Merge "Add validation tests for consistency of model inputs and outputs." into pi-dev
This commit is contained in:
commit
fac7bca33e
1 changed files with 163 additions and 0 deletions
|
@ -286,6 +286,169 @@ TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
|
|||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
|
||||
}
|
||||
|
||||
class NeuralnetworksInputsOutputsTest
|
||||
: public NeuralnetworksHidlTest,
|
||||
public ::testing::WithParamInterface<std::tuple<bool, bool>> {
|
||||
protected:
|
||||
virtual void SetUp() { NeuralnetworksHidlTest::SetUp(); }
|
||||
virtual void TearDown() { NeuralnetworksHidlTest::TearDown(); }
|
||||
V1_1::Model createModel(const std::vector<uint32_t>& inputs,
|
||||
const std::vector<uint32_t>& outputs) {
|
||||
// We set up the operands as floating-point with no designated
|
||||
// model inputs and outputs, and then patch type and lifetime
|
||||
// later on in this function.
|
||||
|
||||
std::vector<Operand> operands = {
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
{
|
||||
.type = OperandType::INT32,
|
||||
.dimensions = {},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::CONSTANT_COPY,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = sizeof(int32_t)},
|
||||
},
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1},
|
||||
.numberOfConsumers = 0,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
};
|
||||
|
||||
const std::vector<Operation> operations = {{
|
||||
.type = OperationType::ADD, .inputs = {0, 1, 2}, .outputs = {3},
|
||||
}};
|
||||
|
||||
std::vector<uint8_t> operandValues;
|
||||
int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
|
||||
operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
|
||||
reinterpret_cast<const uint8_t*>(&activation[1]));
|
||||
|
||||
if (kQuantized) {
|
||||
for (auto& operand : operands) {
|
||||
if (operand.type == OperandType::TENSOR_FLOAT32) {
|
||||
operand.type = OperandType::TENSOR_QUANT8_ASYMM;
|
||||
operand.scale = 1.0f;
|
||||
operand.zeroPoint = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto patchLifetime = [&operands](const std::vector<uint32_t>& operandIndexes,
|
||||
OperandLifeTime lifetime) {
|
||||
for (uint32_t index : operandIndexes) {
|
||||
operands[index].lifetime = lifetime;
|
||||
}
|
||||
};
|
||||
if (kInputHasPrecedence) {
|
||||
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
|
||||
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
|
||||
} else {
|
||||
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
|
||||
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
|
||||
}
|
||||
|
||||
return {
|
||||
.operands = operands,
|
||||
.operations = operations,
|
||||
.inputIndexes = inputs,
|
||||
.outputIndexes = outputs,
|
||||
.operandValues = operandValues,
|
||||
.pools = {},
|
||||
};
|
||||
}
|
||||
void check(const std::string& name,
|
||||
bool expectation, // true = success
|
||||
const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) {
|
||||
SCOPED_TRACE(name + " (HAL calls should " + (expectation ? "succeed" : "fail") + ", " +
|
||||
(kInputHasPrecedence ? "input" : "output") + " precedence, " +
|
||||
(kQuantized ? "quantized" : "float"));
|
||||
|
||||
V1_1::Model model = createModel(inputs, outputs);
|
||||
|
||||
// ensure that getSupportedOperations_1_1() checks model validity
|
||||
ErrorStatus supportedOpsErrorStatus = ErrorStatus::GENERAL_FAILURE;
|
||||
Return<void> supportedOpsReturn = device->getSupportedOperations_1_1(
|
||||
model, [&model, &supportedOpsErrorStatus](ErrorStatus status,
|
||||
const hidl_vec<bool>& supported) {
|
||||
supportedOpsErrorStatus = status;
|
||||
if (status == ErrorStatus::NONE) {
|
||||
ASSERT_EQ(supported.size(), model.operations.size());
|
||||
}
|
||||
});
|
||||
ASSERT_TRUE(supportedOpsReturn.isOk());
|
||||
ASSERT_EQ(supportedOpsErrorStatus,
|
||||
(expectation ? ErrorStatus::NONE : ErrorStatus::INVALID_ARGUMENT));
|
||||
|
||||
// ensure that prepareModel_1_1() checks model validity
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback;
|
||||
ASSERT_NE(preparedModelCallback.get(), nullptr);
|
||||
Return<ErrorStatus> prepareLaunchReturn =
|
||||
device->prepareModel_1_1(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchReturn.isOk());
|
||||
ASSERT_TRUE(prepareLaunchReturn == ErrorStatus::NONE ||
|
||||
prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT);
|
||||
bool preparationOk = (prepareLaunchReturn == ErrorStatus::NONE);
|
||||
if (preparationOk) {
|
||||
preparedModelCallback->wait();
|
||||
preparationOk = (preparedModelCallback->getStatus() == ErrorStatus::NONE);
|
||||
}
|
||||
|
||||
if (preparationOk) {
|
||||
ASSERT_TRUE(expectation);
|
||||
} else {
|
||||
// Preparation can fail for reasons other than an invalid model --
|
||||
// for example, perhaps not all operations are supported, or perhaps
|
||||
// the device hit some kind of capacity limit.
|
||||
bool invalid = prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT ||
|
||||
preparedModelCallback->getStatus() == ErrorStatus::INVALID_ARGUMENT;
|
||||
ASSERT_NE(expectation, invalid);
|
||||
}
|
||||
}
|
||||
|
||||
// Indicates whether an operand that appears in both the inputs
|
||||
// and outputs vector should have lifetime appropriate for input
|
||||
// rather than for output.
|
||||
const bool kInputHasPrecedence = std::get<0>(GetParam());
|
||||
|
||||
// Indicates whether we should test TENSOR_QUANT8_ASYMM rather
|
||||
// than TENSOR_FLOAT32.
|
||||
const bool kQuantized = std::get<1>(GetParam());
|
||||
};
|
||||
|
||||
TEST_P(NeuralnetworksInputsOutputsTest, Validate) {
|
||||
check("Ok", true, {0, 1}, {3});
|
||||
check("InputIsOutput", false, {0, 1}, {3, 0});
|
||||
check("OutputIsInput", false, {0, 1, 3}, {3});
|
||||
check("DuplicateInputs", false, {0, 1, 0}, {3});
|
||||
check("DuplicateOutputs", false, {0, 1}, {3, 3});
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Flavor, NeuralnetworksInputsOutputsTest,
|
||||
::testing::Combine(::testing::Bool(), ::testing::Bool()));
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_1
|
||||
|
|
Loading…
Reference in a new issue