gate bias. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [fw_num_units]. * * 16: The forward projection weights. Optional. - * A 2-D tensor of shape [output_size, num_units]. + * A 2-D tensor of shape [fw_output_size, fw_num_units]. * * 17: The forward projection bias. Optional. - * A 1-D tensor of shape [output_size]. + * A 1-D tensor of shape [fw_output_size]. * * 18: The backward input-to-input weights. Optional. - * A 2-D tensor of shape [num_units, input_size], where “num_units” - * corresponds to the number of cell units. + * A 2-D tensor of shape [bw_num_units, input_size], where “bw_num_units” + * corresponds to the number of backward cell units. * * 19: The backward input-to-forget weights. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [bw_num_units, input_size]. * * 20: The backward input-to-cell weights. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [bw_num_units, input_size]. * * 21: The backward input-to-output weights. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [bw_num_units, input_size]. * * 22: The backward recurrent-to-input weights. Optional. - * A 2-D tensor of shape [num_units, output_size], where “output_size” - * corresponds to either the number of cell units (i.e., “num_units”), - * or the second dimension of the “projection_weights”, if defined. + * A 2-D tensor of shape [bw_num_units, bw_output_size], where “bw_output_size” + * corresponds to either the number of cell units (i.e., “bw_num_units”), + * or the second dimension of the “bw_projection_weights”, if defined. * * 23: The backward recurrent-to-forget weights. - * A 2-D tensor of shape [num_units, output_size]. + * A 2-D tensor of shape [bw_num_units, bw_output_size]. * * 24: The backward recurrent-to-cell weights. - * A 2-D tensor of shape [num_units, output_size]. + * A 2-D tensor of shape [bw_num_units, bw_output_size]. * * 25: The backward recurrent-to-output weights. - * A 2-D tensor of shape [num_units, output_size]. + * A 2-D tensor of shape [bw_num_units, bw_output_size]. * * 26: The backward cell-to-input weights. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [bw_num_units]. * * 27: The backward cell-to-forget weights. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [bw_num_units]. * * 28: The backward cell-to-output weights. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [bw_num_units]. * * 29: The backward input gate bias. Optional. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [bw_num_units]. * * 30: The backward forget gate bias. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [bw_num_units]. * * 31: The backward cell gate bias. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [bw_num_units]. * * 32: The backward output gate bias. - * A 1-D tensor of shape [num_units]. + * A 1-D tensor of shape [bw_num_units]. * * 33: The backward projection weights. Optional. - * A 2-D tensor of shape [output_size, num_units]. + * A 2-D tensor of shape [bw_output_size, bw_num_units]. * * 34: The backward projection bias. Optional. - * A 1-D tensor of shape [output_size]. + * A 1-D tensor of shape [bw_output_size]. * * 35: The forward input activation state. - * A 2-D tensor of shape [batch_size, output_size]. + * A 2-D tensor of shape [batch_size, bw_output_size]. * * 36: The forward input cell state. - * A 2-D tensor of shape [batch_size, num_units]. + * A 2-D tensor of shape [batch_size, bw_num_units]. * * 37: The backward input activation state. - * A 2-D tensor of shape [batch_size, output_size]. + * A 2-D tensor of shape [batch_size, bw_output_size]. * * 38: The backward input cell state. - * A 2-D tensor of shape [batch_size, num_units]. + * A 2-D tensor of shape [batch_size, bw_num_units]. * * 39: The auxiliary input. Optional. * A 3-D tensor of shape [max_time, batch_size, input_size], where “batch_size” * corresponds to the batching dimension, and “input_size” is the size * of the input. * * 40: The forward auxiliary input-to-input weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [fw_num_units, input_size]. * * 41: The forward auxiliary input-to-forget weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [fw_num_units, input_size]. * * 42: The forward auxiliary input-to-cell weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [fw_num_units, input_size]. * * 43: The forward auxiliary input-to-output weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [fw_num_units, input_size]. * * 44: The backward auxiliary input-to-input weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [bw_num_units, input_size]. * * 45: The backward auxiliary input-to-forget weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [bw_num_units, input_size]. * * 46: The backward auxiliary input-to-cell weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [bw_num_units, input_size]. * * 47: The backward auxiliary input-to-output weights. Optional. - * A 2-D tensor of shape [num_units, input_size]. + * A 2-D tensor of shape [bw_num_units, input_size]. * * 48: The activation function. * A value indicating the activation function: *